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An ecoepidemiological system with prey refuges and disease in prey is proposed. Bilinear
incidence and Holling III functional response are used to model the contact process and the
predation process, respectively. We will study the stability behavior of the basic system from a
local to a global perspective. Permanence of the considered system is also investigated.

1. Introduction

Ecoepidemiology is the branch of biomathematics that understands the dynamics of disease
spread on the predator-prey system. Modeling researches on such ecoepidemiological issues
have received much attention recently [1–13]. Anderson and May [1] investigated a prey-
predator model with prey infection and observed destabilization due to the spread of
infectious diseases within animal and plant communities. Chattopadhyay analyzed predator-
prey system with disease in the prey [5] and applied the ecoepidemiological study to the
Pelicans at risk in the Salton Sea [6]. Bairagi et al. [13] made a comparative study on
the role of prey infection in the stability aspects of a predator-prey system with several
functional responses. An ecoepidemiological model with prey harvesting and predator
switching was investigated by Bhattacharyya and Mukhopadhyay [14]. Kooi et al. [15]
studied stabilization and complex dynamics in a predator-prey system with disease in
predator. Most of the above-mentioned studies focused on the role of disease in regulating the
dynamical consequences of the interacting populations concerned, such as disease-induced
stabilization and destabilization of population states [13].

In fact, the dynamical consequences of the predator-prey model can be determined
by much ecological effect, such as the Allee effect and prey refuge. Theoretical research
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and field observations on population dynamics of prey refuges lead to the conclusion that
prey refuges have two influences (stabilizing and destabilizing effect) on predator-prey
models and prey extinction can be prevented by the addition of prey refuges [13–34]. Here,
stabilization (destabilization) of stability refers to cases where an equilibrium point changes
from an attractor (a repeller) to a repeller (an attractor) due to increase in the value of
a control parameter [17]. Ruxton [16] proposed a continuous-time predator-prey model
under the assumption that the rate of prey moving to refuges is proportional to predator
density and the results showed that the hiding behavior of prey has a stabilizing effect. The
stabilizing effect was also observed in a simple predator-prey system by González-Olivares
and Ramos-Jiliberto [17]. Ma et al. [23] formulated a predator-prey model with a class of
functional response incorporating the effect of prey refuges and observed the stabilizing and
destabilizing effect due to the increases in the prey refuges.

In the present research, we formulate a mathematical model of prey-predator interac-
tion with prey refuges and disease in prey. We mainly study the positivity and boundedness,
the stability behavior of the disease-free equilibrium point, and the permanence of the basic
model.

2. Model Formulation

The basic model comprises two population subclasses—(i) prey population with density
N(t) and (ii) predators with density Y (t). To formulate our model, we make the following
assumptions.

(1) The prey population increases logistically with intrinsic growth rate r and environ-
mental carrying capacity K.

(2) The prey population is divided into two subclasses—the susceptible prey (S(t))
and the infected prey (I(t)) due to infectious disease. We also assumed that N(t) =
S(t) + I(t) at any instant of time t.

(3) The susceptible prey is capable of reproducing only and the infected prey is
removed by death at a rate d1.

(4) The disease is spread only among the prey population and the disease is not
genetically inherited. The infected prey does not become immune.

(5) Susceptible prey becomes infected with the simple mass action law βSI, where β
measures the force of infection.

(6) The predators vanish due to natural death at a constant rate d2. They consume
susceptible and infected prey following the Holling III functional response with
predation coefficients c1 and c2, respectively. The consumed prey is converted into
predator with efficiency e.

(7) It is assumed that there is a quantity γX of (the susceptible and the infected) prey
population incorporating refuges. γ (0 < γ < 1) denotes that a constant proportion
of (the susceptible and the infected) prey use refuges. All the above-mentioned
parameters are assumed to be positive.
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With the previously mentioned assumptions, the generalized predator-prey system
with prey refuges and disease in prey can be represented by the following equations:

dS

dt
= rS

(
1 − S + I

K

)
− βSI − c1

(
1 − γ

)2
S2Y

m +
(
1 − γ

)2
S2

,

dI

dt
= βSI − c2

(
1 − γ

)2
I2Y

m +
(
1 − γ

)2
I2

− d1I,

dY

dt
=

ec1
(
1 − γ

)2
S2Y

m +
(
1 − γ

)2
S2

+
ec2

(
1 − γ

)2
I2Y

m +
(
1 − γ

)2
I2

− d2Y.

(2.1)

Defining G = {(S, I, Y ) ∈ R3
+ | S + I ≤ K,S ≥ 0, I ≥ 0, Y ≥ 0}, it is easy to show that the

set G is the positively invariable set of system (2.1).

3. The Positivity and Boundedness

Theorem 3.1. All solutions of system (2.1) initiating R3
+ are positive and ultimately bounded.

Proof. Let (S(t), I(t), Y (t)) be one of the solutions of system (2.1).
Integrating (2.1) with initial conditions (S0, I0, Y0), we have

S(t) = S0 exp

[∫ t

0

(
r

(
1 − S(ξ) + I(ξ)

K

)
− βI(ξ) − c1

(
1 − γ

)2
S(ξ)Y (ξ)

m +
(
1 − γ

)2
S2(ξ)

)
dξ

]
> 0,

I(t) = I0 exp

[∫ t

0

(
βS(ξ) − c2

(
1 − γ

)2
I(ξ)Y (ξ)

m +
(
1 − γ

)2
I2(ξ)

− d1

)
dξ

]
> 0,

Y (t) = Y0 exp

[∫ t

0

(
ec1

(
1 − γ

)2
S2(ξ)

m +
(
1 − γ

)2
S2(ξ)

+
ec2

(
1 − γ

)2
I2(ξ)

m
(
1 − γ

)2
I2(ξ)

− d2

)
dξ

]
> 0.

(3.1)

Hence all solutions starting in R3
+ remain in R3

+ for all t ≥ 0.

Next, we will prove the boundedness of the solutions.
Because dS/dt ≤ rS(1 − S/K), then we have

lim
t→+∞

supS(t) ≤ K. (3.2)
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Let W = eS + eI + Y , then we obtain that

dW

dt
= reS

(
1 − S

K

)
− re

K
SI − ed1I − d2Y

≤ reS − ed1I − d2Y

= (r + 1)eS − (eS + d1eI + d2Y )

≤ e(r + 1)K − δW,

(3.3)

where δ = min{1, d1, d2}.
Hence, we have

dW

dt
+ δW ≤ e(r + 1)K. (3.4)

That is

0 ≤ W(S, I, Y ) ≤ e(r + 1)K
δ

+
W(S(0), I(0), Y (0))

eδt
,

0 ≤ W ≤ e(r + 1)K
δ

(t −→ +∞).

(3.5)

Thus, all curves of system (2.1)will enter the following region:

B =
{
(S, I, Y ) : 0 ≤ W ≤ e(r + 1)K

δ
+ ε, ∀ε > 0

}
. (3.6)

4. The Equilibrium Point

All equilibrium points of system (2.1) can be obtained by solving the following equations:

rS

(
1 − S + I

K

)
− βSI − c1

(
1 − γ

)2
S2Y

m +
(
1 − γ

)2
S2

= 0,

βSI − c2
(
1 − γ

)2
I2Y

m +
(
1 − γ

)2
I2

− d1I = 0,

ec1
(
1 − γ

)2
S2Y

m +
(
1 − γ

)2
S2

+
ec2

(
1 − γ

)2
I2Y

m +
(
1 − γ

)2
I2

− d2Y = 0,

(4.1)

These points are as follows:

(1) the trivial equilibrium point E0(0, 0, 0),

(2) the equilibrium point EK(K, 0, 0),
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(3) the predator-extinction equilibrium point E(S, I, 0),

(4) the disease-free equilibrium point E∗(S∗, 0, Y ∗),

where

S =
d1

β
=̇SM, I =

r
(
βK − d1

)
β
(
r + βK

) =̇ IM,

S∗ =
1

1 − γ

√
d2m

ec1 − d2
, Y ∗ =

erS∗

d2

(
1 − S∗

K

)
.

(4.2)

Let R1 = (ec1(1 − γ)2K2/(m + (1 − γ)2K2))/d2. It is clear to show that the disease-free
equilibrium point E∗(S∗, 0, Y ∗) has its ecological meaning when R1 > 1.

Let R0 = βK/d1, the predator-extinction equilibrium point E(S, I, 0) is nonnegative
when R0 > 1.

5. The Stability Property

In this section, we will study the local and global stability of the equilibrium points of system
(2.1).

Theorem 5.1. Let R1 = ((ec1(1 − γ)2S2
M/(m + (1 − γ)2S2

M)) + (ec2(1 − γ)2I2M/(m + (1 −
γ)2I2M)))/d2, R2 = max(R1, R1), then one has the following.

(1) The trivial equilibrium point E0(0, 0, 0) is always unstable.

(2) If R0 < 1, R1 < 1, then the predator-extinction equilibrium point E(S, I, 0) is globally
asymptotically stable. If R0 > 1 or R1 > 1, the equilibrium point EK(K, 0, 0) is unstable.

(3) If R0 > 1 and R1 < 1, the predator-extinction equilibrium point E(S, I, 0) is locally asymp-
totically stable. If R2 < 1, the predator-extinction equilibrium point E(S, I, 0) is locally
asymptotically stable. If R1 > 1, the predator-extinction equilibrium point E(S, I, 0) is
unstable.

Proof. The Jacobian matrix of system (2.1) at the trivial equilibrium point E0(0, 0, 0) is

⎛
⎝r 0 0

0 −d1 0
0 0 −d2

⎞
⎠. (5.1)

Clearly, the trivial equilibrium point E0(0, 0, 0) is unstable.
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The Jacobian matrix of system (2.1) at the equilibrium point EK(K, 0, 0) is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r −r − βK − c1
(
1 − γ

)2
K2

m +
(
1 − γ

)2
K2

0 βK − d1 0

0 0
ec1

(
1 − γ

)2
K2

m +
(
1 − γ

)2
K2

− d2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.2)

According to the theorem about the local stability, the local stability of the equilibrium
point EK(K, 0, 0) is determined only by the sign of (ec2(1 − γ)2K2/(m + (1 − γ)2K2)) − d2 and
βK − d1.

Therefore, if R0 < 1 and R1 < 1, the equilibrium point EK(K, 0, 0) is locally asymptoti-
cally stable.

Next, we will prove the global stability of the equilibrium point EK(K, 0, 0).
Defining the Lyapunov function V = eI + Y , then we obtain that

dV

dt
= e

(
βS − d1

)
I +

(
ec1

(
1 − γ

)2
S2

m +
(
1 − γ

)2
S2

− d2

)
Y

≤ e
(
βK − d1

)
I +

(
ec1

(
1 − γ

)2
K2

m +
(
1 − γ

)2
K2

− d2

)
Y.

(5.3)

Hence, if R0 < 1 and R1 < 1, dV/dt ≤ 0.
Having E = {(S, I, Y ) ∈ G | dV/dt = 0} = {I = 0, Y = 0}, the maximum invariable set

of system (2.1) isM = E = {I = 0, Y = 0}.
According to the LaSalle invariable set theorem, limt→+∞I(t) = 0, limt→+∞Y (t) = 0.
Thus, the limit equation of system (2.1) is

dS

dt
= rS

(
1 − S

K

)
. (5.4)

Clearly, the equilibrium point S = K is globally asymptotically stable.
According to the limit system theorem, if R0 < 1 and R1 < 1, the equilibrium point

EK(K, 0, 0) is globally asymptotically stable.



Journal of Applied Mathematics 7

Setting R0 > 1, the Jacobian matrix of system (2.1) at the predator-extinction equilib-
rium point E(S, I, 0) is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−rS
K

−rS
K

− βS − c1
(
1 − γ

)2
S
2

m +
(
1 − γ

)2
S
2

βI 0 − c2
(
1 − γ

)2
I
2

m +
(
1 − γ

)2
I
2

0 0
ec1

(
1 − γ

)2
S
2

m +
(
1 − γ

)2
S
2
+

ec2
(
1 − γ

)2
I
2

m +
(
1 − γ

)2
I
2
− d2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.5)

The characteristic equation of system (2.1) at the predator-extinction equilibrium point
E(S, I, 0) is

(λ −A)
(
λ2 − Bλ + C

)
= 0, (5.6)

where

A =
c1

(
1 − γ

)2
S2
M

m +
(
1 − γ

)2
S2
M

+
ec2

(
1 − γ

)2
I2M

m +
(
1 − γ

)2
I2M

− d2,

B = −2SM

K
< 0, C = βIM

(
SM

K
+ βSM

)
> 0.

(5.7)

According to the Routh-Hurwitz rule, the predator-extinction equilibrium point
E(S, I, 0) is locally asymptotically stable when R1 < 1.

Next, we will prove the global stability of the predator-extinction equilibrium point
E(S, I, 0).

Defining the Lyapunov function V = Y , then we have

dV

dt
=

(
ec1

(
1 − γ

)2
S2

m +
(
1 − γ

)2
S2

+
ec2

(
1 − γ

)2
I2

m +
(
1 − γ

)2
I2

− d2

)
Y. (5.8)

Let Φ(S, I) = (c1(1− γ)2S2/(m+ (1− γ)2S2)) + (ec2(1− γ)2I2/(m+ (1− γ)2I2)) in which
(S, I) ∈ D = {(S, I) | S + I ≤ K,S ≥ 0, I ≥ 0}.

Thus

Φ′(t) =
2c1em

(
1 − γ

)2
S(

m +
(
1 − γ

)2
S2

)2

dS

dt
+

2c2em
(
1 − γ

)2
I(

m +
(
1 − γ

)2
I2

)2

dI

dt
. (5.9)

Clearly, (2c1em(1 − γ)2S/(m + (1 − γ)2S2)2) > 0 and (2c2em(1 − γ)2I/(m + (1 − γ)2

I2)2) > 0 on the set D′ = D − {S = 0 | I = 0}.
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Thus, Φ′(t) = 0 on the set D′, if and only if dS/dt = 0 and dI/dt = 0, then S = SM,
I = IM.

If S = I = 0, then Φ(S, I) = 0. If S = SM, then I = IM. If S < SM, then dI/dt < 0; that is,
I < IM.

Therefore, the maximum value of the function Φ(t) is obtained at the point (K, 0) or
(SM, IM).

Hence, if R2 < 1, dV/dt ≤ 0; that is, E = {(S, I, Y ) ∈ G | dV/dt = 0} = {Y = 0}.
According to the LaSalle invariable set theorem, limt→+∞Y (t) = 0. Thus, the limit

equation of system (2.1) is

dS

dt
= rS

(
1 − S

K

)
− βSI,

dI

dt
= βSI − d1I.

(5.10)

According to the results of the appendix section, if R0 > 1, the equilibrium point
(SM, IM) is globally asymptotically stable.

According to the limit system theorem, if R0 > 1 and R2 < 1, the predator-extinction
equilibrium point E(S, I, 0) is globally asymptotically stable.

Theorem 5.2. Let R∗
1 = (β/d1(1 − γ))

√
(d2m/(ec1 − d2)), R∗

2 = (((2d2 − ec1)(1 − γ)K)/
2d2)

√
(ec1 − d2)/d2m. IfR1 > 1, then the disease-free equilibrium point E∗(S∗, 0, I∗) is nonnegative,

(1) if R∗
1 < 1 and R∗

2 < 1, then the disease-free equilibrium point E∗(S∗, 0, I∗) is locally
asymptotically stable;

(2) if R0 < 1 and R∗
2 < 1, then the disease-free equilibrium point E∗(S∗, 0, I∗) is globally

asymptotically stable;

(3) if R∗
1 > 1 or R∗

2 > 1, then the disease-free equilibrium point E∗(S∗, 0, I∗) is unstable.

Proof. Assuming R1 > 1, the Jacobian matrix of system (2.1) at the disease-free equilibrium
point E∗(S∗, 0, Y ∗) is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 −βS∗ − rS∗

K
− c1

(
1 − γ

)2(S∗)2

m +
(
1 − γ

)2(S∗)2

0 a22 0

2ec1m
(
1 − γ

)2
S∗Y ∗

(
m +

(
1 − γ

)2(S∗)2
)2

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.11)
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where

a11 = r

(
1 − 2S∗

K

)
− 2c1m

(
1 − γ

)2
S∗Y ∗

(
m +

(
1 − γ

)2(S∗)2
)2

, a22 = βS∗ − d1. (5.12)

The characteristic equation of system (2.1) at the disease-free equilibrium point E∗(S∗,
0, Y ∗) is

(λ − a22)

⎛
⎜⎝λ2 − a11λ +

2c21em
(
1 − γ

)4(S∗)3Y ∗
(
m +

(
1 − γ

)2(S∗)2
)3

⎞
⎟⎠ = 0. (5.13)

Clearly, if R∗
1 < 1, a22 = βS∗ − d1 < 0.

Again, we have

a11 = r

(
1 − 2S∗

K

)
− 2c1m

(
1 − γ

)2
S∗Y ∗

(
m +

(
1 − γ

)2(S∗)2
)2

= r

(
1 − 2S∗

K

)
− 2r

(
1 − d2

ec1

)(
1 − S∗

K

)

= r

[
1 − 2S∗

K
− 2 +

2S∗

K
+
2d2

ec1
− 2d2

ec1

S∗

K

]

=
r

ec1

⎡
⎣(2d2 − ec1) − 2d2(

1 − γ
)
K

√
d2m

ec1 − d2

⎤
⎦.

(5.14)

Hence, if R∗
2 < 1, then a11 < 0.

According to the Routh-Hurwitz rule, if R∗
1 < 1 and R∗

2 < 1, then the disease-free
equilibrium point E∗(S∗, 0, Y ∗) is locally asymptotically stable.

Next, we will study the global stability of the disease-free equilibrium point
E∗(S∗, 0, Y ∗).

Defining the Lyapunov function V = I, then we obtain

dV

dt
=

(
βS − c2

(
1 − γ

)2
Y

m +
(
1 − γ

)2
I
− d1

)
I ≤ (

βK − d1
)
I. (5.15)

Thus, if R0 < 1, dV/dt ≤ 0 and dV/dt = 0 if and only if I = 0; that is, E = {(S, I, Y ) ∈
G | dV/dt = 0} = {I = 0}.
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According to the LaSalle invariable set theorem, I(t) → 0 when t → +∞. The limit
system of system (2.1) is

dS

dt
= rS

(
1 − S

K

)
− c1

(
1 − γ

)2
S2Y

m +
(
1 − γ

)2
S2

,

dY

dt
=

ec1
(
1 − γ

)2
S2Y

m +
(
1 − γ

)2
S2

− d2Y.

(5.16)

Clearly, the equilibrium points of the system (5.16) are

E′
0(0, 0), E′

K(K, 0), E′
∗(S

∗, Y ∗) (5.17)

in which S∗ and Y ∗ are similar as the equilibria expression of system (2.1).
It is easy to show that the equilibrium point E′

∗ has its ecological meaning whenR1 > 1.
According to the Routh-Hurwitz rule, the equilibrium point E′

0 is unstable. If R1 > 1,
then E′

K(K, 0) is unstable.
Again, the Jacobian matrix of system (5.16) at the equilibrium point E′

∗ is

⎛
⎜⎜⎜⎜⎜⎝

a11 − c1
(
1 − γ

)2(S∗)2

m +
(
1 − γ

)2(S∗)2

2ec1m
(
1 − γ

)2
S∗Y ∗

(
m +

(
1 − γ

)2(S∗)2
)2

0

⎞
⎟⎟⎟⎟⎟⎠

, (5.18)

where

a11 = r

(
1 − 2S∗

K

)
− 2c1m

(
1 − γ

)2
S∗Y ∗

(
m +

(
1 − γ

)2(S∗)2
)2

. (5.19)

The characteristic equation of system (5.16) at the equilibrium point E′
∗ is

λ2 − a11λ +
2c21em

(
1 − γ

)4(S∗)3Y ∗
(
m +

(
1 − γ

)2(S∗)2
)3

= 0. (5.20)

According to the above study, if R∗
2 < 1, then a11 < 0.

Hence, if R∗
2 < 1, then the equilibrium point E′

∗ is locally asymptotically stable in the
region D by the Routh-Hurwitz rule.

It is easy to note that the globally asymptotically stability of the equilibrium point E′
∗

implies that there is no close orbit in the region D for the considered system.
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Let

S =

√
d2m

ec1 − d2
S̃, Y =

1
c1

√
d2m(ec1 − d2)Ỹ ,

dt =
d2

(
1 − γ

)2
S̃2 + ec1 − d2

d2(ec1 − d2)
dt̃,

(5.21)

and rewrite S̃, Ỹ , and t̃ into S, Y , and t, then system (5.16) becomes as follows:

dS

dt
= S

(
A0 +A1S +A2S

2 +A3S
3
)
− (

1 − γ
)2
S2Y ≡ P(S, Y ),

dY

dt
=

(
1 − γ

)2
S2Y − Y ≡ Q(S, Y ),

(5.22)

where A0 = r/d2 > 0, A1 = −r/(d2K)
√
d2m/(ec1 − d2) < 0, A2 = (1 − γ)2r/(ec1 − d2) > 0,

A3 = −(1 − γ)2r/(ec1 − d2)
√
d2m/(ec1 − d2) < 0.

Thus, the positive equilibrium point E′
∗(S

∗, Y ∗) of system (5.16) becomes the positive
equilibrium point EP (SP , YP ) of system (5.22), where

SP =
1

1 − γ
,

YP =
1

1 − γ

ec1
d2(ec1 − d2)

⎛
⎝r − r(

1 − γ
)
K

√
d2m

ec1 − d2

⎞
⎠

=
rec1

d2(ec1 − d2)
(
1 − γ

)
⎛
⎝1 − 1(

1 − γ
)
K

√
d2m

ec1 − d2

⎞
⎠.

(5.23)

Considering the Dulac function B(S, Y ) = S−2Yn−1, then we have

∂(BP)
∂S

+
∂(BQ)
∂Y

= S−2Yn−1
[
2A3S

3 +
(
A2 + n

(
1 − γ

)2)
S
2 − (A0 + n)

]

≡ S−2Yn−1Φ(S, n).

(5.24)

In order to prove the global stability, we will prove only that there exists a real number
n such that Φ(S, n) ≤ 0.

Clearly, if S = 0 or S = −(A2 + n(1 − γ)2)/3A3, then 2S[3A3S +A2 + n(1 − γ)2] = 0 since
∂Φ(S, n)/∂S = 2S[3A3S +A2 + n(1 − γ)2].

Let −(A2+n(1−γ)2)/3A3 > 0 (A2 > 0,A3 < 0), that is,A2+n(1−γ)2 > 0, then we obtain
that if 0 < S < −(A2 + n(1 − γ)2)/3A3, then ∂Φ(S, n)/∂S > 0. Otherwise, ∂Φ(S, n)/∂S < 0.

Therefore, the function Φ(S, n) has the maximum value at the point S = −(A2 + n(1 −
γ)2)/3A3 and Φ(0, n) = −(A0 + n) < 0.
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Hence, there exists only one real number n, such that A2 + n(1 − γ)2 > 0 and

max
0<S<+∞

Φ(S, n) = Φ(S, n)|S=−(A2+n(1−γ)2)/3A3

=

[
A2 + n

(
1 − γ

)2]3
27A2

3

− A2 + n
(
1 − γ

)2
(
1 − γ

)2 +
A2(

1 − γ
)2 −A0 = 0.

(5.25)

Thus, we will prove only that there exists A2 + n(1 − γ)2 > 0, such that

[
A2 + n

(
1 − γ

)2]3 +M
[
A2 + n

(
1 − γ

)2] +N = 0, (5.26)

where M = −27A2
3/(1 − γ)2 < 0, N = 27A2

3[A2/(1 − γ)2 −A0] > 0.
The discriminant of the cubic equation is

Δ =
N2

4
+
M2

27
=

27A4
3

4

⎡
⎣
(

A2(
1 − γ

)2 −A0

)2

− 4A2
3(

1 − γ
)6

⎤
⎦

=
[
A2S

2
p −A0 + 2A3S

3
p

][
A2S

2
p −A0 − 2A3S

3
p

]
.

(5.27)

It is easy to show that if d2 < ec1 < 2d2, thenA2S
2
p −A0 = r(2d2 − ec1)/d2(ec1 − d2) > 0.

Again, if R1 > 1 and R∗
2 < 1, then A2S

2
p −A0 − 2A3S

3
p > 0 and 2A3S

3
p +A2S

2
p −A0 ≤ 0. If

2A3S
3
p +A2S

2
p −A0 = 0, then Δ = 0.

According to Shengjin’s distinguishing means, the cubic equation has one negative
real root and two positively real roots.

If 2A3S
3
p +A2S

2
p −A0 < 0, the cubic equation has three roots which are not equal.

According to the Descartes rule of signs, the cubic equation has two positively real
roots and one negatively real root at most.

Therefore, the cubic equation has at least one positively real root. That is to say, there
exists a number n, such that A2 + n(1 − γ)2 > 0.

Furthermore, we obtain that

∂(BP)
∂S

+
∂(BQ)
∂Y

≤ 0. (5.28)

According to the Bendixson-Dulac theorem, there does not exist the limit cycle for the
limit system.

Hence, the equilibrium point E′
∗ is globally asymptotically stable.

Therefore, ifR0 < 1 andR∗
2 < 1, then the equilibrium point E′

∗ is globally asymptotically
stable according to the limit system theorem.

6. Permanence

Theorem 6.1. If R0 > 1, R1 > 1, R1 > 1, and R∗
1 > 1, then system (2.1) is permanent.
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Proof. Considering the average Lyapunov function V (S, I, Y ) = Sα1Iα2Yα3 , where αi (i = 1, 2, 3)
is positive, then in the region R3

+, we have

V̇

V
= α1

[
r

(
1 − S + I

K

)
− βI − c1

(
1 − γ

)2
SY

m +
(
1 − γ

)2
S2

]

+ α2

[
βS − c2

(
1 − γ

)2
IY

m +
(
1 − γ

)2
I2

− d1

]

+ α3

[
ec1

(
1 − γ

)2
S2

m +
(
1 − γ

)2
S2

+
ec2

(
1 − γ

)2
I2

m +
(
1 − γ

)2
I2

− d2

]
≡ Ψ(S, I, Y ).

(6.1)

In order to prove the permanence of system (2.1), we only indicate the following
results: the function Ψ(S, I, Y ) > 0 for all boundary equilibrium points.

Let α1 > (d1α2 + d2α3)/r, then

Ψ(E0) = α1r − α2d1 − α3d2 > 0,

Ψ(EK) = α2
(
βK − d1

)
+ α3

(
ec1

(
1 − γ

)2
K2

m +
(
1 − γ

)2
K2

− d2

)
,

Ψ
(
E
)
= α3

(
ec1

(
1 − γ

)2
S2
M

m +
(
1 − γ

)2
S2
M

+
ec2

(
1 − γ

)2
I2M

m +
(
1 − γ

)2
I2M

− d2

)
,

Ψ(E∗) = α2
(
βS∗ − d1

)
.

(6.2)

Hence, if R0 > 1 and R1 > 1, then Ψ(EK) > 0. If R2 > 1, then Ψ(Ẽ) > 0. If R∗
1 > 1, then

Ψ(E∗) > 0.
Therefore, system (2.1) is permanent when R0 > 1, R1 > 1, R1 > 1, and R∗

1 > 1 by the
average Lyapunov function theorem [34].

By simple computation,R1 > 1(< 1) is equivalent to (1−γ)K
√
(ec1 − d2)/d2m > 1(< 1).

Hence, if R1 > 1, then R∗
1 > 1 implies R0 > 1.

Appendix

Considering the following SI model

dS

dt
= rS

(
1 − S + I

K

)
− βSI,

dI

dt
= βSI − d1I,

(A.1)

where S(t) and I(t) are density of susceptible and infected prey population at time t. The
parameters r, K, β, and d1 are all positive.
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The positive equilibrium point of this system is EM(SM, IM) in which

SM =
d1

β
, IM =

r
(
βK − d1

)
β
(
r + βK

) . (A.2)

Let R0 = βK/d1.
Clearly, if R0 = βK/d1 > 1, then the equilibrium point EM(SM, IM) is positive.

Theorem A.1. Let R0 = βK/d1. If R0 > 1, then the positive equilibrium point EM(SM, IM) is
globally asymptotically stable.

Proof. The Jacobian matrix of system (A.1) at the positive equilibrium point EM(SM, IM) is

⎛
⎜⎜⎝

−rSM

K
−rSM

K
− βSM

0 βSM − d1

⎞
⎟⎟⎠. (A.3)

Clearly, if R0 > 1, then the positive equilibrium point EM(SM, IM) is locally asymptot-
ically stable.

Next, defining the Dulac function B(S, I) = 1/SI, then we have

∂(BP)
∂S

+
∂(BQ)
∂I

= − r

KI
< 0, (A.4)

where P(S, I) = rS(1 − ((S + I)/K)) − βSI, Q(S, I) = βSI − d1I.
Therefore, there does not exist closed curve in the region D according to the Dulac

theorem.
This implies that the positive equilibrium point EM(SM, IM) is globally asymptotically

stable.
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