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We investigate a class of multigroup dengue epidemic model. We show that the global dynamics
are determined by the basic reproductive number Ry. We present that when Ry < 1, there is a
unique disease-free equilibrium which is globally asymptotically stable; when Ry > 1, there exists
a unique endemic equilibrium and it is globally asymptotically stable proved by a graph-theoretic
approach to the method of global Lyapunov function.

1. Introduction

To understand and control the spread of infectious disease in population, mathematical epi-
demic models have been paid more attention. One essential assumption in most classical epi-
demic models is that the individuals are homogeneously mixed. However, many infectious
diseases, such as measles, mumps, and gonorrhea, occur in heterogeneous host population, so
multigroup epidemic models seem more reasonable. One of the earliest multigroup models
is analysed by Lajmanovich and Yorke [1] for gonorrhea in a nonhomogeneous population.
However, because of the large scale and complexity of multigroup models, progresses
in the mathematical analysis of their global dynamics have been slow, particularly, the
question of uniqueness and global stability of the endemic equilibrium. Recently, a graph-
theoretic approach to the method of global Lyapunov functions in [2, 3] was proposed to
resolve the open problem on the uniqueness and global stability of the endemic equilibrium.
Subsequently, a series of good results were produced about multigroup epidemic models in
[4-8].

In this paper, we study a multigroup dengue disease transmission model by the meth-
od in [2, 3]. In the model, the population is divided into n groups. Each group is divided
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into five disjoint classes: susceptible individuals, infective individuals, removed individuals,
susceptible mosquitoes, and infective mosquitoes whose numbers of individuals at time ¢ are
denoted by Sy, (t), In,(t), Ru,(t), Sv,(t), Iv,(t), respectively. The model to be studied takes the
following form:

n

S,H,» = AHi - Z HijSHiIVj _luHiSHi/
j=1

n
I}{i = ZﬁHijSHiIVj - (l’lHi + YHi)IHi’

j=1

RII—L = YH{IHi - I’lHiRHil (1’1)

n
Sy, = Av, = D v, Svln, — pv,Sv,,
=

n
Iy, = X Pv, Sviln, - pvlv,
j=1

where i = 1,2,...,n. Here Ay, and Ay, represent the recruitment rate of the humans and
the mosquitoes in the ith group, fp, represents the contact rate between susceptible humans
Sh, and infectious mosquitoes Iy, v, is the contact rate between infected people Iy, and
susceptible mosquitoes Sy, un, and py, represent the death rate of the humans and the
mosquitoes in the ith group, and yu, represents the recovery rate of the humans in the ith
group. All parameter values are assumed to be nonnegative and Ay, Av,, ur,, pv, > 0.

Dengue fever (DF) is an acute mosquito-transmitted disease, with a recorded
prevalence in 101 countries [9-11]. An estimated 50-100 million people per year are infected,
with approximately 25,000 deaths annually [12]. Thus, the study of DF is perceived as
signification and receives much attention. When n = 1, the model (1.1) had been studied
extensively. For example, the global stability of the equilibria was proved with the results of
the theory of competitive systems and stability of periodic orbits in [13]; in [14], the global
stability of the equilibria was proved with Lyapunov functions under some conditions.

The organization of this paper is as follows. In Section 2, we quote some results from
graph theory which will be used in the proof of our main results. In Section 3, we present a
global analysis of the system (1.1). At Section 4, we give a further discussion.

2. Preliminaries
In this section, we will give some previous results which will be useful for our main results.

Definition 2.1 (see [15]). Let U = (w;j),,- We say that U > 0 (U is nonnegative), if all its entries
u;; are real and nonnegative.

IfUu = (”if)nxn and W = (wi]-)nxn are both nonnegative, we write U > W if u;; > w;; for
alliand j,and U > W if u;; > wjjand U #W.
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Definition 2.2 (see [15]). A matrix U = (uij),,.,, 18 said to be reducible if either

(i) nm=1land U =0; or

(ii) n > 2, there is a permutation matrix P,

u, o
pUpt = ' , (2.1)
U, U,

where Uy and U3 are square matrices. Otherwise, U is irreducible.
Let I'(U) denote the directed graph of (u;j),,,. We have the following proposition.
Proposition 2.3 (see [16]). For matrix U, one has

(i) If U is nonnegative, then the spectral radius p(U) of U is an eigenvalue, and U has a
nonnegative eigenvector corresponding to p(U).

(ii) If U is nonnegative and irreducible, then p(U) is a simple eigenvalue, and U has a positive
eigenvector x corresponding to p(U).

(iii) If 0 < W < U, then p(W) < p(U). Moreover, if 0 < W < U and W + U is irreducible,
then p(W) < p(U).

(iv) IfU is nonnegative and irreducible, and W is diagonal and positive (namely, all of its entries
are positive), then UW is irreducible.

(v) Matrix U is irreducible if and only if I' (L) is strongly connected.

3. Mathematical Analysis

From the first and the fourth equation in (1.1), we know

Amp, Ay,
limsup Sg, < 2 limsup Sy, < = (3.1)

t—co i t—00 i
For each i, adding the five equations in (1.1), we obtain

(Sh, + I, + Ry, + Sy, + Iv)' = Ap, + Av, = p, (S, + I + R) = v (Sv, + 1v,) 32)

< AH!. +AVi —//l;‘(SHi + IH,~ + RHi + SV,' + IV:)'

where p! = min{ug,, pv; }. Thus,

Ay + Ay,
limsup (S, + Iy, + Ry, + Sy, + Iy) < — 2% (3.3)

*
t—c0 ‘ui
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Before going into any detail, we simplify the system. For each i-group, since the variable Ry,

dose not appear in the first two and the last two equations of (1.1), it suffices to consider the
following reduced system:

n
S,Hi = AHi - ZﬂHijSHiIVj - ‘uHiSHi’
=

=

Iy = ZﬂH,,SHIV (um, + 1) In,,
j=1

(3.4)
Sy, = Av, = > P, Svil; — v Sv,,
=1
I, = > v, Svlu, - pvlv,
=1
wherei=1,2,...,n, in the feasible region
Ap A
{(SI) €R4n|SH<— Sv< Vi SHi+IHi+SVi+IVi
H; #Vi
(3.5)

Ap + Ay,
SMI i:1/2/~-'rn 7
Hi

where S = (SH,Sv), 1= (IH,Iv), SH = (SHl,. . .,SHn), SV = (SVl,. . .,Svn), IH = (IH1/- . .,IHn),
and Iv = (I, ..., Iv,). It can be verified that D is positively invariant with respect to system
(3.4). Behaviors of Ry, can then be determined from the third equation in (1.1). Our results
in this paper will be stated for system (3.4) in D and can be translated straightforwardly to

system (1.1). Let [O) denote the interior of D.
An equilibrium (S, I) of (3.4) satisfies

AHi - ZﬁHx’jSHiIVj - /'lHiSHi =0,
=1
Z:BHijSHiIVj - (/’lHi + YHi)IHi =0,
=1
(3.6)
Zﬁ SviIm; — pv, Sy, =

n

DBy Sviln, — py Iy, =0,
j=1

wherei=1,2,...,n. Itis easy to see that the disease-free equ1hbr1um denoted by E° = (S, I?)
exists for all posmve parameter values, where S, 1 = An/p, Sy = Av,/py, and I 0 =1 Oi =0,
i=12,...,n
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Denote

0 Mpgu(S)
M(S)—<MV(S) 0 > (3.7)

where MH(S) = (ﬂHijSHi/#Hi + YHi)an/ MV(S) = (ﬁVifSVi/‘qu)nxn' We also denote
Mp(S%) = My, and My(S)) = My,

0 My,
Mo = . (3.8)
My, 0

We know that forall S € D, S < S° so for all S € D, M(S) < My. We define the basic
reproduction number Ry as the spectral radius of My; thatis Ry = p(My). We set

ﬂHll ﬂHZl ﬂHnl
ﬁHu .Bsz ﬂan

By = , (3.9)
ﬁHln ﬂHZn T ﬂHnn
ﬂVH ﬁvﬂ e ﬁan
ﬁvlz ﬁvzz e ﬁVnZ 0 By
By = . Bu-= . (3.10)
: oo By 0

pvln ﬁVZn e ﬁVnn

Theorem 3.1. Assume that By, By, and By are irreducible.

(1) If Ry < 1, then the disease-free equilibrium E° of system (3.4) is globally asymptotically
stable in D.

(2) If Ry > 1, then E° is unstable and system (3.4) is uniformly persistent in D.

Proof. Since By is irreducible and nonnegative, we know that M(S) and M, are irreducible
and nonnegative. Therefore, by Proposition 2.3(ii), there exists a left eigenvector w =
(wh,wy) > 0 of My corresponding to p(Mp), where wy = (wH,, WH,,--.,WH,), Wy =
(wv,, wy,, ..., wy,); thatis, wp(My) = wMy. Define

i WH, wy.
L= Z<—H’ Iy, + #—V‘Ix/i)- (3.11)
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Denote the transpose of I as I”. Differentiating L along the solution of system (3.4), we obtain

! - w i L
L' = Z{—H [ZﬁHifSHiIVj — (‘qu. + YHi)IHi]

o | HH T YE j=1

wy [ &
+— <Zﬁvﬁ5ViIHj - #wh) }
Hv; j=1

n n ,ﬁH,-]- SH, Iv] n .BVij SV,IH]-
= wH, —— Iy, ) +wy, Iy

w(M(S)IT - 1T>

< w(MOIT - IT)
= (p(Mp) - wI”

<0.

Therefore, we obtain
(1)if Ro<1,L'=0&1=0;
(ii)if Ro=1,L' =0 S=S%0r I =0.

Thus, we know that the singleton {E°} is the only compact invariant subset of {L' = 0}. By
LaSalle’s Invariance Principle [17], E? is globally asymptotically stable in D, if Ry < 1.
If Ry > 1and I > 0, it is easy to see that

w<MOIT - IT) = (p(Mp) - 1)ewI” > 0. (3.13)

Then, according to continuity, there exists a neighborhood B (E°) of E°, B(E°) C D, such that
for all (S,I) € B(E)

L= w(M(S)IT - IT) > 0. (3.14)

This implies that E° is unstable. Using a uniform persistence result from [18] and a similar
argument as in the proof of Proposition 3.3 of [19], we know that, when R, > 1, the instability
of EY implies the uniform persistence of (3.4). The proof is complete. O

Uniform persistence of (3.4), together with uniform boundedness of solutions in D,
implies the existence of an equilibrium of system (3.4) in D [20, 21].

Corollary 3.2. Assume By, By, and By are irreducible. If Ry > 1, then (3.4) has at least one endemic
equilibrium.
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Denote the endemic equilibrium by E* = (S*,1*), where S} i,S;‘,{,I;‘_Ii,I"",i >0, i=
1,2,...,n. One has the following result on the endemic equilibrium E*.

Theorem 3.3. Assume that By, By, and By are irreducible. If Ry > 1, then the endemic equilibrium

E* of system (3.4) is globally asymptotically stable in D.

Proof. The uniqueness of endemic equilibrium is obvious in D, if we prove that the endemic
equilibrium E* is globally stable when Ry > 1. We denote ﬁHij = fu, S} iI(‘,]_ "BV,-,- =By, S’{,iI;‘{/_

/ i BVljBHlk

kj#1
n

N Z 'EVQBsz

k72

Wl
I

\_ZBVMEHIW

k#n

It is easy to see that

]
I

(3 BuBu

kj#1

_ZBVZlﬁHkl o

k#1

> Py, Pr

k,j#2

IV

k#n

0

0 zn: BVZ]'BHZIC o

k,j#2

\ 0 0

0 X Pubu )

kj#n

T Z 'BVnzBsz

Enlﬁm,,/

k#n

_iﬁvnlﬁHkl\

k#1

k#2

Z BanBan /

kj#n

0 Bvﬂ
'6V12 0

ﬂVln ﬂVZn o

(3.15)
(3.16)
BVm
’ 'EVnz
0

Since By is irreducible and nonnegative, we get Zz# i BHk/‘ #0,7 =1,2,...,n. Together with

By being irreducible and nonnegative, by Proposition 2.3(iv), we know that B is irreducible.
Let C;; denote the cofactor of the (i, j) entry of B. According to Lemma 2.1 in [2], we have
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that the equation Bv = 0has a positive solution v = (vy,vy,...,v,), where v; = C;; > 0 for
i=1,2,...,n. Define a Lyapunov function as follows:

V=Y [iﬁv,-k (8w, = Sty In Sy, + Iy, — I, In I, )
o (3.17)
+2 B, (Sv = Sy, In Sy, + Iy, - I, In IV1.>].
k=1

Together with (3.6), we get the derivative of V along the solution of system (3.4)

i

n no_ S* _ n
V' = Zvi{z,ﬁvﬁ( [AHi _#HiSHi - S_ﬁl <AH1 - ZﬂHijSHiIVj - ‘uHiSHi>

i=1 k=1 i j=1
i j=1

I3, L
_(/"Hi + YHi)IHi - I_IP_IL <ZﬁHijSHiIVj - (#Hi + YH:') IHi>]

k=1 i =1

r [«
—pv Ly, = I, <Zl:ﬂwj5w1Hj - #Vifv,)] }
1 ]:

- |5 Su, Sh, - Sy, Sy,
= : S (222 - Si(2-=2-—~=
i,%v [ﬁvik/in H< Sy, Sm, + Bri, viSy, Sy, Sy,

no_ S*v n
+ > P [Aw = v Sy, - % <Aw - >, Sviln, - #w5w>

i

ik=1 ij=1

- = = S & Lo Iy, Iy & I &
+ 2 0By \ 22 P, — 5 D2Pu, + 2P, — T 2P, — 7 2PH,SHly,
‘ i Sy 4 J : i1 I;, “ U Iy
i=1 =1 j=1 v, ‘H =

n _ no_ S;‘/in_ no_ IH]- IV,-n_ I;‘/ln
szlviﬁHik zzlﬁvij - gzp"u + Zlﬂvug - ITZﬂVz] - I_V_ZﬁViJ'SViIHJ' :
Lk= = = i

i j=1 Vi j=1 i j=1
(3.18)

+

According to (x1/x2) + (x2/x1) > 2 for each x1,x, > 0, with equality holding if and only if
x1 = x, we have

, Sk, Sh,

SV, Sv
s (2-2%-2Y%) <o
v Vf< Sv s, )

i

(3.19)
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wherei=1,2,...,n and equalities hold, respectively, if and only if

SHi=S;Ii’ S\/i=5>{/i, i=1,2,...,71

Hence,

V'< Z Uzﬁvk <ZZﬂH,, Sh ZﬁHU ZﬂHll Ii/j i Ii

ik=1 1]1 Hlj_

ik=1 Vij=1

no_ no_ I )
= Z'Ul [Zﬂvzk <ZﬂH” I* > + kZﬂH,-k <Zﬂ\/m 1’*]
i=1 ,; =1 =1 j=1

L S*H S* I*iSHiIVj I‘*}iSViIHj
+ X bl (45, 5, TnS, L, IvSyly,

We first show K7 =0 forall (S5,1) € lo) It follows from Bo = 0 that

2= Sl

k,j=1

i=1,2,...,n This implies that

n T n o n
szZﬂv,k ZﬁH,, I =2 %Z ZvlﬂvkﬂH
i=1 k=1 j=1 j=1"Vj k=1 i=1

_levfzﬂ‘/]k

i k=1

Thus,

ZUzZﬂ\@kZﬂHU I* ;UlZﬂHk Ir Zﬂv,]

i=1 k=1 Vi j=1

Similarly, we produce

n

guz_]ﬁm Zﬁv,, 7 - 20 kZﬁvk

*
H; ol Iy,

Therefore, Ky =0 for all (S,1) € lo)

n
‘>'p P, = 0.
j=1

Zﬁv,,

1]_

(3.20)

n
S Sl
j=1

+Zvi:BH,-k< Zﬁv,, Sy Zﬁw, Zﬂwﬁj Zﬁv,, T ZﬁVl}SV,IH]>

)|

(3.22)

(3.23)

(3.24)

(3.25)
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I'(B) has vertices {1,2,...,n} with a directed arc (i, j) from i to j if and only if
Sk j ﬂv,»]- ﬂHk]_ #0. Since B is irreducible, by a similar argument in [2], we obtain K, < 0 for

all (5,1) € IOD Furthermore, we produce that
V' <O. (3.26)
If (3.20) holds, we have

Ko=0& Iy =nly, Iy=nl, i=12,...n, (3.27)

where 7 is arbitrary positive numbers.
According to (3.20) and (3.27), we know that V' = 0 & Sy, = S}, Sy, = S, In, =
g, Iv,=nly,i=1,2,...,n Substituting (3.20) and (3.27) into system (3.4), we obtain

0=Apn - ﬂZﬂHijS*HiI;/f - .uHiS* W
j=1
(3.28)

0= Ay, - 1) pvSy I - pvSy,
=1

Since the right-hand side of (3.28) is strictly decreasing in 7, by (3.6), we get that (3.28)
holds if and only if 7 = 1, namely, at E*. By LaSalle’s Invariance Principle, E* is globally

asymptotically stable in D. The proof is complete. O

From the process of proof of Theorem 3.3 and the definition of matrix B, it is easy to
get a corollary as follows.

Corollary 3.4. Assume that By and By are irreducible and Y} 4 ﬁij #0 (or By, By are irreducible
and ZZ;e,‘ﬂij #0),j =1,2,...,n. If Ry > 1, then the endemic equilibrium E* of system (3.4) is

globally asymptotically stable in D.

4. Discussion

Taking the basic reproduction number Ry as a sharp threshold parameter, we establish the
global dynamics of system (3.4). Our result implies that, if Ry < 1, then the dengue disease
always dies out in all groups; if Ry > 1, then the dengue disease always persists at the unique
endemic equilibrium level in all groups, independent of the initial condition.

Biologically, our assumptions in Theorem 3.3 and Corollary 3.4 mean that mosquitoes
in Iy, can infect ones in individuals Sy, directly or indirectly; individuals in I H; can infect
ones in mosquitoes Sy, directly or indirectly, and individuals in I, can infect ones in Sy, by
mosquitoes indirectly, respectively.
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