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The generalized projective synchronization (GPS) of chaotic systems with uncertain parameter
noise and external disturbance is discussed. Based on the adaptive technique, a response system is
constructed, and a novel adaptive controller is designed to guarantee the GPS between the drive-
response systems, and to eliminate the effect of external disturbance and parameters noise on GPS.
The conclusion is proved theoretically, and corresponding numerical simulations are provided to
verify the effectiveness of the proposed method.

1. Introduction

The concept of chaos synchronization was introduced in the first time by Pecora and Carroll
and an effective synchronization method was proposed in 1990 [1]. Since then, the chaos
synchronization quickly became a hot topic. Due to its wide range of applications such
as in security communication and oscillator design, chaos synchronization has become an
important domain of nonlinear dynamics. With further research, many schemes of chaos
synchronization have been developed andwidely used in synchronization control of complex
network, for example, linear coupling method, feedback approach, adaptive technique, and
impulsive control [2–7]. Various kinds of synchronization behaviors have been revealed, such
as the complete synchronization, generalized synchronization, phase synchronization, and
lag synchronization [8–11].

Recently, generalized projective synchronization (GPS) received extensive atten-
tion [12–14]. In [12], authors use the auxiliary system approach to study generalized
synchronization and obtain some less restrictive criteria to guarantee the GPS between



2 Journal of Applied Mathematics

the drive-response systems. In [13], authors researched the projective synchronization (PS)
of neural networks with mixed time-varying delays and parameter mismatch. A new weak
projective synchronization scheme is proposed to ensure that coupled neural networks
are in a state of synchronization with an error level, and several criteria are derived. In
[14] authors introduced a generalized projective synchronization method for achieving the
different variables of drive-response system synchronized up to different scaling factors.
However, the studies mentioned above did not consider the case of chaotic systems with
noise disturbance. In fact, noise ubiquitous almost in any real system and many practical
systems are very sensitive to parameters’ disturbance [15], the synchronization of a concrete
model is unavoidably subject to disturbances. So suppression the effect of disturbance in
synchronization process is very important in reality. Motivated by this reason, in this paper,
we further investigate the GPS of a class of chaotic (or hyperchaotic) systems with uncertain
parameters’ noise and external disturbances. Via adaptive technique, a novel response system
is constructed to synchronize a given chaotic (hyperchaotic) system even if the Lipschitz
constant on nonlinear term and the bounds on uncertainty are unknown. Unlike the previous
method, the approach proposed in our paper shows high robustness to the parameter noise
and external disturbance.

The rest of the paper is organized as follows. In Section 2, the model of our research
and preliminaries are introduced. The adaptive scheme for the GPS and noise suppression is
presented in Section 3. The numerical simulations with hyperchaotic Lü system are provided
to verify the effectiveness of the proposed approach in Section 4. Finally, conclusions are
given in Section 5.

2. Model Description and Preliminaries

Consider a class of chaotic (or hyperchaotic) systems described by

ẋ = Ax + f(x) + g(x)υ, (2.1)

where x = (x1, x2, . . . , xn)
T ∈ Rn is the state vector, A = (aij)n×n is a constant matrix.

f : Rn → Rn is a quadratic function vector and each term of f(x) has the form of xixj or
zero. g : Rn → Rn×r is a linear function matrix. υ ∈ Rr is uncertain or unknown parameter
vector. Suppose there exists unknown external disturbance which is denoted by η(t) ∈ Rn,
system (2.1) is recast as follows:

ẋ = Ax + f(x) + g(x)υ + η(t). (2.2)

In fact, many classical chaotic and hyperchaotic systems can be written in the form
of (2.1). For instance, the Lorenz system [16], the Chen system [17], the Lü system [18], the
unified chaotic system [19], the hyperchaotic Lü system [20], the hyperchaotic Chen system
[21], and the hyperchaotic Rössler system [22]. Therefore, the further research on the GPS of
such class of chaotic (hyperchaotic) systems is very significant.

In order to construct a response system for the GPS purpose, we introduce some
necessary assumptions and lemmas as follows. In the following, norms ‖ · ‖2 and ‖ · ‖1 of
vector x are defined as ‖x‖2 =

√
xTx and ‖x‖1 =

∑n
i=1 |xi|, respectively.
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Assumption 2.1. There exists nonnegative constants δf and δg such that:

∥
∥f(x) − f

(
y
)∥
∥
2 ≤ δf

∥
∥x − y

∥
∥
2,

∥
∥g(x)

∥
∥
2 ≤ δg‖x‖2, (2.3)

where x, y are time-varying vectors.

Assumption 2.2. The uncertain parameter vector υ and external disturbance η(t) are norm
bounded, that is, there exists positive constants δυ and δη satisfying

‖υ‖2 ≤ δυ,
∥
∥η(t)

∥
∥
1 ≤ δη, (2.4)

and the disturbance η(t) does not destroy the chaotic or hyperchaotic behavior of system
(2.1).

Remark 2.3. Let E be a compact subset of Rn which contains the chaotic attractor of system
(2.1). Obviously, the quadratic function f and linear function g satisfy Assumption 2.1 on E.

For the constant matrix A, one can easily take D = diag(d1, d2, . . . , dn) (di ≥ 0, i =
1, 2, . . . , n) such that A −D is Hurwitz matrix. Then there has following lemma.

Lemma 2.4 (see [23]). For the Hurwitz matrix A − D, there exists symmetry positive definite
matrixes P and Q which satisfy the Lyapunov equation:

(A −D)TP + P(A −D) = −Q. (2.5)

3. Approach for the GPS and Noise Suppression

Now we construct a response system to synchronize the system (2.2) in a drive-response
framework. Take the system (2.2) as drive system, a response system is constructed as
follows:

˙̂x = Ax̂ + α−1f(x̂) + g(x̂)υ̂ + u, (3.1)

where x̂ ∈ Rn is the state vector of the response system, α is a nonzero constant, υ̂ is the
estimation of uncertain parameter vector v, and u is the control input.

We say that systems (2.2) and (3.1) achieve GPS if limt→+∞‖αx − x̂‖2 = 0, where α is
called the scaling factor. So the synchronous error vector is defined as e = αx − x̂.

If the control input in (3.1) is taken as

u = De + r̂ sgn(Pe) + k̂Pe, (3.2)
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where sgn(·) denotes a symbolic function of (·), moreover, it denotes that each component
takes the symbolic function when (·) is a vector. r̂ and k̂ are adaptive variables to be designed.
The matrixes P and D satisfy (2.5). Then one can obtain the error system as follows:

ė = (A −D)e + α−1
(
α2f(x) − f(x̂)

)
+
(
αg(x)υ − g(x̂)υ̂

)
+ αη − r̂ sgn(Pe) − k̂Pe

= (A −D)e + α−1(f(αx) − f(x̂)
)
+
(
g(αx) − g(x̂)

)
υ + g(x̂)(υ − υ̂) + αη − r̂ sgn(Pe) − k̂Pe

= (A −D)e + α−1(f(αx) − f(x̂)
)
+ g(e)υ + g(x̂)(υ − υ̂) + αη − r̂ sgn(Pe) − k̂Pe.

(3.3)

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold. Take the control input as (3.2) and
adaptive laws as follows:

˙̂υ = lυ
[
g(x̂)

]TPe, (3.4)

˙̂r = lr(Pe)T sgn(Pe) = lr‖Pe‖1, ˙̂k = lke
TPPe = lk‖Pe‖22, (3.5)

where lυ, lr , and lk are positive constants. Then systems (2.2) and (3.1) can achieve the GPS.

Proof. Choose the Lyapunov function as

V
(
e, υ̂, r̂, k̂

)
= eTPe +

1
lυ
(υ − υ̂)T (υ − υ̂) +

1
lr
(r − r̂)2 +

1
lk

(
k − k̂

)2
, (3.6)

where r, k are the adaptive constants. Obviously, V is positive definite.
Its time derivative along the trajectories of (3.3) ∼ (3.5) is given by

V̇
(
e, υ̂, r̂, k̂

)
= eT

(
(A −D)TP + P(A −D)

)
e + 2α−1eTP

(
f(αx) − f(x̂)

)

+ 2eTPg(e)υ + 2eTPg(x̂)(υ − υ̂) + 2αeTPη − 2r̂eTP sgn(Pe)

− 2k̂eTPPe − 2
lυ

˙̂υ
T
(υ − υ̂) − 2

lr
(r − r̂) ˙̂r − 2

lk

(
k − k̂

) ˙̂k

= − eTQe + 2α−1eTP
(
f(αx) − f(x̂)

)
+ 2eTPg(e)υ

+ 2αeTPη − 2reTP sgn(Pe) − 2keTPPe

≤ − eTQe + 2
∣
∣
∣α−1
∣
∣
∣ ·
∥
∥
∥eTP

∥
∥
∥
2
· ∥∥f(αx) − f(x̂)

∥
∥
2 + 2

∥
∥
∥eTP

∥
∥
∥
2
· ∥∥g(e)∥∥2 · ‖υ‖2

+ 2|α| ·
∥
∥
∥eTP

∥
∥
∥
1
· ∥∥η∥∥1 − 2r‖Pe‖1 − 2k‖Pe‖22

≤ − eTQe + 2δf
∣
∣
∣α−1
∣
∣
∣ ·
∥
∥
∥eTP

∥
∥
∥
2
· ‖e‖2 + 2δgδυ‖Pe‖2 · ‖e‖2 + 2δη|α|

∥
∥
∥eTP

∥
∥
∥
1

− 2r‖Pe‖1 − 2k‖Pe‖22
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≤ − eTQe +

⎛

⎝
α−2δ2

f

ε1
‖Pe‖22 + ε1‖e‖22

⎞

⎠ +

(
δ2
gδ

2
υ

ε2
‖Pe‖22 + ε2‖e‖22

)

− 2k‖Pe‖22 + 2
(|α|δη − r

)‖Pe‖1

= − eT (Q − ε1In − ε2In)e +

⎛

⎝
α−2δ2

f

ε1
+
δ2
gδ

2
v

ε2
− 2k

⎞

⎠‖Pe‖22

+ 2
(|α|δη − r

)‖Pe‖1,
(3.7)

where ε1 and ε2 are arbitrary small positive constants, In denotes a n-order identity matrix.
One can take

k =
α−2δ2

f

2ε1
+
δ2
gδ

2
v

2ε2
, r = |α|δη, (3.8)

then there has

V̇
(
e, υ̂, r̂, k̂

)
≤ −eT(Q − ε1In − ε2In)e. (3.9)

Denote Q̃ = Q − ε1In − ε2In. We can choose ε1 and ε2 small enough such that Q̃ is
positive definite. Then V̇ is seminegative definite. Whence system (3.3) is Lyapunov stable,
which implies that e ∈ L∞.

Integration (3.9),

V
(
e, υ̂, r̂, k̂

)
≤ V
(
e(0), υ̂(0), r̂(0), k̂(0)

)
− λmin

(
Q̃
)∫ t

0
eTe dτ, (3.10)

then e ∈ L2. From (3.3), we have ė ∈ L∞. By Barbalat’s lemma [23], we have limt→+∞‖e‖2 = 0,
that is, limt→+∞‖αx − x̂‖2 = 0 for any initial values x(0), x̂(0) ∈ E. Now the proof is completed.

Corollary 3.2. If parameters in system (2.1) are determined, the drive-response systems are recast as

ẋ = Ax + f(x) + η(t),

˙̂x = Ax̂ + α−1f(x̂) + u.
(3.11)

Take the control input as (3.2) and adaptive laws as (3.4) and (3.5), then system (3.11) can
reach the GPS.
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4. Numerical Simulations

In this section, the proposed approach for the GPS is illustrated by the hyperchaotic Lü system
[16] which is described by

ẋ1 = a(x2 − x1) + x4,

ẋ2 = − x1x3 + cx2,

ẋ3 = x1x2 − bx3,

ẋ4 = x1x3 + dx4.

(4.1)

It is hyperchaotic when a = 36, b = 3, c = 20, and d = 1. Here we suppose that c,
d are unknown parameters. In the numerical simulation, we take η(t) which contains the
parameter perturbation and the system noise as follows:

η(t) = [0.1(x2 − x1) sin t, 0.1 sin(2t), 0.1x3 sin(3t), sin(4t)]T . (4.2)

Then the drive system and controlled response system are described as follows:

ẋ = Ax + f(x) + g(x)υ + η(t), (4.3)

˙̂x = Ax̂ + α−1f(x̂) + g(x̂)υ̂ +De + r̂ sgn(Pe) + k̂Pe, (4.4)

where x = [x1, x2, x3, x4]
T , x̂ = [x̂1, x̂2, x̂3, x̂4]

T , υ = [c, d]T , υ̂ = [ĉ, d̂]
T
,

e = [αx1 − x̂1, αx2 − x̂2, αx3 − x̂3, αx4 − x̂4]
T ,

A =

⎡

⎢
⎢
⎣

−36 36 0 1
0 0 0 0
0 0 −3 0
0 0 0 0

⎤

⎥
⎥
⎦, f(x) =

⎡

⎢
⎢
⎣

0
−x1x3

x1x2

x1x3

⎤

⎥
⎥
⎦, g(x) =

⎡

⎢
⎢
⎣

0 0
x2 0
0 0
0 x4

⎤

⎥
⎥
⎦.

(4.5)

We can take D = diag(0, 1, 0, 1) and

P =

⎡

⎢
⎢
⎣

2 −1.5 0 0
−1.5 4 −1 0
0 −1 2 0
0 0 0 1

⎤

⎥
⎥
⎦. (4.6)

Denote

ζ1 = 2(αx1 − x̂1) − 1.5(αx2 − x̂2), ζ2 = −1.5(αx1 − x̂1) + 4(αx2 − x̂2) − (αx3 − x̂3),

ζ3 = −(αx2 − x̂2) + 2(αx3 − x̂3), ζ4 = αx4 − x̂4.
(4.7)
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Then the adaptive laws are

˙̂c = lcζ2x̂2,
˙̂d = ldζ4x̂4, (4.8)

˙̂r = lr(|ζ1| + |ζ2| + |ζ3| + |ζ4|), ˙̂k = lk
(
ζ21 + ζ22 + ζ23 + ζ24

)
. (4.9)

By Theorem, systems (4.3) and (4.4) will achieve GPS with scaling factor α (α/= 0).
Figure 1 is the numerical simulation result with the scaling factor α = −1. Figures 1(a)
and 1(b) display the comparison of the attractors of the drive-response systems in R3 and
evolution of the synchronous errors, respectively.

In the numerical simulation, all the differential equations are solved by the fourth-
order Runge-Kutta method. The initial values are x(0) = [1, 5,−5, 10]T , x̂(0) = [2, 0,−5,−1]T ,
[ĉ(0), d̂(0)] = [1, 1], r̂(0) = 2, and k̂(0) = 2. Take lc = ld = lr = lk = 1. Note that, here, the
adaptive strength lc, ld, lr , and lk can be chosen other values, which can control the speed of
convergence of the synchronous errors.

As parameters in systems (4.3) and (4.4) are known (where g is zero matrix), by
Corollary, the GPS also can be obtained with adaptive law (4.9). Figure 2 displays the
simulation result. Figures 2(a) and 2(b) display the same as Figures 1(a) and 1(b) but the
system parameters are known and α = 2. Here, in order to make the image clear, we have
translated response system states by +20 units in Figure 2(a).

From Figures 1 and 2, one can see that the synchronous errors converge to zero. That
is, the response system (4.4) quickly synchronized to drive system (4.3), the results are not
affected by the noise.

Remark 4.1. From Theorem and the numerical simulation results, we notice that the adaptive
laws are independent on δf , δg , δυ, and δη, that is to say, the GPS can be achieved even if the
Lipschitz constant and the bounds on uncertainties are unknown. Therefore the approach
proposed in our paper shows high robustness to the parameter mismatch and external
disturbance.

Remark 4.2. The matrixes D and P in the control input are independent on the variability
of the scaling factor, so one can conveniently adjust the scaling factor to any desired
scale to realize the GPS. Specially, we can obtain the completely synchronization and
antisynchronization by taking α = 1 and α = −1, respectively.

5. Conclusion

In this paper, we have proposed a novel robust adaptive scheme for achieving the GPS of
a class of chaotic (or hyperchaotic) systems. The control input and adaptive laws in the
response system is designed so as to successfully achieve the GPS. One can conveniently
adjust the scaling factor to realize the GPS in any desired scale, including completely
synchronization, antisynchronization, and general projective synchronization. The numerical
simulation shows that the GPS cannot be destroyed by the noise disturbances, that is, the
proposed GPS scheme is high robust and is of great significance for improving chaotic secure
communications capability.
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Figure 1: The GPS between systems (4.3) and (4.4) with uncertain parameters as α = −1.
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Figure 2: The GPS between systems (4.3) and (4.4)with certain parameters as α = 2.
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system,” Systems Engineering & Electronics, vol. 29, pp. 598–600, 2007.

[4] J. Cao, D. W. C. Ho, and Y. Yang, “Projective synchronization of a class of delayed chaotic systems via
impulsive control,” Physics Letters A, vol. 373, no. 35, pp. 3128–3133, 2009.

[5] P. Li and J. Cao, “Stabilisation and synchronisation of chaotic systems via hybrid control,” IET Control
Theory and Applications, vol. 1, no. 3, pp. 795–801, 2007.
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[18] J. Lü and G. Chen, “A new chaotic attractor coined,” International Journal of Bifurcation and Chaos, vol.
12, no. 3, pp. 659–661, 2002.
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