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A preconditioned gradient-based iterative method is derived by judicious selection of two auxil-
iary matrices. The strategy is based on the Newton’s iteration method and can be regarded as
a generalization of the splitting iterative method for system of linear equations. We analyze the
convergence of the method and illustrate that the approach is able to considerably accelerate the
convergence of the gradient-based iterative method.

1. Introduction
In this paper, we consider preconditioned iterative methods for solving Sylvester equations
of form

AX +XB = C, (1.1)

where A ∈ Rm×m, B ∈ Rn×n, and X = [x1 · · ·x2] ∈ Rm×n, with m � n generally. A Lyapunov
equation is a special case of (1.1) with m = n, B = AT , and C = CT . Such kind of problems
frequently arise from many areas of applications in control and system theory [1], stability
of linear systems [2], analysis of bilinear systems [3], power systems [4], signal and image
processing [5], and so forth.

Throughout the paper, we assume that Sylvester equation (1.1) possess a unique
solution, that is,

λ(A) ∩ λ(B) = ∅, (1.2)
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where λ(A) and λ(B) denote the spectra of A and B, respectively [6]. In theory, the exact
solution of (1.1) can be computed by “linearization,” that is, by solving an equivalent system
of linear equations of form

A vec(X) = vec(C), (1.3)

where A = In ⊗ A + BT ⊗ Im ∈ Rmn×mn, vec(X) = [xT
1 , . . . , x

T
n]

T with X = [x1, . . . , xn] ∈ Rm×n,
and ⊗ is the Kronecker product. However, the above direct method requires considerable
computational efforts, due to the high dimension of the problem.

For small-to-medium-scale problems of the form (1.1), direct approaches such
as Bartels-Stewart method [7, 8] and Hessenberg-Schur method [6, 9] have been the
methods of choice. The main idea of these approaches is to transform the original linear
system into a structured system that can be solved efficiently by forward or backward
substitutions.

In the numerical linear community, iterative methods are becoming more and more
popular. Several iterative schemes for Sylvester equations have been proposed; see, for
example, [10–15]. Recently, Some gradient based iterative methods [3–5, 16–26] have been
investigated for solving general coupled matrix equations and general matrix equations. For
Sylvester equations of form (1.1), the gradient based iterative methods use a hierarchical
identification principle to compute the approximate solution. The convergence condition
of these methods is investigated in [16–18]. It is proved that the gradient based iterative
methods are convergent under certain conditions. However, we observe that the convergence
speed of the gradient based iterative methods is generally very slow, which is similar to
the behavior of classical iterative methods applied to systems of linear equations. In this
paper, we consider preconditioning schemes for solving Sylvester equations of form (1.1).
We illustrated that the preconditioned gradient based iterative methods can be derived
by selecting two auxiliary matrices. The selection of preconditioners is natural from the
view point of splitting iteration methods for systems of linear equations. The convergent
property of the preconditioned method is proved and the optimal relaxation parameter is
derived. The performance of the method is compared with the original method in several
examples. Numerical results show that preconditioning is able to considerably speed up the
convergence of the gradient based iterative method.

The paper is organized as follows. In Section 2, a gradient based iterative method
is recalled, and the preconditioned gradient based method is introduced and analyzed. In
Section 3, performance of the preconditioned gradient based method is compared with the
unpreconditioned one, and the influence of an iterative parameter is experimentally studied.
Finally, we conclude the paper in Section 4.

2. A Brief Review of the Gradient Based Iterative Method

We firstly recall an iterative method proposed by Ding and Chen [18] for solving (1.1). The
basic idea is regarding (1.1) as two linear matrix equations:

AX = C −XB, XB = C −AX. (2.1)
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Then define two recursive sequences

X
(1)
k = X

(1)
k−1 + κAT

(
C −AX

(1)
k−1 −X

(1)
k−1B

)
, (2.2)

X
(2)
k = X

(2)
k−1 + κ

(
C −AX

(2)
k−1 −X

(2)
k−1B

)
BT , (2.3)

where κ is the iterative step size. The above procedures can be regarded as two separate
iterative procedures for solving two matrix equations in (2.1).

With X
(1)
k

and X
(2)
k

at hand, then the kth approximate solution Xk can be defined by
taking the average of two approximate solutions, that is,

Xk =
X

(1)
k

+X
(2)
k

2
. (2.4)

By selecting an appropriate initial approximate solution X0, and using Xk−1 to substitute
X

(1)
k−1 in (2.2) and X

(2)
k−1 in (2.3), then the above (2.2)-(2.3) constitute the gradient based

iterative method proposed in [18]. It is shown [18] that the gradient based iterative algorithm
converges as long as

0 < κ <
2

λmax
(
AAT

)
+ λmax

(
BTB

) , (2.5)

where λmax(AAT ) is the largest eigenvalue of AAT .

3. Preconditioned Gradient Based Iterative Method

We start with a general algebraic equation [27]

f(x) = 0, x ∈ R. (3.1)

Suppose xn is an approximate solution for (3.1), for example, f(xn) ≈ 0 (f(xn)/= 0).
Then it follows that the accuracy of xn can be improved by the following scheme:

xn+1 = xn + λf(xn) (3.2)

with λ being a Lagrangian multiplier. It is well known that the optimal value of λ is
determined by

dxn+1

dxn
= 0. (3.3)

From the above condition, the Newton’s iteration follows:

xn+1 = xn −
f(xn)
f ′(xn)

. (3.4)
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Now, let us consider a general system of linear equations of form

Kx = b, (3.5)

where K ∈ Rn×n is a general square matrix. Let f(x) = b − Ax, and x0 be an initial
approximate solution. Then by one-step Newton’s iteration (3.4), we can theoretically find
the exact solution

x1 = x −K−1(b −Kx) = K−1b. (3.6)

However, the previous procedure has the same difficulty as solving (3.5) by direct inverse.
By utilizing the idea of preconditioning, the iteration formula (3.6) can be rebuilt by

replacingK−1 by an approximate matrixM−1. Taking x0 as a starting vector and r0 = b −Ax0,
then it follows that

xk+1 = xk +M−1rk, k = 0, 2, . . . , (3.7)

which is the preconditioned iterative method. Formula (3.7) can also be derived from the
splitting iteration [28] with

A = M −N. (3.8)

More generally, a relaxation parameter can be introduced as follows:

xk+1 = xk + κM−1rk, k = 0, 2, . . . . (3.9)

Recall that Sylvester equations (1.1) can be rewritten as the following two fictitious
matrix equations:

AX = E1,

XB = E2,
(3.10)

where E1 = C −XB and E2 = C −AX.
By (3.9),we define preconditioned iterations as follows:

X̃k = Xk−1 + κM−1
1 (C −AXk−1 −Xk−1B), (3.11)

X̂k = Xk−1 + κ(C −AXk−1 −Xk−1B)M−1
2 , (3.12)

where M1 and M2 are well-chosen preconditioners for A and B, respectively. The kth
approximate solution can be defined by taking the average of two approximate solutions
[16, 18], for example,

Xk =
X̃k + X̂k

2
. (3.13)
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By selecting two initial approximate solutions, the above procedures (3.11)–(3.13) constitute
the framework of the Newton’s iteration method.

The above process can be accomplished by the following algorithm.

Algorithm 3.1. Preconditioned gradient based iterative algorithm (PGBI) can be given as
follows.

(1) Give two initial approximate solutions X̃0 and X̂0.

(2) for k = 1, 2, . . ., until converges

(3) Xk−1 = (X̃k−1 + X̂k−1)/2

(4) X̃k = Xk−1 + κM−1
1 (C −AXk−1 −Xk−1B)

(5) X̂k = Xk−1 + κ(C −AXk−1 −Xk−1B)M−1
2

(6) end.

Remark 3.2. (1) The above algorithm follows the framework of the gradient based iterative
method proposed in [16–18]. However, in [16, 18] thematrixM−1

1 is chosen asAT (M−1
2 = BT ),

and in [17] the matrix M−1
1 is chosen as ATA (M−1

2 = BTB). The previous selection of the
matrices is obviously not wise. In this paper, we have illustrated that M1 and M2 should be
the reasonable preconditioner for A and B, respectively.

(2) Replacing C −AXk−1 −Xk−1B by C −AXk−1B −Xk−1, then the above algorithm can
be used to solve generalized Sylvester equation of form

AXB +X = C. (3.14)

We will present an example of form (3.14) in the last section of the paper.

Lemma 3.3 (see [29]). Leting A ∈ Rn×n, then A is convergent if and only if ρ(A) < 1.

Based on Theorem 3.4 in [18], we have the following theorem.

Theorem 3.4. Suppose Sylvester equation (1.1) has a unique solution X, and

max
i

{∣∣∣∣1 −
κλi
2

∣∣∣∣
}

< 1 (3.15)

then the iterative sequence Xk generated by Algorithm 3.1 converges to X, that is, limk→∞Xk = X
converges to zero for any initial value X(0).

Proof. Since Xk = 1/2(X̃k + X̂k), it follows that

Xk = Xk−1 +
κ

2
M−1

1 (C −AXk−1 −Xk−1B) +
κ

2
(C −AXk−1 −Xk−1B)M−1

2 . (3.16)

Letting Ek = X −Xk and submitting C = AX −XB into the above formula, we have

Xk = Xk−1 +
κ

2
M−1

1 (AE(k − 1) − E(k − 1)B) +
κ

2
(AE(k − 1) − E(k − 1)B)M−1

2 . (3.17)
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Using X to subtract both sides of the above equation, we have

Ek = Ek−1 − κ

2
M−1

1 (AEk−1 − Ek−1B) − κ

2
(AEk−1 − Ek−1B)M−1

2 . (3.18)

Let vec(X) be defined as the vector formed by stacking the columns of X on the top of
one another, that is,

vec(X) =

⎡
⎢⎣
x1
...
xm

⎤
⎥⎦. (3.19)

Then (3.18) is equivalent to

vec(Ek) =
(
I − κ

2
Φ
)
vec(Ek−1), (3.20)

where Φ = I ⊗ (M−1
1 A) − BT ⊗ M−1

1 + M−T
2 ⊗ A − (M−T

2 BT ) ⊗ I. Therefore, the iteration is
convergent if and only if ρ(I − (κ/2)Φ) < 1, that is,

max
i

{∣∣∣∣1 −
κλi
2

∣∣∣∣
}

< 1. (3.21)

The proof is complete.

Remark 3.5. The choice of parameter κ is an important issue. We will experimentally study its
influence on the convergence. However, the parameter is problem dependent; so seeking a
parameter that is suitable for a broad range of problems is a difficult task.

4. Numerical Examples

In the following tests, the parameter κ is set to be

1
max

(
eig

(
AAT

)
+max

(
eig

(
BBT

))) (4.1)

in the gradient based iterative method (GBI), and κ is chosen experimentally in the
preconditioned gradient based iterative method (PGBI). In all the test, the stopping criterion
is set to be 1e−6. The exact solution is set asX = rand(m,n)+speye(m,n)∗2 such that the right
hand sideC = AX+XB, and the initial approximate solution is set to beX0 = ones(m,n)∗1e−6.
The relative error norms are recorded and plotted by Matlab command semilogy [30]. We
always choose ILU(0) [31] as the preconditioner. However, other suitable preconditioners
can also be adapted.
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Figure 1:Comparison of convergence curves using GBI and PGBI (a); the influence of parameter κ on PGBI
method (b).

Example 4.1. The coefficient matrices used in this example are taken from [18]. We outline the
matrix for completeness:

m = 50, n = 30, rand(“state”, 0),

A = triu(rand(m,m), 1) + diag
(
α + diag(rand(m))

)
,

B = triu(rand(n, n), 1) + diag
(
α + diag(rand(n))

)
.

(4.2)

In the matrices, there is a parameter αwhich can be used to change the weight of the diagonal
entries. The case with α = 3. For κ = 0.1, the behavior of the error norms is recorded in
Figure 1(a). From this figure, we can see that the convergence of GBI method tends to slow
down after some iteration steps. The PGBI method converges linearly, and much faster than
GBI method. In Figure 1(b), the convergence curves with different parameter κ are recorded.
For this problem, we can see that the optimal value of κ is very close to 0.5. By comparing
the convergence of GBI method, we can see that PGBI is able to converge within 300 iteration
steps, whereas GBI needs more than 1000 iteration steps. Therefore, even not with the optimal
κ, the convergence of PGBI method is also much faster than that of GBI method.
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Example 4.2. In this example, we test a problem with B = A, where coefficient matrix A is
generated from the discretization of the following two-dimensional Poisson problem:

−Δu = f (4.3)

posed on the unit square Ω = 0 ≤ x, y ≤ 1 with Dirichlet boundary conditions

u
(
x, y

)
= 0. (4.4)

Discretizing this problem by the standard second-order finite difference (FE) scheme on a
uniform grid with step size h = 1/(m + 1) in each direction, we obtain a coefficient matrix

A = Im ⊗D + κ2S ⊗ Im (4.5)

with

D = tridiag(−κ1, d,−κ1),

S = tridiag(−1, 0,−1),
(4.6)

and d = 2(κ1 + κ2), κ1 = κ2 = 1. By choosing m = 30, we compared the performance of
GBI method and the preconditioned GBI method. The convergence curves are recorded in
Figure 2(a). Figure 2(b), the influence of parameter κ is investigated. From this figure we can
see that the optimal κ is close to 0.4. By comparing the convergence of GBI method, it is easy
to see that for a wide range of κ the preconditioned GBI method is much better than GBI
method.

Example 4.3. In this example, we consider the convection diffusion equation with Dirichlet
boundary conditions [32]

−Δu + 2νux + 2νuy = f in [0, 1]2, u = g on ∂[0, 1]2. (4.7)

The equation is discretized by using central finite differences on [0, 1]2, with mesh size h =
1/(m + 1) in the X-direction, and p = 1/(n + 1) in the Y-direction, produces two tridiagonal
matrices A and B given by

A =
1
h2

tridiag{1 + νh, 2, 1 − νh},

B =
1
p2

tridiag
{
1 + νp, 2, 1 − νp

}
.

(4.8)

By taking ν = 3, m = 60, and n = 40, we have tested the performance of GBI method and
the preconditioned GBI method. The convergence curves are recorded in Figure 3(a). From
this figure, we can see that the GBI method converges very slowly and nearly stagnate. The
preconditioned GBI method has much better performance. We also investigate the influence
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Figure 2:Comparison of convergence curves using GBI and PGBI (a); the influence of parameter κ on PGBI
method (b).

of parameter κ on this problem. The convergence behavior with different κ is recorded
in Figure 3(b). From this figure, we can see that the parameter becomes very sensitive
when it is larger than the optimal value. Therefore, a relative small parameter is more
reliable.

Example 4.4. In this example, we intend to test the algorithm for solving generalized Sylvester
equation (3.14). All the initializations are the same except settingC = AXB+X. The coefficient
matrix A has the following structure:

A = tridiag(1 − d, 4, 1 + d) (4.9)

and B = A. We set d = 3 in this example. The tested results are shown in Figure 4. The faster
convergence behavior is observable from Figure 4(a).

5. Conclusions

In this paper, a preconditioned gradient based iteration (PGBI) method is proposed. The
convergence of PGBI is analyzed. The choice of parameter κ is an important issue, and its
influence is experimentally studied. The principle idea of this paper can be extended to the
more general setting like coupled Sylvester matrix equations.
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Figure 3:Comparison of convergence curves using GBI and PGBI (a); the influence of parameter κ on PGBI
method (b).
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