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Hydromagnetic flow and mass transfer of a viscous incompressible fluid over a microcantilever
sensor surface are studied in the presence of slip flow. In addition, chemical reaction at the
sensor surface is taken into account. The governing equations for the flow are reduced to a
local nonsimilarity form. Resulting equations are solved numerically for various values of flow
parameters. Effects of physical quantities on the velocity and concentration profiles are discussed
in detail.

1. Introduction

Diagnosis of small molecules is extremely important in biomedical and environmental
applications. Recent advances in micro- and nanofabrication techniques have boosted
developments of novel sensors for this purpose. In particular, microcantilever-based sensors
(Mcs) are distinguished from the others because of their high sensitivity, lower cost, simple
procedure, quick response, and real-time sensing characteristics [1, 2]. Microcantilever-based
sensors are simple mechanical devices. They are anchored from one end to a fixed support
and have various transducer mechanisms such as atomic force microscopy (AFM), mass,
temperature, electromagnetic field, surface stress, and medium viscoelasticity [3–10].

Usually, only one surface of the Mcs is coated with a specific receptor, which reacts
with the analytes in the solution. As a result of the reaction, adhesion of analytes to surface
leads to deflection at the free tip of the Mcs, which can be detected with optical or electrical
methods. This motion gives useful information for the diagnosis of biological and chemical
agents, drug discovery, and monitoring of complex diseases [2, 11–13].
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Microcantilever-based sensors are often mounted inside a fluidic cell to provide
faster detection of target analytes and to prevent possible contamination of samples
during the analysis [14–16]. However, sensing and detection performance of the Mcs are
significantly affected by the surrounding flow conditions. Khaled and Vafai [17] considered
hydromagnetic-squeezed flow and heat transfer over a sensor surface and found that both
local wall shear stress and local Nusselt number increase with increasing magnetic and
squeezing free stream velocity. Mahmood et al. [18] analyzed flow and heat transfer over
a porous sensor surface and found that when the channel is squeezed, the skin friction
reduces but the heat transfer coefficient increases on the sensor surface. Khaled et al. [19]
investigated microcantilever deflections under oscillating flow conditions in the presence
of chemical reaction at the receptor surface. Khanafer and Vafai [20] studied geometrical
and flow configurations for enhanced microcantilever detection within a fluidic cell. Results
of that investigation showed that as the height of the fluidic cell decreases, mass transfer
enhances due to an increase in the axial velocity along the microcantilever. Islam et al.
[21] tried enhancing microcantilever capability with integrated AC electroosmotic trapping.
Khanafer et al. [22] considered fluid-solid interaction of flow and heat transfer characteristics
around a flexible microcantilever in a fluidic cell.

The above-mentioned studies are conducted with the no-slip assumption at the solid-
liquid interface. Nonetheless, slip flow may exist due to small dimensions of microcantilever
and may play an important role in the formation of momentum and mass transfer boundary
layers [23]. The velocity slip of liquid on the sensor surface is related to the slip length and
the gradient of velocity [24]. In the present paper, we consider the hydromagnetic flow and
mass transfer of a viscous incompressible fluid over the Mcs in the presence of slip flow
with adhesion of analytes taken into account at the surface of Mcs. The governing equations
are converted into the dimensionless system of equations using nonsimilarity variables. The
local nonsimilarity solutions are obtained for the velocity and concentration distributions.
The results are shown in figures and effects of flow parameters are discussed.

2. Governing Equations

Consider the steady two-dimensional, incompressible, laminar flow of an electrically
conducting viscous fluid over a Mcs, which is inserted into hydrodynamic entrance region of
a fluidic cell as shown in Figure 1. The height of the fluidic cell is assumed much greater than
the boundary layer thickness. Hence, using the boundary layer approximation, the governing
equations for the flow are

∂u
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∂y
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u
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(2.1)

where x is the coordinate along the Mcs surface and y is the coordinate vertical to x, u, and
v are the velocity components in the x and y coordinates, respectively. ρ is the fluid density;
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Figure 1: Flow geometry.

C is the concentration of the fluid. ν is the kinematic viscosity, D is the coefficient of mass
diffusivity, p is the fluid pressure, and σ is the electric conductivity. B is the externally applied
magnetic field and defined as B = (0, B0, 0), where B0 is the constant y component of B. Also
the external electric field is zero and induced electric field is assumed negligible. U(x) is the
free stream velocity.

It is worth mentioning that the adhesion of analytes to the Mcs surface can be
formulated by equating mass diffusion at the surface with the adhesive flux. The adhesive
flux can be modeled as a first-order heterogeneous reaction [25]. Taking account of the fact,
the boundary conditions are

u(x, 0) = L
∂u

∂y
(x, 0), v(x, 0) = 0, u(x,∞) = U(x),

D
∂C(x, 0)
∂y

= ksC(x, 0), C(x,∞) = C0,

(2.2)

where L is the slip length, C0 is the bulk concentration of analytes, and ks is the reaction rate
constant.

In order to obtain nonsimilar solutions, one may introduce
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where ξ(x) is the transformed streamwise coordinate and η(x, y) is a pseudosimilarity
variable.m, l andA are arbitrary constants and ψ is the stream function. Substitution of these
variables and functions into the original equations yields

1
4
f ′′′ +m +Mξ2
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1 − f ′) −mf ′2 +

(m + 1)
2

ff ′′ =
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2
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,

1
4
1
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The associated boundary conditions are

ξf ′(ξ, 0) = αf ′′(ξ, 0),
(m + 1)

2
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2
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(2.5)

where primes denote differentiation with respect to the pseudosimilarity variable η and the
flow parameters in the above equations are
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Here M is the dimensionless magnetic parameter, α is the slip parameter, ∧ is the
dimensionless reaction rate constant, and Sc is the Schmidt number.

Approximate solutions of (2.4) will be obtained by employing the local nonsimilarity
method. Details of the application of the local nonsimilaritymethod to solutions of nonsimilar
boundary layer equations can be found in [26, 27]. We introduce the new dependent variables

g
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=
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. (2.7)

Substituting (2.7) into the nonsimilar boundary layer equation (2.4), we obtain
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Differentiating (2.8) and boundary conditions in (2.5) with respect to ξ, we obtain auxiliary
equations and boundary conditions as follows:

1
4
g ′′′ + 2Mξ

(
1 − f ′) −Mξ2g ′ − 2mf ′g ′ +

(m + 1)
2

(
gf ′′ + fg ′′) + (m − 1)

2
(
f ′g ′ − f ′′g

)

=
(1 −m)

2
ξ

(
∂

∂ξ

(
f ′g ′ − f ′′g

))
,

1
4
1
Sc
h′′ +

(m + 1)
2

(
gθ′ + fh′

)
+
(m − 1)

2
(
hf ′ − θ′g) =

(1 −m)
2

ξ

(
∂

∂ξ

(
hf ′ − θ′g)

)
,

f ′(ξ, 0) + ξg ′(ξ, 0) = αg ′′(ξ, 0), g(ξ, 0) =
(m − 1)

2
ξ
∂g

∂ξ
, g ′(ξ,∞) = 0,

h′(ξ, 0) = ∧θ(ξ, 0) + ∧ξh(ξ, 0), h(ξ,∞) = 0.

(2.9)

The derivatives of g, g ′, and h with respect to ξ are neglected. Hence, the boundary layer
equations and auxiliary equations with their boundary conditions can be written as

1
4
f ′′′ +m +Mξ2

(
1 − f ′) −mf ′2 +

(m + 1)
2

ff ′′ =
(1 −m)

2
ξ
(
f ′g ′ − f ′′g

)
, (2.10)

1
4
1
Sc
θ′′ +

(m + 1)
2

fθ′ =
(1 −m)

2
ξ
(
hf ′ − θ′g), (2.11)

1
4
g ′′′ + 2Mξ

(
1 − f ′) −Mξ2g ′ − 2mf ′g ′ +

(m + 1)
2

(
gf ′′ + fg ′′) + (m − 1)

2
(
f ′g ′ − f ′′g

)
= 0,

(2.12)

1
4
1
Sc
h′′ +

(m + 1)
2

(
gθ′ + fh′

)
+
(m − 1)

2
(
hf ′ − θ′g) = 0, (2.13)

ξf ′(ξ, 0) = αf ′′(ξ, 0),
(m + 1)

2
f(ξ, 0) =

(m − 1)
2

ξg(ξ, 0), f ′(ξ,∞) = 0,

θ′(ξ, 0) = ∧ξθ(ξ, 0), θ(ξ,∞) = 1,

f ′(ξ, 0) + ξg ′(ξ, 0) = αg ′′(ξ, 0), g(ξ, 0) = 0 g ′(ξ,∞) = 0,

h′(ξ, 0) = ∧θ(ξ, 0) + ∧ξh(ξ, 0), h(ξ,∞) = 0.

(2.14)

In contrast to the local similarity method, the nonsimilar terms on the right-hand side of the
boundary layer equations are retained. As a consequence of this, it is expected that results
obtained from the local nonsimilarity method were more accurate than those of the local
similarity method. The set of coupled equations (2.10)–(2.14) can be treated as a system of
ordinary differential equationswith ξ being treated as a constant parameter in any streamwise
location.
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Figure 2: Variation of dimensionless velocity for different values of parameterm (M = 0, α = 0.1).

3. Results and Discussions

The nonlinear ordinary differential equation system (2.10)–(2.13) with boundary conditions
in (2.14) are solved numerically by applying a finite difference code which implements the
three-stage Lobatto IIIA formula that provides continuous solutions of fourth-order accuracy
in the problem domain. Description of the numerical method is given in [28, 29]. Results
are obtained only for f , θ and their derivatives, which are physically relevant and displayed
graphically for various values of problem parameters to see developments in the velocity and
concentration fields.

The variation of dimensionless horizontal velocity profiles is shown for various values
of the velocity power-law indexm in Figure 2 forM = 0 (in the absence of external magnetic
field) and α = 0.1. It is clear that the velocity boundary layer thickness over the wedge type
sensor (m > 0) is thinner than that of a flat sensor type (m = 0). The effects of the streamwise
location on the velocity profiles are also shown. Horizontal velocity decreases with increase
of ξ, which is expected.

Figure 3 indicates that an increase in the slip parameter causes a reduction in the
boundary layer thickness. Figure 4 is depicted to show the variations in the velocity field
for flat and wedge sensor types in the presence of magnetic field. The horizontal velocity
increases and hence the boundary layer thickness decreases for an applied magnetic field.

Figure 5 displays concentration profiles of the analytes for different sensor types. It is
obvious that surface concentration values increase with increase of m and boundary layer
thickness increases along the streamwise direction.

Figures 6 and 7 are plotted to examine the effects of the slip parameter and magnetic
parameter on the concentration fields. It can be seen that analyte concentration increases with
increase of either α orM in the boundary layer region.

The variation of concentration profiles for different values of dimensionless reaction
rate constant is presented in Figure 8. As reaction rate constant ∧ increases, the analyte
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Figure 3: Variation of dimensionless velocity for different values of parameterm (M = 0, α = 1).
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Figure 4: Variation of dimensionless velocity for different values of parameterm (M = 1, α = 0.1).

concentration at the sensor surface decreases. For large values of ∧, reaction becomes faster
and consumption (adhesion) of the analytes at the sensor surface increases. Thus, the
boundary layer thickness increases with increase of ∧.

Tables 1 and 2 show the dimensionless velocity, concentration, and their gradient
values at the sensor surface for various streamwise locations. It is understood that surface
velocity f ′(0) increases notably with increase of m, M, and α for any streamwise location.
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In addition to this, the velocity gradient f ′′(0) increases with increase of m and M, which
is expected. On the other hand, values of f ′′(0) decreases with increase of slip parameter α
because of the increasing velocity at the sensor surface. Moreover, the surface concentration
of analytes θ(0) decreases along the streamwise direction, while concentration gradient first
increases to a certain streamwise location and after this location, it decreases for various
values ofm,M, and α as shown in Tables 1 and 2.
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4. Concluding Remarks

This paper deals with the steady two-dimensional, incompressible, laminar flow, and
mass transfer over a sensor surface, taking into account the effects of the slip condition
and applied magnetic field. The governing equations are derived using the boundary
layer approximation and reduced to local nonsimilar ones. Resulting equations are solved
numerically. Dimensionless velocity and concentration profiles are shown graphically for
various flow parameters.
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Table 1: Values of dimensionless velocity, concentration, and their gradients at the sensor surface for
various streamwise location.

m = 0.1,M = 0, Sc = 250, α = 0.1, ∧ = 60 m = 0.3,M = 0, Sc = 250, α = 0.1, ∧ = 60
ξ f ′(0) f ′′(0) θ(0) θ′(0) f ′(0) f ′′(0) θ(0) θ′(0)
0.1 0.6024 0.6024 0.7669 4.6014 0.6643 0.6643 0.7769 4.6615
0.2 0.3961 0.7922 0.5525 6.6303 0.4755 0.9510 0.5838 7.0058
0.3 0.2878 0.8634 0.4003 7.2058 0.3644 1.0992 0.4423 7.9607
0.4 0.2244 0.8976 0.3011 7.2264 0.2936 1.1744 0.3442 8.2616
0.5 0.1835 0.9173 0.2359 7.0775 0.2452 1.2261 0.2762 8.2857
0.6 0.1550 0.9300 0.1915 6.8934 0.2103 1.2618 0.2278 8.2003
0.7 0.1341 0.9390 0.1599 6.7171 0.1839 1.2876 0.1923 8.0767
0.8 0.1182 0.9457 0.1367 6.5601 0.1636 1.3073 0.1655 7.9450
0.9 0.1057 0.9509 0.1190 6.4238 0.1470 1.3228 0.1448 7.8177
1.0 0.0955 0.9550 0.1051 6.3061 0.1335 1.3353 0.1283 7.6995

Table 2: Values of dimensionless velocity, concentration, and their gradients at the sensor surface for
various streamwise location.

m = 0.1,M = 2, Sc = 250, α = 0.1, ∧ = 60 m = 0.1,M = 0, Sc = 250, α = 1, ∧ = 60
ξ f ′(0) f ′′(0) θ(0) θ′(0) f ′(0) f ′′(0) θ(0) θ′(0)
0.1 0.6045 0.6045 0.7672 4.6032 0.9500 0.09500 0.8057 4.8339
0.2 0.4115 0.8230 0.5581 6.6972 0.9020 0.1804 0.6561 7.8732
0.3 0.3237 0.9712 0.4179 7.5229 0.8564 0.2569 0.5429 9.7728
0.4 0.2813 1.1251 0.3313 7.9500 0.8131 0.3252 0.4565 10.9558
0.5 0.2590 1.2951 0.2755 8.2642 0.7722 0.3861 0.3894 11.6806
0.6 0.2465 1.4789 0.2371 8.5352 0.7337 0.4402 0.3363 12.1064
0.7 0.2390 1.6727 0.2090 8.7800 0.6975 0.4883 0.2936 12.3325
0.8 0.2342 1.8736 0.1876 9.0034 0.6637 0.5309 0.2588 12.4244
0.9 0.2310 2.0793 0.1705 9.2084 0.6320 0.5688 0.2301 12.4250
1.0 0.2288 2.2884 0.1566 9.3975 0.6024 0.6024 0.2061 12.3635

It is found that velocity and concentration increase with increase of velocity power-
law index m and dimensionless magnetic parameter M, whereas dimensionless analyte
concentration decreases with an increase of reaction rate. Moreover, mass transfer boundary
layer thickness decreases with increase of slip parameter α. The surface concentration of
analytes θ(0) decreases along the streamwise direction. Finally, concentration gradient first
increases until a certain streamwise location and then after this location, it decreases.
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