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The purpose of the present paper is to establish some new criteria for the classifications of
superlinear differential equations as being of the nonlinear limit circle type or of the nonlinear
limit point type. The criteria presented here generalize some known results in literature.

1. Introduction

In 1910, Weyl [1] published his now classic paper on eigenvalue problems for second-order
linear differential equations of the form

(
a(t)y′)′ + r(t)y = θy, θ ∈ C. (1.1)

He classified this equation to be of the limit circle type if each solution y(t) is square integrable
(belongs to L2), that is,

∫∞

0
y2(t)dt < ∞, (1.2)

and to be of the limit point type if at least one solution y(t) does not belong to L2, that is,

∫∞

0
y2(t)dt = ∞. (1.3)
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He showed that the linear equation (1.1) always has at least one square integrable solution
if Im θ /= 0. Thus, for second-order linear equations with Im θ /= 0, the problem reduces to
whether (1.1) has one (limit point type) or two (limit circle type) square integrable solutions.
This is known as the Weyl Alternative. Weyl also proved that if (1.1) is of the limit circle type
for some θ0 ∈ C, then it is of the limit circle type for all θ ∈ C. In particular, this is true for
θ = 0; that is, if we can show that

(
a(t)y′)′ + r(t)y = 0 (1.4)

is of limit circle type, then (1.1) is of the limit circle type for all values of θ. There is
considerable interest in this problem over the years. The classification is important in spectral
theory for linear equation (1.1) since it characterizes the number boundary conditions for
differential operator generated by (1.1) being a self-adjoint operator. The analogous problem
for nonlinear equations is relatively new and not as extensively studied as the linear cases. For
a survey of known results on the linear and nonlinear problems as well as their relationships
to other properties of solutions such as boundedness, oscillation, and convergence to zero,
we refer the readers to [2–9] and the recent monograph [10]. In this paper, we will discuss
the equation with a damping term:

(
a(t)y′)′ + p(t)y′ + r(t)y2k−1 = 0, (1.5)

where a, r : R+ �→ R and p : R+ �→ R+ are continuous, a′, r ′ ∈ ACloc(R+), a′′, r ′′ ∈ L2
loc(R+),

a(t) > 0, r(t) > 0, and k > 0 is a positive integer. When p(t) ≡ 0, then (1.5) turns into

(
a(t)y′)′ + r(t)y2k−1 = 0, (1.6)

which is widely researched by many authors (see [10] and references cited therein).

Definition 1.1 (see [2]). A nontrivial solution y(t) of (1.5) is said to be of the nonlinear limit
circle type if

∫∞

0
y2k(t)dt < ∞, (1.7)

and it is of the nonlinear limit point type otherwise, that is,

∫∞

0
y2k(t)dt = ∞. (1.8)

Equation (1.5) is said to be of the nonlinear limit circle type if all its solutions satisfy (1.7),
and it is said to be of the nonlinear limit point type if there is at least one nontrivial solution
satisfying (1.8).

In this paper, we will give necessary and sufficient conditions to guarantee the
nonlinear limit circle type or nonlinear point type for (1.5).



Journal of Applied Mathematics 3

2. Main Results

To simplify notations, let α = 1/2(k+1), and β = (2k+1)/2(k+1). Wemake the transformation

s =
∫ t

0

[
rα(u)
aβ(u)

]
du, x(s) = y(t). (2.1)

Then (1.5) becomes

ẍ +A(t)ẋ + B(t)x2k−1 = 0, (2.2)

where A(t) = p(t)/aα(t)rα(t) + α((a(t)r(t))′/aα(t)rα+1(t)), and B(t) = (a(t)r(t))β−α.
Moreover, (2.2) can be rewritten as the system

ẋ = z −A(t)x, ż = Ȧ(t)x − B(t)x2k−1. (2.3)

We are now ready to prove the first result for system (2.3).

Theorem 2.1. Assume that
∫∞

0

A′(u)
B1/2(u)

du < ∞, (2.4)

∫∞

0
A′(u)B1/2(u)du < ∞, (2.5)

∫∞

0

1
B(u)

du < ∞. (2.6)

Then (1.5) is of the nonlinear limit circle type; that is, any solution y(t) of (1.5) satisfies

∫∞

0
y2k(t)dt < ∞. (2.7)

Proof. Define

V (x, z, s) =
z2

2
+ B(t)

x2k

2k
+
∫ t

0
p(ξ)

rβ−α(ξ)
a2α(ξ)

y2k(ξ)dξ. (2.8)

Then we have

V̇ = zż +

[

B(t)
x2k

2k

]

+ p(t)[a(t)r(t)]β−2αy2k(t)

= z
[
Ȧ(t)x − B(t)x2k−1

]
+ B(t)x2k−1ẋ + Ḃ(t)

x2k

2k

+ p(t)[a(t)r(t)]β−2αy2k(t)
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= Ȧ(t)xz − B(t)x2k−1z + B(t)x2k−1[z −A(t)x]

+ Ḃ(t)
x2k

2k
+ p(t)[a(t)r(t)]β−2αy2k(t)

= Ȧ(t)xz −A(t)B(t)x2k + Ḃ(t)
x2k

2k
+ p(t)[a(t)r(t)]β−2αy2k(t)

= Ȧ(t)xz +
[
Ḃ(t)
2k

−A(t)B(t)
]
x2k + p(t)[a(t)r(t)]β−2αy2k(t)

= Ȧ(t)xz − p(t)[a(t)r(t)]β−2αx2k(s) + p(t)[a(t)r(t)]β−2αy2k(t)

= Ȧ(t)xz.

(2.9)

Since |xz| = |B1/2(t)xz/B1/2(t)| ≤ (B(t)x2/2 + z2/2)/B1/2(t) ≤ (B(t)[x2/2k + K1] +
z2/2)/B1/2(t) ≤ V (s)/B1/2(t) +K1B

1/2(t) for some constant K1 ≥ 0, we have

V̇ (s) ≤
∣∣Ȧ(t)

∣∣V (s)
B1/2(t)

+K1
∣∣Ȧ(t)

∣∣B1/2(t). (2.10)

Since

Ȧ(t) = A′(t)
dt

ds
= A′(t)

aβ(t)
rα(t)

, (2.11)

letting τ(s) denote the inverse function of s(t), we obtain

∫ s

0

∣∣Ȧ(τ(v))
∣∣

B1/2(τ(v))
dv =

∫ t

0

A′(u)
B1/2(u)

du. (2.12)

Moreover,

∫ s

0

∣∣Ȧ(τ(v))
∣∣B1/2(τ(v))dv =

∫ t

0
A′(u)B1/2(u)du. (2.13)

Integrating (2.10) from 0 to s, we obtain

V (s) ≤ V (0) +
∫s

0

∣∣Ȧ(τ(v))
∣∣

B1/2(τ(v))
V (v)dv +K1

∫ s

0

∣∣Ȧ(τ(v))
∣∣B1/2(τ(v))dv. (2.14)

Condition (2.5) implies that the second integral on the right-hand side of (2.10) is convergent.
By Gronwall’s inequality, we have

V (s) ≤ M1 exp
∫s

0

∣∣Ȧ(τ(v))
∣∣

B1/2(τ(v))
dv, (2.15)
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for some constantM1 > 0. By condition (2.4), the aforementioned integral is convergent, and
we have that V (s) is bounded, say, V (s) ≤ M2 for some M2 > 0. Therefore,

B(t)y2k(t) = B(t)x2k(s) ≤ 2kM2, (2.16)

from which it follows that

∫∞

0
y2k(u)du ≤ 2kM2

∫∞

0

1
B(u)

du < ∞ (2.17)

by condition (2.6), so all solutions of (1.5) are of the nonlinear limit circle type, and this
completes the proof of Theorem 2.1.

If a(t) ≡ 1 in (1.5), then it turns into

y′′ + p(t)y′ + r(t)y2k−1 = 0, (2.18)

and we have the following corollary.

Corollary 2.2. Assume that

∫∞

0

∣∣∣
[
p(u)/rα(u) + αr ′(u)/r1+α(u)

]′∣∣∣

r(β−α)/2(u)
du < ∞,

∫∞

0

∣∣∣∣∣

[
p(u)
rα(u)

+
αr ′(u)
r1+α(u)

]′∣∣∣∣∣
r(β−α)/2(u)du < ∞,

∫∞

0

1
rβ−α(u)

du < ∞.

(2.19)

Then (2.18) is of the nonlinear limit circle type.

The aforementioned theorem and corollary offer sufficient conditions to guarantee
(1.5) and (2.18) to be of the nonlinear limit circle type, respectively. The next theorem gives
necessary conditions to guarantee that (1.5) is of the nonlinear limit circle type.

Lemma 2.3 (see [10]). Assume that there existsN1 > 0 such that

∣∣∣∣∣
[a(t)r(t)]′

a1/2(t)r3/2(t)

∣∣∣∣∣
≤ N1, (2.20)

∫∞

0

[
(a(t)r(t))′

]2

a(t)r3(t)
dt < ∞. (2.21)
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If y(t) is a nonlinear limit circle type solution of (1.5), then

∫∞

0

[
(a(t)r(t))′

]2
y2(t)

a(t)r3(t)
dt < ∞. (2.22)

Proof. We have

∫∞

0

[
(a(t)r(t))′

]2
y2(t)

a(t)r3(t)
dt ≤ N2

1

∫∞

0
y2k(t)dt +

∫∞

0

[
(a(t)r(t))′

]2

a(t)r3(t)
dt < ∞ (2.23)

by (1.7) and (2.21).

Theorem 2.4. Suppose that there exist constantsN2 > 0 and M3 > 0 such that

∣∣∣∣∣
a1/2(t)r ′(t)
r3/2(t)

∣∣∣∣∣
≤ N2, (2.24)

∫∞

0

a(u)[r ′(u)]2

r3(u)
du < ∞, (2.25)

p2(t)
a(t)r(t)

≤ M3, (2.26)

∫∞

0

p2(t)
a(t)r(t)

dt < ∞. (2.27)

If y(t) is a nonlinear limit circle type solution of (1.5), then

∫∞

0

a(u)
[
y′(u)

]2

r(u)
< ∞. (2.28)

Proof. If we multiply (1.5) by y(t)/r(t), use the identity

(
a(t)y′)′ =

(
a(t)y′y

)′ − a(t)
[
y′]2, (2.29)

and to integrate by parts, we obtain

a(t)y′(t)y(t)
r(t)

− a(t1)y′(t1)y(t1)
r(t1)

+
∫ t

t1

a(u)y′(u)y(u)r ′(u)
r2(u)

du

+
∫ t

t1

y2k(u)du +
∫ t

t1

p(u)y′(u)y(u)
r(u)

du −
∫ t

t1

a(u)
[
y′(u)

]2

r(u)
du = 0

(2.30)
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for any t1 ≥ 0. Now conditions (2.26), (2.27), and (1.7) imply

∫∞

t1

p2(u)
[
y2k(u) + 1

]

a(u)r(u)
du ≤ M3

∫∞

t1

y2k(u)du +
∫∞

t1

p2(u)
a(u)r(u)

du < ∞. (2.31)

Therefore, there exists a constant k0 > 0, subject to

∫ t

t1

p2(u)
[
y2k(u) + 1

]

a(u)r(u)
du ≤ M3

∫ t

t1

y2k(u)du +
∫ t

t1

p2(u)
a(u)r(u)

du < k2
0 . (2.32)

Applying Schwartz inequality, we obtain

∫ t

t1

p(u)y′(u)y(u)
r(u)

du ≤
(∫ t

t1

a(u)
[
y′(u)

]2

r(u)
du

)1/2(∫ t

t1

p2(u)
[
y2k(u) + 1

]

a(u)r(u)
du

)1/2

≤ k0

(∫ t

t1

a(u)
[
y′(u)

]2

r(u)
du

)1/2

.

(2.33)

By the Schwartz inequality,

∫ t

t1

a(u)y′(u)y(u)r ′(u)
r2(u)

du ≤
[∫ t

t1

a(u)
[
y′(u)

]2

r(u)
du

]1/2[∫ t

t1

a(u)y2(u)[r ′(u)]2

r3(u)
du

]1/2

. (2.34)

Now (2.24) implies

a(t)y2(t)[r ′(t)]2

r3(t)
≤ a(t)[r ′(t)]2

r3(t)

[
y2k(t) + 1

]
≤ N2

2y
2k(t) +

a(t)[r ′(t)]2

r3(t)
. (2.35)

So integrating the previous inequality and applying (2.25) and (1.7), we obtain

∫∞

t1

a(u)y2(u)[r ′(u)]2

r3(u)
du ≤ K2

2 < ∞ (2.36)

for some constant K2 > 0.
If y(t) is not eventually monotonic, let {tj} → ∞ be an increasing sequence of zeros of

y′(t). Then from (2.30), we have

(k0 +K2)H1/2(tj
)
+K3 ≥ H

(
tj
)
, (2.37)

where

H(t) =
∫ t

t1

a(u)
[
y′(u)

]2

r(u)
du, (2.38)
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andK3 > 0 is a constant. It follows thatH(tj) ≤ K4 < ∞ for all j and for some constantK4 > 0,
so (2.28) holds.

If y(t) is eventually monotonic, then y(t)y′(t) ≤ 0 for all t ≥ t1 for sufficiently large
t1 ≥ 0 since otherwise (1.7)would be violated. Using this fact in (2.30), we can repeat the type
of argument used previously to obtain that (2.28) holds.

The following theorem gives sufficient conditions to ensure that (1.5) is of the
nonlinear limit point type.

Theorem 2.5. Suppose that conditions (2.4), (2.5), and (2.20)–(2.27) hold. If

∫∞

0

1
B(u)

du = ∞, (2.39)

then (1.5) is of the nonlinear limit point type.

Proof. As in the proof of Theorem 2.1, define

V (x, z, s) =
z2

2
+ B(t)

x2k

2k
(2.40)

and differentiate it to obtain

V̇ ≥ −
∣∣Ȧ(t)

∣∣V (s)
B1/2(t)

−K1
∣∣Ȧ(t)

∣∣B1/2(t), (2.41)

and so we then have

V̇ +

∣∣Ȧ(t)
∣∣V (s)

B1/2(t)
≥ −K1

∣∣Ȧ(t)
∣∣B1/2(t). (2.42)

If we define functionsH and h : R+ �→ R byH(t) = |Ȧ(t)|/B1/2(t), and h(t) = K1|Ȧ(t)|B1/2(t),
then we have

d

ds

(
exp

∫s

0
H(τ(ξ))dξ

)
≥ −h(t) exp

∫ s

0
H(τ(ξ))dξ. (2.43)

Now condition (2.4) guarantees that

exp
∫∞

0
H(τ(ξ))dξ ≤ K5 < ∞, (2.44)

for some constant K5 > 0, while condition (2.5) implies that

K5

∫∞

0
h(τ(ξ))dξ ≤ K6 < ∞, (2.45)
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for someK6 > 0. Let y(t) be any solution of (1.5) such that V (x(0), z(0), 0) > K6+1. Integrating
(2.43), we get

V (s) exp
∫ s

0
H(τ(ξ))dξ ≥ V (0) −K6 > 1, (2.46)

and so

V (s) ≥ 1
K5

(2.47)

for s ≥ 0. Dividing both sides of this last inequality by B(t) and rewriting the left-hand side
in terms of t, we have

a(t)
[
y′(t)

]2

2r(t)
+
y2k(t)
2k

+

[
p(t)
r(t)

+ α
(a(t)r(t))′

r2(t)

]

y(t)y′(t)

+

[
p2(t)

2a(t)r(t)
+ α

p(t)(a(t)r(t))′

a(t)r2(t)
+ α2

[
(a(t)r(t))′

]2

2a(t)r3(t)

]

y2(t) ≥ 1

K5[a(t)r(t)]β−α
.

(2.48)

If y(t) is a limit circle type solution of (1.5), then Theorem 2.4 implies

∫∞

0

a(t)
[
y′(t)

]2

r(t)
dt < ∞, (2.49)

and Lemma 2.3 implies

∫∞

0

[
(a(t)r(t))′

]2
y2(t)

a(t)r3(t)
dt < ∞. (2.50)

By the Schwartz inequality,

∣∣∣∣∣

∫∞

0

(a(t)r(t))′

r2(t)
y(t)y′(t)dt

∣∣∣∣∣
≤
[∫∞

0

[
(a(t)r(t))′

]2
y2(t)

a(t)r3(t)
dt

]1/2

×
[∫∞

0

a(t)
[
y′(t)

]2

r(t)
dt

]1/2

< ∞.

(2.51)

From condition (2.27), using Schwartz inequality, we get

∫∞

0

p(t)(a(t)r(t))′

a(t)r2(t)
dt ≤

[∫∞

0

[
(a(t)r(t))′

]2
y2(t)

a(t)r3(t)
dt

]1/2

×
[∫∞

0

p2(t)
a(t)r(t)

dt

]1/2

< ∞. (2.52)
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So that if y(t) is a limit circle solution of (1.5), from conditions (2.26) and (2.27), we obtain

∫∞

0

p2(t)y2(t)
2a(t)r(t)

dt <

∫∞

0

p2(t)
[
y2k(t) + 1

]

2a(t)r(t)
dt < ∞,

∫∞

0

αp(t)(a(t)r(t))′y2(t)
a(t)r2(t)

dt ≤ α

(∫∞

0

p2(t)y2(t)
a(t)r(t)

dt

)1/2(∫∞

0

[
(a(t)r(t))′

]2
y2(t)

a(t)r3(t)
dt

)1/2

< ∞.

(2.53)

Furthermore,

∫∞

0

p(t)y′(t)y(t)
r(t)

dt ≤
(∫∞

0

a(t)
[
y′(t)

]2

r(t)
dt

)1/2(∫∞

0

p2(t)
[
y2(t)

]

a(t)r(t)
dt

)1/2

< ∞. (2.54)

Consequently, integrating both sides of (2.48), we see that the integrand of the left side of
(2.48) is bounded, but the integrand of the right side of (2.48) tends to infinity according to
condition (2.39). This leads to a contradiction, so y(t) is a limit point type solution of (1.5),
and (1.5) is of the nonlinear limit point type.

The last theorem and corollary give the sufficient and necessary conditions to
guarantee (1.5) and (2.18) to be of the nonlinear limit circle type, respectively.

Theorem 2.6. Assume that conditions (2.4), (2.5), (2.20), (2.21), (2.24), (2.25), (2.26), and (2.27)
hold. Then (1.5) is of the nonlinear limit circle type if and only if

∫∞

0

1

(a(t)r(t))k/(k+1)
dt < ∞. (2.55)

When one specializes this theorem to (2.18), that is, a(t) ≡ 1 in (1.5), one obtains the
following corollary.

Corollary 2.7. Assume that

∫∞

0

[
p(t)/rα(t) + αr ′(t)/rα+1(t)

]′

r(β−α)/2(t)
dt < ∞,

∫∞

0

[
p(t)
rα(t)

+
αr ′(t)
rα+1(t)

]′
r(β−α)/2(t)dt < ∞,

|r ′(t)|
r3/2(t)

≤ N1,

∫∞

0

[r ′(t)]2

r3(t)
dt < ∞,

p2(t)
r(t)

≤ M3,

∫∞

0

p2(t)
r(t)

dt < ∞.

(2.56)

Then (2.18) is of the nonlinear limit circle type if and only if

∫∞

0

1

r(t)k/(k+1)
dt < ∞. (2.57)
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