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The purpose of this paper is to propose an algorithm for solving the split common fixed point problems
for total asymptotically strictly pseudocontractive mappings in infinite-dimensional Hilbert spaces. The
results presented in the paper improve and extend some recent results of Moudafi (2011 and 2010),
Xu (2010 and 2006), Censor and Segal (2009), Censor et al. (2005), Masad and Reich (2007), Censor
et al. (2007), Yang (2004), and others.

1. Introduction

Throughout this paper, we always assume that H1, H2 are real Hilbert spaces, “→ ,⇀”
denote by strong and weak convergence, respectively, and F(T) is the fixed point set of a
mapping T .

The split common fixed point problem (SCFP) is a generalization of the split feasibility
problem (SEP) and the convex feasibility problem (CFP). It is worth mentioning that SFP
in finite-dimensional spaces was first introduced by Censor and Elfving [1] for modeling
inverse problems which arise from phase retrievals and in medical image reconstruction [2].
Recently, it has been found that the SFP can also be used in various disciplines such as image
restoration, computer tomograph, and radiation therapy treatment planning [3–5].

SEP in an infinite-dimensional Hilbert space can be found in [2, 4, 6–8]. Moreover the
convex feasibility formalism is at the core of the modeling of many inverse problems and has
been used to model significant real-world problems.
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The split common fixed point problems for a class of quasi-nonexpansive mappings and
demicontractive mappings in the setting of Hilbert space were first introduced and studied by
Moudafi [9, 10].

The purpose of this paper is to introduce and study the following split common fixed
point problem for a more general class of total asymptotically strict pseudocontraction (SCFP) in the
framework of an infinite-dimensional Hilbert spaces which contains the quasi-nonexpansive
mappings and the demicontractive mappings as its special cases:

find x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where A : H1 → H2 is a bounded linear operator, S : H1 → H1 and T : H2 → H2 are
mappings C := F(S), and Q := F(T). In the sequel we use Γ to denote the set of solutions of
(SCFP), that is,

Γ = {x ∈ C,Ax ∈ Q}. (1.2)

2. Preliminaries

We first recall some definitions, notations, and conclusions which will be needed in proving
our main results.

Let E be a Banach space. A mapping T : E → E is said to be demiclosed at origin, if for
any sequence {xn} ⊂ E with xn ⇀ x∗ and ‖(I − T)xn‖ → 0, x∗ = Tx∗.

A Banach space E is said to have the Opial property, if for any sequence {xn} with
xn ⇀ x∗,

lim inf
n→∞

‖xn − x∗‖ < lim inf
n→∞

∥
∥xn − y

∥
∥, ∀y ∈ E with y /=x∗. (2.1)

Remark 2.1. It is well known that each Hilbert space possesses the Opial property.

Definition 2.2. LetH be a real Hilbert space, and letK be nonempty and closed convex subset
ofH.

(1) A mapping G : K → K is said to be (γ, {μn}, {ξn}, φ)-totally asymptotically strictly
pseudocontractive, if there exist a constant γ ∈ [0, 1) and sequences {μn} ⊂ [0,∞) and
{ξn} ⊂ [0,∞)with μn → 0 and ξn → 0 such that for all x, y ∈ K

∥
∥Gnx −Gny

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + γ

∥
∥(I −Gn)x − (I −Gn)y

∥
∥
2

+ μnφ
(∥
∥x − y

∥
∥
)

+ ξn, ∀n ≥ 1,
(2.2)

where φ : [0,∞) → [0,∞) is a continuous and strictly increasing function with
φ(0) = 0.

(2) AmappingG : K → K is said to be (γ, {kn})-asymptotically strictly pseudocontractive,
if there exist a constant γ ∈ [0, 1) and a sequence {kn} ⊂ [1,∞) with kn → 1 such
that

∥
∥Gnx −Gny

∥
∥
2 ≤ kn

∥
∥x − y

∥
∥
2 + γ

∥
∥(I −Gn)x − (I −Gn)y

∥
∥
2
, ∀x, y ∈ K. (2.3)
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(3) Especially, if there exists γ ∈ [0, 1) such that

∥
∥Gx −Gy

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + γ

∥
∥(I −G)x − (I −G)y

∥
∥
2
, ∀x, y ∈ K, (2.4)

then G : K → K is called a γ-strictly pseudocontractive mapping.

(4) A mapping G : K → K is said to be uniformly L-Lipschitzian, if there exists a
constant L > 0, such that

∥
∥Gnx −Gny

∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ K, n ≥ 1. (2.5)

(5) A mapping G : K → K is said to be semicompact, if for any bounded sequence
{xn} ⊂ K with limn→∞‖xn −Gxn‖ = 0, there exists a subsequence {xni} ⊂ {xn} such
that {xni} converges strongly to some point x∗ ∈ K.

Remark 2.3. If φ(λ) = λ2, λ ≥ 0, and ξn = 0, then a (γ, {μn}, {ξn}, φ)-total asymptotically strictly
pseudocontractive mapping is an (γ, {kn})-asymptotically strict pseudocontractive mapping,
where {kn = 1 + μn}.

Proposition 2.4. Let G : K → K be a (γ, {μn}, {ξn}, φ)-total asymptotically strictly pseudo-
contractive mapping. If F(G)/= ∅, then for each q ∈ F(G) and for each x ∈ K, the following
inequalities hold and they are equivalent:

∥
∥Gnx − q

∥
∥
2 ≤ ∥

∥x − q
∥
∥
2 + γ‖x −Gnx‖2 + μnφ

(∥
∥x − q

∥
∥
)

+ ξn; (2.6)

〈

x −Gnx, x − q
〉 ≥ 1 − γ

2
‖x −Gnx‖2 − μn

2
φ
(∥
∥x − q

∥
∥
) − ξn

2
; (2.7)

〈

x −Gnx, q −Gnx
〉 ≤ γ + 1

2
‖Gnx − x‖2 + μn

2
φ
(∥
∥x − q

∥
∥
)

+
ξn
2
. (2.8)

Proof. (I) Inequality (2.6) can be obtained from (2.2) immediately.
(II) (2.6) ⇔ (2.7) In fact, since

∥
∥Gnx − q

∥
∥
2 =

∥
∥Gnx − x + x − q

∥
∥
2

= ‖Gnx − x‖2 + ∥
∥x − q

∥
∥
2 + 2

〈

Gnx − x, x − q
〉

, ∀x ∈ K, q ∈ F(G),
(2.9)

from (2.6)we have that

‖Gnx − x‖2 + ∥
∥x − q

∥
∥
2 + 2

〈

Gnx − x, x − q
〉

≤ ∥
∥x − q

∥
∥
2 + γ‖x −Gnx‖2

+ μnφ
(∥
∥x − q

∥
∥
)

+ ξn.

(2.10)

Simplifying it, the inequality (2.7) is obtained.
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Conversely, from (2.7) the inequality (2.6) can be obtained immediately.
(III) (2.7)⇔ (2.8) In fact, since

〈

x −Gnx, x − q
〉

=
〈

x −Gnx, x −Gnx +Gnx − q
〉

= ‖x −Gnx‖2 + 〈

x −Gnx,Gnx − q
〉

,
(2.11)

it follows from (2.7) that

‖x −Gnx‖2 + 〈

x −Gnx,Gnx − q
〉 ≥ 1 − γ

2
‖x −Gnx‖2 − μn

2
φ
(∥
∥x − q

∥
∥
) − ξn

2
. (2.12)

Simplifying it, the inequality (2.8) is obtained.
Conversely, the inequality (2.7) can be obtained from (2.8) immediately.
This completes the proof of Proposition 2.4.

Lemma 2.5 (see [11]). Let {an}, {bn}, and {δn} be sequences of nonnegative real numbers satisfying

an+1 ≤ (1 + δn)an + bn, ∀n ≥ 1. (2.13)

If
∑∞

i=1 δn < ∞ and
∑∞

i=1 bn < ∞, then the limit limn→∞an exists.

Lemma 2.6 (see [12]). Let H be a real Hilbert space. If {xn} is a sequence in H weakly convergent
to z, then

lim sup
n→∞

∥
∥xn − y

∥
∥
2 = lim sup

n→∞
‖xn − z‖2 + ∥

∥z − y
∥
∥
2
, ∀y ∈ H. (2.14)

Proposition 2.7. Let H be a real Hilbert space and let T : H → H be a uniformly L-Lipschitzian
and γ, {μn}, {ξn}, φ-total asymptotically strictly pseudocontractive mapping. Then the demiclosedness
principle holds for T in the sense that if {xn} is a sequence in H such that xn ⇀ x∗, and
lim supm→∞lim supn→∞‖xn − Tmxn‖ = 0, then (I − T)x∗ = 0. In particular, if xn ⇀ x∗, and
‖(I − T)xn‖ → 0, then (I − T)x∗ = 0, that is, T is demiclosed at origin.

Proof. Since {xn} is bounded, we can define a function f on H by

f(x) = lim sup
n→∞

‖xn − x‖2, ∀x ∈ H. (2.15)

Since xn ⇀ x∗, it follows from Lemma 2.6 that

f(x) = f(x∗) + ‖x − x∗‖2, ∀x ∈ H. (2.16)

In particular, for each m ≥ 1,

f(Tmx∗) = f(x∗) + ‖Tmx∗ − x∗‖2. (2.17)
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On the other hand, since T is a (γ, {μn}, {ξn}, φ)-total asymptotically strictly pseu-
docontraction mapping, we get

f(Tmx∗) = lim sup
n→∞

‖xn − Tmx∗‖2

= lim sup
n→∞

‖xn − Tmxn + Tmxn − Tmx∗‖2

= lim sup
n→∞

(

‖xn − Tmxn‖2 + 2〈xn − Tmxn, T
mxn − Tmx∗〉 + ‖Tmxn − Tmx∗‖2

)

≤ lim sup
n→∞

‖xn − Tmxn‖(‖xn − Tmxn‖ + 2L‖xn − x∗‖)

+ lim sup
n→∞

(

‖xn − x∗‖2 + γ‖xn − Tmxn − (x∗ − Tmx∗)‖2 + μmφ(‖xn − x∗‖) + ξm
)

.

(2.18)

Taking lim supm→∞ on both sides and observing the facts that limm→∞μm = 0, limm→∞ξm = 0,
and lim supm→∞lim supn→∞‖xn − Tmxn‖ = 0, we derive that

lim sup
m→∞

f(Tmx∗) ≤ lim sup
m→∞

‖xn − x∗‖2 + γ lim sup
m→∞

‖x∗ − Tmx∗‖2

= f(x∗) + γ lim sup
m→∞

‖x∗ − Tmx∗‖2.
(2.19)

On the other hand, it follows from (2.17) that

lim sup
m→∞

f(Tmx∗) = f(x∗) + lim sup
m→∞

‖x∗ − Tmx∗‖2. (2.20)

Since κ < 1, this together with (2.19) shows that lim supm→∞‖x∗ − Tmx∗‖2 = 0. That is,
limm→∞Tmx∗ = x∗; hence Tx∗ = x∗.

3. Split Common Fixed Point Problem

For solving the split common fixed point problem (1.1), let us assume that the following
conditions are satisfied.

(1) H1 and H2 are two real Hilbert spaces, and A : H1 → H2 is a bounded linear
operator.

(2) S : H1 → H1 is a uniformly L-Lipschitzian and (β, {μ(1)
n }, {ξ(1)n }, φ1)-total asymp-

totically strictly pseudocontractive mapping and T : H2 → H2 is a uniformly L̃-Lipschitzian
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and (κ, {μ(2)
n }, {ξ(2)n }, φ2)-total asymptotically strictly pseudocontractive mapping satisfying

the following conditions:

(i) C := F(S)/= ∅, Q := F(T)/= ∅;

(ii) μn = max{μ(1)
n , μ

(2)
n }, ξn = max{ξ(1)n , ξ

(2)
n }, n ≥ 1, and

∑∞
n=1 μn < ∞,

∑∞
n=1 ξn < ∞;

(iii) φ = max{φ1, φ2} and there exist two positive constants M and M∗ such that φ(λ) ≤
M∗λ2 for all λ ≥ M.

We are now in a position to give the following result.

Theorem 3.1. Let H1, H2, A, S, T, C, Q, β, κ, L, L̃, {μn}, {ξn}, and φ be the same as
mentiond before. Let {xn} be the sequence generated by

x1 ∈ H1 chosen arbitrarily,

xn+1 = (1 − αn)un + αnS
n(un),

un = xn + γA∗(Tn − I)Axn, ∀n ≥ 1,

(3.1)

where {αn} is a sequence in [0, 1] and γ > 0 is a constant satisfying the following conditions:

(iv) αn ∈ (δ, 1 − β), for all n ≥ 1 and γ ∈ (0, (1 − κ)/‖A‖2), where δ ∈ (0, 1 − β) is a positive
constant.

(I) If Γ/= ∅ (where Γ is the set of solutions to (SCFP)-(1.1)), then {xn} converges weakly
to a point x∗ ∈ Γ.

(II) In addition, if S is also semicompact, then {xn} and {un} both converge strongly to
x∗ ∈ Γ.

Proof. The following is the proof of Theorem 3.1.

The Proof of Conclusion (I)

(1) First we prove that for each p ∈ Γ, the following limits exist and

lim
n→∞

∥
∥xn − p

∥
∥ = lim

n→∞
∥
∥un − p

∥
∥. (3.2)

In fact, since φ is a continuous and increasing function, it results that φ(λ) ≤ φ(M), if
λ ≤ M, and φ(λ) ≤ M∗λ2, if λ ≥ M. In either case, we can obtain that

φ(λ) ≤ φ(M) +M∗λ2, ∀λ ≥ 0. (3.3)
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For any given p ∈ Γ, hence p ∈ C := F(S), and Ap ∈ Q := F(T), from (3.1) and (2.7)we
have

∥
∥xn+1 − p

∥
∥
2 =

∥
∥un − p − αn(un − Snun)

∥
∥
2

=
∥
∥un − p

∥
∥
2 − 2αn

〈

un − p, un − Snun

〉

+ α2
n‖un − Snun‖2

≤ ∥
∥un − p

∥
∥
2 − αn

(

1 − β
)‖un − Snun‖2

+ αnμnφ
(∥
∥un − p

∥
∥
)

+ αnξn + α2
n‖un − Snun‖2

(

by (2.7)
)

≤ ∥
∥un − p

∥
∥
2 − αn

(

1 − β − αn

)‖un − Snun‖2

+ αnμn

(

φ(M) +M∗(∥∥un − p
∥
∥
)2
)

+ αnξn

=
(

1 + αnμnM
∗)∥∥un − p

∥
∥
2 − αn

(

1 − β − αn

)‖un − Snun‖2

+ αnμnφ(M) + αnξn.

(3.4)

On the other hand, since

∥
∥un − p

∥
∥
2 =

∥
∥xn − p + γA∗(Tn − I)Axn

∥
∥
2

=
∥
∥xn − p

∥
∥
2 + γ2‖A∗(Tn − I)Axn‖2 + 2γ

〈

xn − p,A∗(Tn − I)Axn

〉

,

(3.5)

γ2‖A∗(Tn − I)Axn‖2 = γ2〈A∗(Tn − I)Axn,A
∗(Tn − I)Axn〉

= γ2〈AA∗(Tn − I)Axn, (Tn − I)Axn〉

≤ γ2‖A‖2‖TnAxn −Axn‖2,

(3.6)

2γ
〈

xn − p,A∗(Tn − I)Axn

〉

= 2γ
〈

Axn −Ap, (Tn − I)Axn

〉

= 2γ
〈

Axn −Ap
)

+ (Tn − I)Axn − (Tn − I)Axn, (Tn − I)Axn

〉

= 2γ
{〈

TnAxn −Ap, TnAxn −Axn

〉 − ‖(Tn − I)Axn‖2
}

.

(3.7)

In (2.8) taking x = Axn, G
n = Tn, and q = Ap and noting Ap ∈ F(T), from (2.8) we have

〈

TnAxn −Ap, TnAxn −Axn

〉 − ‖(Tn − I)Axn‖2

≤ 1 + κ

2
‖(Tn − I)Axn‖2 +

μn

2
φ
(∥
∥Axn −Ap

∥
∥
)

+
ξn
2

− ‖(Tn
n − I)Axn‖2
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≤ κ − 1
2

‖(Tn − I)Axn‖2 +
μn

2

(

φ(M) +M∗∥∥Axn −Ap
∥
∥
2
)

+
ξn
2

≤ κ − 1
2

‖(Tn − I)Axn‖2 +
μn

2
M∗‖A‖2∥∥xn − p

∥
∥
2 +

μn

2
φ(M) +

ξn
2
.

(3.8)

Substituting (3.8) into (3.7), after simplifying it and then substituting the resultant result into
(3.5), we have

∥
∥un − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 + γ2‖A‖2‖TnAxn −Axn‖2 + γ(κ − 1)‖(Tn − I)Axn‖2

+ γμnM
∗‖A‖2∥∥xn − p

∥
∥
2 + γμnφ(M) + γξn

=
∥
∥xn − p

∥
∥
2 − γ

(

1 − κ − γ‖A‖2
)

‖TnAxn −Axn‖2

+ γμnM
∗‖A‖2∥∥xn − p

∥
∥
2 + γμnφ(M) + γξn

≤
(

1 + γμnM
∗‖A‖2

)∥
∥xn − p

∥
∥
2 − γ

(

1 − κ − γ‖A‖2
)

‖TnAxn −Axn‖2

+ γμnφ(M) + γξn.

(3.9)

Substituting (3.9) into (3.4) and simplifying it we have

∥
∥xn+1 − p

∥
∥
2 ≤ (

1 + αnμnM
∗)
{(

1 + γμnM
∗‖A‖2

)∥
∥xn − p

∥
∥
2

−γ
(

1 − κ − γ‖A‖2
)

‖TnAxn −Axn‖2 + γμnφ(M) + γξn
}

− αn

(

1 − β − αn

)‖un − Snun‖2 + αnμnφ(M) + αnξn

= (1 + δn)
∥
∥xn − p

∥
∥
2 − γ

(

1 − κ − γ‖A‖2
)

‖TnAxn −Axn‖2

− αn

(

1 − β − αn

)‖un − Snun‖2 + bn,

(3.10)

where

δn = αnμnM
∗ + γμnM

∗‖A‖2 + γ‖A‖2αnμ
2
n(M

∗)2,

bn =
((

1 + αnμnM
∗)γ + αn

)

μnφ(M) +
((

1 + αnμn ·M∗)γ + αn

)

ξn.
(3.11)

By condition (iii) we have

∥
∥xn+1 − p

∥
∥
2 ≤ (1 + δn)

∥
∥xn − p

∥
∥
2 + bn. (3.12)
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By condition (ii),
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞. Hence it follows from Lemma 2.5 that the
following limit exists:

lim
n→∞

∥
∥xn − p

∥
∥. (3.13)

Consequently, from (3.10) and (3.13)we have that

γ
(

1 − κ − γ‖A‖2
)

‖(Tn − I)Axn‖2 + αn

(

1 − β − αn

)‖un − Snun‖2

≤ ∥
∥xn − p

∥
∥
2 − ∥

∥xn+1 − p
∥
∥
2 + δn

∥
∥xn − p

∥
∥
2 −→ 0 (as n −→ ∞).

(3.14)

This together with the condition (iii) implies that

lim
n→∞

‖un − Snun‖ = 0; (3.15)

lim
n→∞

‖(Tn − I)Axn‖ = 0. (3.16)

It follows from (3.5), (3.13), and (3.16) that the limit limn→∞‖un − p‖ exists and

lim
n→∞

∥
∥un − p

∥
∥ = lim

n→∞
∥
∥xn − p

∥
∥. (3.17)

The conclusion (1) is proved.
(2) Next we prove that

lim
n→∞

‖xn+1 − xn‖ = 0, lim
n→∞

‖un+1 − un‖ = 0. (3.18)

In fact, it follows from (3.1) that

‖xn+1 − xn‖ = ‖(1 − αn)un + αnS
n(un) − xn‖

=
∥
∥(1 − αn)

(

xn + γA∗(Tn − I)Axn

)

+ αnS
n(un) − xn

∥
∥

=
∥
∥(1 − αn)γA∗(Tn − I)Axn + αn(Sn(un) − xn)

∥
∥

=
∥
∥(1 − αn)γA∗(Tn − I)Axn + αn(Sn(un) − un) + αn(un − xn)

∥
∥

=
∥
∥(1 − αn)γA∗(Tn − I)Axn + αn(Sn(un) − un) + αnγA

∗(Tn − I)Axn

∥
∥

=
∥
∥γA∗(Tn − I)Axn + αn(Sn(un) − un)

∥
∥.

(3.19)

In view of (3.15) and (3.16) we have that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.20)
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Similarly, it follows from (3.1), (3.16), and (3.20) that

‖un+1 − un‖ =
∥
∥
∥xn+1 + γA∗

(

Tn+1 − I
)

Axn+1 −
(

xn + γA∗(Tn − I)Axn

)
∥
∥
∥

≤ ‖xn+1 − xn‖ + γ
∥
∥
∥A∗

(

Tn+1 − I
)

Axn+1

∥
∥
∥

+ γ‖A∗(Tn − I)Axn‖ −→ 0 (as n −→ ∞).

(3.21)

The conclusion (3.18) is proved.
(3) Next we prove that

‖un − Sun‖ −→ 0, ‖Axn − TAxn‖ −→ 0 (as n −→ ∞). (3.22)

In fact, from (3.15) we have

ζn := ‖un − Snun‖ −→ 0 (as n −→ ∞). (3.23)

Since S is uniformly L-Lipschitzian continuous, it follows from (3.18) and (3.23) that

‖un − Sun‖ ≤ ‖un − Snun‖ + ‖Snun − Sun‖

≤ ζn + L
∥
∥
∥Sn−1un − un

∥
∥
∥

≤ ζn + L
{∥
∥
∥Sn−1un − Sn−1un−1

∥
∥
∥ +

∥
∥
∥Sn−1un−1 − un

∥
∥
∥

}

≤ ζn + L2‖un − un−1‖ + L
∥
∥
∥Sn−1un−1 − un−1 + un−1 − un

∥
∥
∥

≤ ζn + L(1 + L)‖un − un−1‖ + Lζn−1 −→ 0 (as n −→ ∞).

(3.24)

Similarly, from (3.16) we have

‖Axn − TnAxn‖ −→ 0 (as n −→ ∞). (3.25)

Since T is uniformly L̃-Lipschitzian continuous, by the same way as above, from (3.18) and
(3.25), we can also prove that

‖Axn − TAxn‖ −→ 0 (as n −→ ∞). (3.26)

(4) Finally we prove that xn ⇀ x∗ and un ⇀ x∗ which is a solution of (SCFP)-(1.1).
Since {un} is bounded, there exists a subsequence {uni} ⊂ {un} such that uni ⇀ x∗

(some point in H1). From (3.22) we have

‖uni − Suni‖ −→ 0 (as ni −→ ∞). (3.27)

By Proposition 2.7, S is demiclosed at zero; hence we know that x∗ ∈ F(S).
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Moreover, from (3.1) and (3.16)we have

xni = uni − γA∗(Tni − I)Axni ⇀ x∗. (3.28)

Since A is a linear bounded operator, it gets Axni ⇀ Ax∗. In view of (3.22)we have

‖Axni − TAxni‖ −→ 0 (as ni −→ ∞). (3.29)

Again by Proposition 2.7, T is demiclosed at zero, and we have Ax∗ ∈ F(T). Summing up the
above argument, it shows that x∗ ∈ Γ; that is, x∗ is a solution to the (SCFP)-(1.1).

Now we prove that xn ⇀ x∗ and un ⇀ x∗.
Suppose to the contrary, if there exists another subsequence {unj} ⊂ {un} such that

unj ⇀ y∗ ∈ Γ with y∗ /=x∗, then by virtue of (3.2) and the Opial property of Hilbert space, we
have

lim inf
ni →∞

‖uni − x∗‖ < lim inf
ni →∞

∥
∥uni − y∗∥∥ = lim

n→∞
∥
∥un − y∗∥∥

= lim
nj →∞

∥
∥
∥unj − y∗

∥
∥
∥ < lim inf

nj →∞

∥
∥
∥unj − x∗

∥
∥
∥

= lim
n→∞

‖un − x∗‖ = lim inf
ni →∞

‖uni − x∗‖.

(3.30)

This is a contradiction. Therefore, un ⇀ x∗. By using (3.1) and (3.16), we have

xn = un − γA∗(Tn
n − I)Axn ⇀ x∗. (3.31)

The Proof of Conclusion (II)

By the assumption that S is semicompact, it follows from (3.27) that there exists a
subsequence of {uni} (without loss of generality, we still denote it by {uni}) such that
uni → u∗ ∈ H (some point in H). Since uni ⇀ x∗, this implies that x∗ = u∗. And so
uni → x∗ ∈ Γ. By virtue of (3.2)we know that limn→∞‖un −x∗‖ = 0 and limn→∞‖xn −x∗‖ = 0;
that is, {un} and {xn} both converge strongly to x∗ ∈ Γ.

This completes the proof of Theorem 3.1.

The following theorem can be obtained from Theorem 3.1 immediately.

Theorem 3.2. Let H1 and H2 be two real Hilbert spaces, let A : H1 → H2 be a bounded linear
operator, let S : H1 → H1 be a uniformly L-Lipschitzian and (β, {k(1)

n })-asymptotically strictly
pseudocontractive mapping, and let T : H2 → H2 be a uniformly L̃-Lipschitzian and (κ, {k(2)

n })-
asymptotically strictly pseudocontractive mapping satisfying the following conditions:

(i) C := F(S)/= ∅, Q := F(T)/= ∅;
(ii) kn = max{k(1)

n , k
(2)
n }, and ∑∞

n=1(kn − 1) < ∞.
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Let {xn} be the sequence defined by (3.1), where {αn} is a sequence in [0, 1] and γ > 0 is a constant
satisfying the following condition:

(iii) αn ∈ (δ, 1−β), for all n ≥ 1 and γ ∈ (0, (1−κ)/‖A‖2), where δ ∈ (0, 1−β) is a constant.
If Γ/= ∅, then the conclusions of Theorem 3.1 still hold.

From Theorems 3.1 and 3.2 we can obtain the following.

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces, let A : H1 → H2 be a bounded linear
operator, S : H1 → H1 be a uniformly L-Lipschitzian and β-strictly pseudocontractive mapping, and
let T : H2 → H2 be a uniformly L̃-Lipschitzian and κ-strictly pseudocontractive mapping satisfying
the following conditions:

(i) C := F(S)/= ∅, Q := F(T)/= ∅;

(ii) T and S both are demiclosed at origin.

Let {xn} be the sequence generated by

x1 ∈ H1 chosen arbitrarily,

xn+1 = (1 − αn)un + αnSun,

un = xn + γA∗(T − I)Axn, ∀n ≥ 1,

(3.32)

where {αn} is a sequence in [0, 1] and γ > 0 is a constant satisfying the following condition:

(iii) αn ∈ (δ, 1−β), for all n ≥ 1 and γ ∈ (0, (1−κ)/‖A‖2), where δ ∈ (0, 1−β) is a constant.
If Γ/= ∅, then the conclusions of Theorem 3.1 still hold.

Proof. By the same way as given in the proof of Theorems 3.1 and 3.2 and noting that in the
case of strictly pseudocontractive mapping the sequence {kn = 1} in Theorem 3.2. Therefore
we can prove that for each p ∈ Γ, the limits limn→∞‖xn − p‖ and limn→∞‖un − p‖ exist and

lim
n→∞

∥
∥xn − p

∥
∥ = lim

n→∞
∥
∥un − p

∥
∥;

‖un − Sun‖ −→ 0; ‖Axn − TAxn‖ −→ 0;

‖un − un+1‖ −→ 0; ‖xn − xn+1‖ −→ 0;

xn ⇀ x∗; un ⇀ x∗ ∈ Γ.

(3.33)

In addition, if S is also semicompact, we can also prove that {xn} and {un} both converge
strongly to x∗.

Remark 3.4. Theorems 3.1 and 3.2 improve and extend the corresponding results of Censor et
al. [4, 5], Yang [7], Moudafi [9, 10], Xu [13], Censor and Segal [14], Masad and Reich [15],
and others.
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