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A class of dynamical neural networkmodels with time-varying delays is considered. By employing
the Lyapunov-Krasovskii functional method and linearmatrix inequalities (LMIs) technique, some
new sufficient conditions ensuring the input-to-state stability (ISS) property of the nonlinear
network systems are obtained. Finally, numerical examples are provided to illustrate the efficiency
of the derived results.

1. Introduction

Recently, the dynamical neural networks (DNNs), which are firstly introduced by Hopfield
in [1], have been extensively studied due to its wide applications in various areas such
as associative memory, parallel computation, signal processing, optimization, and moving
object speed detection. Since time delay is inevitably encountered in implementation of
DNNs and is frequently a source of oscillation and instability, neural networks with
time delays have become a topic of great theoretical and practical importance, and many
interesting results have been derived (see, e.g., [2–5] and [6–9]). Furthermore, in practical
evolutionary processes of the networks, absolute constant delay may be scarce and is only
the poetic approximation of the time-varying delays. Delays are generally varied with time
because information transmission from one neuron to another neuronmaymake the response
of networks with time-varying delays. Accordingly, dynamical behaviors of neural networks
with time-varying delays have been discussed in the last decades (see, e.g., [3, 8–11],
etc.).

It is well known that neural networks are often influenced by external disturbances
and input errors. Thus many dissipative properties such as robustness [12], passivity
[13], and input-to-state stability [4, 10, 11, 14–19] are apparently significant to analyze its
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dynamical behaviors of the networks. For instance, Ahn incorporated robust training law
in switched Hopfield neural networks with external disturbances to study boundedness
and exponentially stability [12], and studied passivity in [13]. Especially, the ISS implies
not only that the unperturbed system is asymptotically stable in the Lyapunov sense but
also that its behavior remains bounded when its inputs are bounded. It is one of the
useful classes of dissipative properties for nonlinear systems, which is firstly introduced
in nonlinear control systems by Sontag in [20], and then extended by Praly and Jiang
[21] and Angeli et al. [19 and Ahn (see [17, 19], and references therein). Due to these
research background, the ISS properties of neural networks are investigated in recent years
(see, e.g., [16–19] and references therein). For example, by using the Lyapunov function
method, some nonlinear feedback matrix norm conditions for ISS have been developed
for recurrent neural networks ([16]). Moreover, Ahn utilized Lyapunov function method
to discuss robust stability problem for a class of recurrent neural networks, and also some
LMI sufficient conditions have been proposed to guarantee the ISS (see [17]). In [18], by
employing a suitable Lyapunov function, some results on boundedness, ISS, and convergence
are established. Also, in [19] a new sufficient condition is derived to guarantee ISS of
Takagi-Sugeno fuzzy Hopfield neural networks with time delay. However, there is few
results to deal with the ISS of dynamical neural networks (DNNs) with time-varying delays
([11]).

Motivated by the above discussions, we discuss the ISS properties of DNNs with
time-varying delays in this paper. By using Lyapunov-Krasovskii functional technique, ISS
conditions for the considered dynamical neural networks are given in terms of LMIs, which
can be easily calculated by certain standard numerical packages. We also provide two
illustrative examples to demonstrate the effectiveness of the proposed stability results.

The organization of this paper is as follows. In Section 2, our mathematical model of
dynamical neural networks is presented and some preliminaries are given. In Section 3, the
main results for both ISS and asymptotically stability of dynamical neural networks with
time-varying delays are proposed. In Section 4, two numerical examples are illustrated to
demonstrate the effectiveness of the theoretical results. Concluding remarks are collected in
Section 5. Proof of Lemma 2.4 is given in the appendix.

Notions

Let Rn denote the n-dimensional Euclidean space and | · | denote the usual Euclidean
norm. Denote C = C([−τ, 0], Rn) and designate the norm of an element in C by ‖φ‖τ =
sup−τ≤ϑ≤0‖φ(ϑ)‖. Rn×n is the set of all n × n real matrices. Let BT , B−1, λmax(B), λmin(B), and
‖B‖ =

√
λmax(BTB) denote the transpose, the inverse, the largest eigenvalue, the smallest

eigenvalue, and the Euclidean norm of a square matrix B, respectively. The notation P > 0 (≥
0) means that P is real symmetric and positive definite (positive semidefinite). The notion
X > Y (X ≥ Y ), where X and Y are symmetric matrices, means that X − Y is positive
definite (positive semidefinite). I denotes the elementmatrix. The set of all measurable locally
essentially bounded functions u : R+ → Rn, endowed with (essential) supremum norm
‖u‖∞ = sup{‖u(t)‖, t ≥ 0}, is denoted by Lm

∞. In addition, denote ut the truncation of u at t;
that is, ut(s) = u(s) if s ≤ t, and u(s) = 0 if s > t. We recall that a function γ : R+ → R+ is a
K-function if it is continuous, strictly increasing, and γ(0) = 0; it will be a K∞-function if it is
a K-function and also γ(s) → ∞ as s → ∞. A function β : R+ × R+ → R+ is a KL-function if
for each fixed t ≥ 0 the function β(·, t) is aK-function, and, for each fixed s ≥ 0, it is decreasing
to zero as t → ∞.
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2. Mathematical Model and Preliminaries

Consider the following nonlinear time-delay system

ẋ = f(t, xt, u(t)), (2.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rn is the input function; xt ∈ C is the standard
function given by xt(τ) = x(t + τ). Without loss of generality, we suppose that f(0, 0, 0) = 0,
which ensuring that x(t) = 0 is the trivial solution for the unforced system ẋ(t) = f(t, xt, 0).
Define x(t) � x(t, t0, φ) is a solution of system with initial value φ at time t0.

Given a continuous functional V : R+ ×C → R+, the upper right-hand derivative V̇ of
the function V is given by

V̇
(
t, φ
)
= lim

h→ 0+
sup

1
h
[V (t + h, xt+h(t, xt)) − V (t, xt)]. (2.2)

For delayed dynamical system, we first give the input-to-state stable (ISS) definition
as usual case.

Definition 2.1. System (2.1) is ISS if there exist a KL-function β and a K-function γ such that,
for each input u ∈ Lm

∞ and each ξt0 ∈ C, it satisfies

|x(t; ξ, u)| ≤ β
(‖ξt0‖τ , t − t0

)
+ γ(‖ut‖∞), ∀t ≥ t0. (2.3)

Note that, by causality, the same definition would result if one could replace ‖ut‖∞ by ‖u‖∞.

Definition 2.2. A continuous differentiable functional V (t, φ) : R+ × C → R+ is called the ISS
Lyapunov-Krasovskii functional if there exist functions α1, α2 of class K∞, a function χ of
class K and a continuous positive definite function W such that

α1
(∣∣φ(0)

∣∣) ≤ V
(
t, φ
) ≤ α2

(‖φ‖τ
)
, (2.4)

V̇
(
t, φ
) ≤ −W(∣∣φ(0)∣∣) if

∣∣φ(0)
∣∣ ≥ χ(‖u‖∞), ∀φ ∈ C, u ∈ Lm

∞. (2.5)

Remark 2.3. A continuous differential functional V (t, φ) : R+ × C → R+ is an ISS Lyapunov-
Krasovskii functional if and only if there exist α3, α4 ∈ K∞ such that (2.4) holds and

V̇
(
t, φ
) ≤ −α3

(∣∣φ(0)
∣∣) + α4(‖u‖∞). (2.6)

The proof is similarly to one of Remark 2.4 in [23]. We omit it here.

Similarly to the case of ordinary differential equation (ODE), we will establish a link
between the ISS property and the ISS Lyapunov-Krasovskii functional for time-delay systems
in the following Lemma.

Lemma 2.4. The system (2.1) is ISS if it admits an ISS Lyapunov-Krasovskii functional.
For completeness, the proof is given in appendix.
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To obtain our results, we need the following two useful lemmas.

Lemma 2.5 (Schur Complement [24]). For given symmetric matrix S =
(

S11 S12
S21 S22

)
, where S11 ∈

Rr×r , S21 = ST
12, the following three conditions are equivalent:

(i) S < 0;

(ii) S11 < 0, S22 − ST
12S

−1
11S12;

(iii) S22 < 0, S11 − S12S
−1
22S

T
12.

Lemma 2.6 (see [25]). Given any matrixX,Y , andΛwith appropriate dimensions such thatΛ = ΛT

and any scalar ε > 0, then

XTY + YTX ≤ εXTΛX +
1
ε
YTΛ−1Y. (2.7)

In this paper, we consider the following dynamical neural networks with time-varying
delays

dxi(t)
dt

= −aixi(t) +
n∑

j=1

bijgj
(
xj(t)

)
+

n∑

j=1

cijgj
(
xj(t − τ(t))

)
+

n∑

i=1

ui(t), i = 1, 2, . . . , n, (2.8)

or equivalently

dx(t)
dt

= −Ax(t) +Wg(x(t)) +W1g(x(t − τ(t))) + u(t), (2.9)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T is the neuron state, u(t) = (u1(t), u2(t), . . . , un(t))

T is
the input, and g(x(t)) = (g1(x1(t)), g2(x2(t)), . . . , gn(xn(t)))

T denotes the nonlinear neuron
activation function. A = diag{a1, a2, . . . , an} is the positive diagonal matrix. W = (bij)n×n
and W1 = (cij)n×n are the interconnection matrices representing the weighting coefficients of
neurons. τ(t) is the time-varying delays.

Throughout this paper, we always suppose that

∣∣gi(xi(t))
∣∣ ≤ li|xi|, ∀i, ∀xi ∈ R, i = 1, 2, . . . , n, (A1)

0 ≤ τ(t) ≤ τ, 0 ≤ τ̇(t) ≤ 1. (A2)

From (A1), we easily see that x(t) = 0 is the solution of (2.9)with u(t) = 0.

3. ISS Analysis

In this section, we give two theorems on ISS in form of LMIs.
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Theorem 3.1. Let (A1) and (A2) hold. If there exist a positive definite matrix P and a positive
diagonal matrix D such that

⎛

⎜
⎜
⎝

−ATP − PA M I PW1

M D−2 +WTPW 0 0
I 0 P 0

WT
1 P 0 0 −D−2

⎞

⎟
⎟
⎠ < 0, (3.1)

whereM = diag{l1, l2, . . . , ln}, and then the system (2.9) is ISS.

Proof. We consider the following functional:

V (x(t)) = xT (t)Px(t) +
∫ t

t−τ(t)
gT (x(ζ))D−2g(x(ζ))dζ. (3.2)

Its derivative along the solution x(t) of (2.9) is given as

V̇ (x(t)) = 2xT (t)Pẋ(t) + gT (x(t))D−2g(x(t))

− (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t)))

= 2xT (t)P
[−Ax(t) +Wg(x(t)) +W1g(x(t − τ(t))) + u(t)

]

+ gT (x(t))D−2g(x(t)) − (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t)))

= 2xT (t)
(
−ATP − PA

)
x(t) + 2xT (t)PWg(x(t))

+ 2xT (t)PW1g(x(t − τ(t))) + gT (x(t))D−2g(x(t))

− (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t))) + 2xT (t)Pu(t).

(3.3)

We have

− (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t))) + 2xT (t)PW1g(x(t − τ(t)))

= −
[√

(1 − τ̇(t))D−1g(x(t − τ(t))) −DWT
1 Px(t)

]T

·
[√

(1 − τ̇(t))D−1g(x(t − τ(t))) −DWT
1 Px(t)

]

+ xT (t)PW1D
2WT

1 Px(t).

(3.4)

Since the first term of the right-hand side of (3.4) is negative semidefinite, we obtain

− (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t)))

+ 2xT (t)PW1g(x(t − τ(t))) ≤ xT (t)PW1D
2WT

1 Px(t).
(3.5)
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From (A1), we obtain

gT (x(t))D−2g(x(t)) ≤ xT (t)MD−2Mx(t), (3.6)

where M = diag{l1, l2, . . . , ln}.
Then by Lemma 2.6, we have

2xT (t)PWg(x(t)) ≤ xT (t)Px(t) +
[
PWg(x(t))

]T
P−1PWg(x(t))

= xT (t)Px(t) + gT (x(t))WTPWg(x(t))

≤ xT (t)Px(t) + xT (t)MWTPWMx(t),

2xT (t)Pu(t) ≤ xT (t)Px(t) + [Pu(t)]TP−1Pu(t)

= xT (t)Px(t) + uT (t)Pu(t).

(3.7)

Substituting (3.5), (3.6), and (3.7) into (3.3), we finally obtain

V̇ (x(t)) ≤ xT (t)Gx(t) + uT (t)Pu(t)

≤ λmin(G)|x(t)|2 + λmax(P)|u(t)|2,
(3.8)

where G = −ATP − PA +M(D−2 +WTPW)M + PW1D
2WT

1 P + P .
Define α3(r) = −λmin(G) · r2, α4(r) = λmax(P) · r2, then we can obtain that

V̇ (x(t)) ≤ −α3(|x(t)|) + α4(‖u‖∞). (3.9)

Note that G < 0 is equivalent to (3.1) by Lemma 2.5. Then the defined V is an ISS
Lyapunov-Krasovskii functional. It follows from Lemma 2.4 and Remark 2.3 that the delayed
neural networks (2.9) are ISS. The proof is complete.

Remark 3.2. Theorem 3.1 reduces to asymptotically stability condition for dynamical neural
networks with time-varying delays when u(t) = 0.

Remark 3.3. Recently, some results on ISS or IOSS were obtained in [10, 17–19, 26]. However,
these results were restricted to nondelay or constant delay. In contrast to the results [10, 17–
19, 26], we consider dynamical neural networks with time-varying delays and propose a set
of delay-independent criteria for asymptotically convergent state estimation of these neural
networks in this paper.

In the following, we give a delay-dependent sufficient criterion.
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Theorem 3.4. Let (A1) and (A2) hold. The system (2.9) is ISS if there exist a symmetric positive
definite matrix P and a positive definite matrix Q such that

−ATP − PA + τQ = −μI, μ > 0, ∀u ∈ Lm
∞, (3.10)

(
2‖M‖‖W1‖√

1 − τ̇(t)
+ ‖M‖2‖W‖2 + 2

)

< μ, (3.11)

whereM = diag{l1, l2, . . . , ln}.

Proof. We consider the following functional:

V (x(t)) = xT (t)Px(t) +
∫0

−τ(t)

∫ t

t+ζ
xT(η

)
Qx
(
η
)
dη dζ +

∫ t

t−τ(t)
gT (x(ζ))Rg(x(ζ))dζ, (3.12)

where R is a positive definite matrix.
The derivative of (3.12) along the trajectories of the system is obtained as follows:

V̇ (x(t)) = 2xT (t)P
[−Ax(t) +Wg(x(t)) +W1g(x(t − τ(t))) + u(t)

]

+ τ(t)xT (t)Qx(t) − (1 − τ̇(t))
∫ t

t−τ(t)
xT (ζ)Qx(ζ)dζ

+ gT (x(t))Rg(x(t)) − (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t)))

≤ xT (t)
(
−ATP −AP + τQ

)
x(t) + 2xT (t)PWg(x(t)) + 2xT (t)Pu(t)

+ 2xT (t)PW1g(x(t − τ(t))) − (1 − τ̇(t))
∫ t

t−τ(t)
xT (ζ)Qx(ζ)dζ

+ gT (x(t))Rg(x(t)) − (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t))).

(3.13)

From (3.10), which reduces to

V̇ (x(t)) ≤ − μxT (t)x(t) + 2xT (t)PWg(x(t)) + 2xT (t)Pu(t)

+ 2xT (t)PW1g(x(t − τ(t))) − (1 − τ̇(t))
∫ t

t−τ(t)
xT (ζ)Qx(ζ)dζ

+ gT (x(t))Rg(x(t)) − (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t))).

(3.14)

From (A1), we obtain that

gT (x(t))Rg(x(t)) ≤ xT (t)MRMx(t) ≤ ‖R‖‖M‖2|x(t)|2, (3.15)

where M = diag{l1, l2, . . . , ln}.
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From Lemma 2.6, we have

2xT (t)PWg(x(t)) ≤ xT (t)Px(t) + [PWg(x(t))]TP−1PWg(x(t))

= xT (t)Px(t) + gT (x(t))WTPWg(x(t))

≤ xT (t)Px(t) + xT (t)MWTPWMx(t)

≤
(
1 + ‖M‖2‖W‖2

)
‖P‖|x(t)|2,

2xT (t)PW1g(x(t − τ(t))) ≤ (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t)))

+
1

1 − τ̇(t)
xT (t)PW1R

−1WT
1 Px(t).

(3.16)

Then

2xT (t)PW1g(x(t − τ(t))) − (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t)))

≤ 1
1 − τ̇(t)

xT (t)PW1R
−1WT

1 Px(t) ≤
1

1 − τ̇(t)
‖R‖−1‖W1‖2‖P‖2|x(t)|2.

(3.17)

For the third term of (3.14), we have

2xT (t)Pu(t) ≤ xT (t)Px(t) + [Pu(t)]TP−1Pu(t)

= xT (t)Px(t) + uT (t)Pu(t)

≤ ‖P‖|x(t)|2 + ‖P‖|u(t)|2.

(3.18)

Substituting (3.15), (3.16), (3.17), and (3.18) into (3.14), we can obtain the following
inequality:

V̇ (x(t)) ≤ λ|x(t)|2 + ‖P‖|u(t)|2, (3.19)

where we denote that

λ =
(
−μ + ‖R‖‖M‖2 + ‖P‖‖M‖2‖W‖2 + 2‖P‖ + 1

1 − τ̇(t)
‖R‖−1‖W1‖2‖P‖2

)
,

‖R‖ =
‖W1‖‖P‖√
1 − τ̇(t)‖M‖

.

(3.20)

From (3.11), we easily obtain that λ < 0.
Define K∞-functions α3(r) = −λr2, α4(r) = ‖P‖ · r2. Then we can obtain that

V̇ (x(t)) ≤ α3(|x(t)|) + α4(‖u‖∞). (3.21)

From Lemma 2.4 and Remark 2.3, the system (2.9) is ISS. The proof is complete.
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4. Illustrative Examples

In this section, we will give two examples to show the efficiency of the results derived in
Section 3.

Example 4.1. Consider a 3-dimension dynamical neural network (2.9) with parameters
defined as

A =

⎛

⎝
4 0 0
0 4 0
0 0 4

⎞

⎠, W = W1 =

⎛

⎝
1 −0.1 −0.2

−0.1 1 −0.3
−0.2 −0.3 1

⎞

⎠. (4.1)

Letting gi(xi) = 1/(1 + e−xi) and the time-varying delay is chosen as τ(t) = 0.6| sin t|.
They satisfy assumptions (A1) and (A2), respectively. Obviously, there exist l1 = l2 = l3 = 1

and τ = 0.5, 0 < τ̇(t) < 0.6 that satisfy the conditions. ThenM =
( 1 0 0

0 1 0
0 0 1

)
.

By using MATLAB to solve the LMIs (3.1), we have

P =

⎛

⎜⎜⎜
⎝

1 0 0

0
1
2

0

0 0
1
3

⎞

⎟⎟⎟
⎠

, D =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠. (4.2)

From Theorem 3.1, we can see that delayed neural network (2.9) achieves ISS.

Example 4.2. Consider a 3-dimension dynamical neural network (2.9) with parameters
followed as

A =

⎛

⎝
7.6 0 0
0 9.5 0
0 0 8.8

⎞

⎠, W = W1 =

⎛

⎝
0.40 0.12 0.32
0.45 0.02 0.10
0.12 0.04 0.42

⎞

⎠. (4.3)

Letting gi(θ) = (|θ + 1| − |θ − 1|)/2, θ ∈ R and the time-varying delay is chosen as
τ(t) = 1/(t + 2). We can check the assumptions (A1) and (A2) with l1 = l2 = l3 = 1 and

0 ≤ τ(t) ≤ 1, 0 ≤ τ̇(t) ≤ 0.5 for any t > 0. Also we have M =
( 1 0 0

0 1 0
0 0 1

)
.

By solving (3.10) and (3.11), we get

P =

⎛

⎝
0.7 0.1 0.3
0.1 0.7 0.1
0.3 0.1 0.7

⎞

⎠, Q =

⎛

⎝
2.82 0.855 2.46
0.855 4.15 0.915
2.46 0.915 3.16

⎞

⎠, R =

⎛

⎝
0.927 −0.03 −0.02
−0.03 9.28 −0.08
−0.01 −0.02 9.25

⎞

⎠.

(4.4)

From Theorem 3.4, we can see that delayed neural network (2.9) obtains ISS.
However, the above results cannot be obtained by using criteria on ISS in existing

publications (e.g., [10, 11, 17–19, 26]).
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5. Conclusions

In this paper, dynamical neural networkswith time-varying delays were considered. By using
Lyapunov-Krasovskii functional method and linear matrix inequalities (LMIs) techniques,
several theorems with regarding to judging the ISS property of DNNs with time-varying
delays have been obtained. It is shown that the ISS can be determined by solving a set of
LMIs, which can be checked by using some standard numerical packages in MATLAB. At
last, two numerical examples were given to illustrate the theoretical results.

Appendix

Proof of Lemma 2.4. We divided into four parts to prove this lemma.
Claim 1. (i) The solution x = 0 of the system (2.9) is uniformly asymptotically stable if and
only if there exists a function β of class KL and a positive number c independent of t0 such
that for for all t ≥ t0, for all ‖xt0‖τ ≤ c it satisfies that

|x(t)| ≤ β
(‖xt0‖τ , t − t0

)
. (A.1)

Particularly, the system (2.9) is uniformly global asymptotically stable if and only if (A.1)
admits for any xt0 ∈ C.

The Claim is so trivial that we omit the proof here.

Claim 2. For each (t, φ) ∈ R+ ×C, if there exist a continuous functional V (t, φ) : R+ ×C → R+,
functions α1, α2 of class K∞, and a continuous positive definite function W such that

α1
(∣∣φ(0)

∣∣) ≤ V
(
t, φ
) ≤ α2

(‖φ‖τ
)
, (A.2)

V̇
(
t, φ
) ≤ −W(∣∣φ(0)∣∣), (A.3)

then the solution x(t) = 0 is globally uniformly asymptotically stable, and there exist a β ∈ KL
such that

|x(t)| ≤ β
(‖xt0‖τ , t − t0

)
, ∀(t0, xt0) ∈ R+ × C, t ≥ t0. (A.4)

Proof. From [27], the solution x(t) = 0 is globally uniformly asymptotically stable. Then by
Claim 1, we obtain (A.4). The proof is complete.

Claim 3. Let (A.3) in Claim 2 replaced by

V̇
(
t, φ
) ≤ −W(∣∣φ(0)∣∣), ∀∣∣φ(0)∣∣ ≥ μ > 0. (A.5)

Then for any xt0 ∈ C, there exist β ∈ KL, T � T(xt0 , μ), such that

|x(t)| ≤ β
(‖xt0‖τ , t − t0

)
, ∀t ∈ [t0, t0 + T],

|x(t)| ≤ α−1
1

(
α2
(
μ
))
, ∀t ≥ t0 + T.

(A.6)
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Proof. Let Bμ � {x ∈ Rn | ‖xt0‖τ ≤ μ}, Bc
μ � Rn − Bμ, Dμ � {x ∈ Rn | ‖xt0‖τ ≤ α−1(α2(μ))}

(no loss generality, we assume that α1(μ) ≤ α2(μ), then μ ≤ α−1
1 (α2(μ))). Then Bμ ⊆ Dμ. In the

following, we divided xt0 ∈ C into two parts.
Case 1. xt0 ∈ Bμ.

We make the claim that x(t)will be always remain in Bμ. Define t1 = inf{t ≥ t0 : |x(t)| =
μ}, if |x(t)| > μ, t > t1, then ‖x(t)‖ ≥ μ, t ≥ t1 and V̇ (t, φ) ≤ −α3(|φ(0)|) < 0, and we have
α1(|x(t)|) ≤ V (t, xt) ≤ V (t, xt1) ≤ α2(‖xt1‖τ), t ≥ t1. Then |x(t)| ≤ α−1

1 (α2(‖xt1‖τ)) = α−1
1 (α2(μ)).

If |x(t)| < μ, t > t1, let t2 = inf{t ≥ t1 : |x(t)| = μ}, we will analyze them as the above. Then we
obtain |x(t)| ≤ α−1

1 (α2(μ)), t ≥ t0.
Case 2. xt0 ∈ Bc

μ, that is, ‖xt0‖τ > μ.
Let t0 + T(xt0 , μ) = inf{t ≥ t0 : |x(t)| = μ} and T = T(xt0 , μ). We prove that t0 + T is limit.

From |x(t)| ≥ μ, t ∈ [t0, t0+T], (A.2), (A.5), and Case 2, we have |x(t)| ≤ β(‖xt0‖τ , t− t0), where
β ∈ KL. Since β(‖xt0‖τ , t − t0) is strictly decreasing, and β(‖xt0‖τ , ·) → 0 as t → ∞, t0 + T is
limit. Then from Case 1, x(t) will be always remain in Dμ if arrive the boundary of Bμ. Then
we obtain (A.6). The proof is complete.

Claim 4. Let (A.3) in Claim 2 replaced by

V̇
(
t, φ
) ≤ −W(∥∥φ(0)∥∥), if

∥∥φ(0)
∥∥ ≥ ρ(‖u‖∞), (A.7)

where ρ ∈ K. Then the system is ISS.

Proof. From Claim 3, we have

|x(t)| ≤ β
(‖xt0‖τ , t − t0

)
+ α−1

1

(
α2
(
ρ(‖u‖∞)

))
, t ≥ t0. (A.8)

Since x(t) only depends on the u(s) defined on [t0, t], we obtain

|x(t)| ≤ β
(‖xt0‖τ , t − t0

)
+ α−1

1

(
α2
(
ρ(‖ut‖∞)

))
, t ≥ t0. (A.9)

Then

|x(t)| ≤ β
(‖xt0‖τ , t − t0

)
+ γ(‖ut‖∞), t ≥ t0, (A.10)

where γ � α−1
1 (α2(ρ)). This proves that the system is ISS.
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