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This paper considers the existence of positive almost-periodic solutions for almost-periodic Lotka-
Volterra cooperative system with time delay. By using Mawhin’s continuation theorem of coin-
cidence degree theory, sufficient conditions for the existence of positive almost-periodic solutions
are obtained. An example and its simulation figure are given to illustrate the effectiveness of our
results.

1. Introduction

Lotka-Volterra system is one of the most celebrated models in mathematical biology and pop-
ulation dynamics. In recent years, it has also been foundwith successful and interesting appli-
cations in epidemiology, physics, chemistry, economics, biological science, and other areas
(see [1–4]). Moreover, in [5], it was shown that the continuous-time recurrent neural net-
works can be embedded into Lotka-Volterra models by changing coordinates, which suggests
that the existing techniques in the analysis of Lotak-Volterra systems can also be applied to
recurrent neural networks.

Owing to its theoretical and practical significance, Lotka-Volterra system have been
studied extensively (see [6–16] and the cites therein). Since biological and environmental
parameters are naturally subject to fluctuation in time, the effects of a periodically varying
environment (e.g., seasonal effects of weather, food supplies, mating habits, etc.) are
considered as important selective forces on systems in a fluctuating environment. There-
fore, on the one hand, models should take into account both the periodically changing
environment and the effects of time delays. However, on the other hand, in fact, it is more
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realistic and reasonable to study almost-periodic system than periodic system. Recently, there
are two main approaches to obtain sufficient conditions for the existence and stability of
the almost-periodic solutions of biological models: one is using the fixed point theorem,
Lyapunov functional method, and differential inequality techniques (see [17–19]); the other
is using functional hull theory and Lyapunov functional method (see [14–16]). However,
to the best of our knowledge, there are very few published letters considering the almost-
periodic solutions for nonautonomous Lotka-Volterra cooperative system with time delay by
applying the method of coincidence degree theory. Motivated by this, in this letter, we apply
the coincidence theory to study the existence of positive almost-periodic solutions for Lotka-
Volterra cooperative system with time delay as follows:

u̇i(t) = ui(t)

⎛
⎝ri(t) − bi(t)ui(t − τi(t)) +

n∑
j=1,j /= i

cij(t)uj
(
t − τij(t)

)
⎞
⎠, i = 1, 2, . . . , n, (1.1)

where ui(t) stands for the ith species population density at time t ∈ R, ri(t) is the natural
reproduction rate, bi(t) represents the inner-specific competition, cij(t) (i /= j) stands for the
interspecific cooperation, τi(t) > 0 and τij(t) > 0 are all continuous almost-periodic functions
on R. Throughout this paper, we always assume that ri(t), bi(t), and cij(t) are all nonegative
almost periodic functions with respect to t ∈ R.

The initial condition of (1.1) is of the form

ui(s) = φi(s), i = 1, 2, . . . , n, (1.2)

where φi(s) is positive bounded continuous function on [−τ, 0] and τ =
max1≤i,j≤nsupt∈R{|τij(t)|}.

The organization of the rest of this paper is as follows. In Section 2, we introduce
some preliminary results which are needed in later sections. In Section 3, we establish our
main results for the existence of almost-periodic solutions of (1.1). Finally, an example and its
simulation figure are given to illustrate the effectiveness of our results in Section 4.

2. Preliminaries

To obtain the existence of an almost-periodic solution of system (1.1), we first make the fol-
lowing preparations.

Definition 2.1 (see [20]). Let u(t) : R → R be continuous in t. u(t) is said to be almost-periodic
on R, if, for any ε > 0, the set K(u, ε) = {δ : |u(t + δ) − u(t)| < ε, for any t ∈ R} is relatively
dense, that is, for any ε > 0, it is possible to find a real number l(ε) > 0, for any interval with
length l(ε), there exists a number δ = δ(ε) in this interval such that |u(t + δ) − u(t)| < ε, for
any t ∈ R.

Definition 2.2. A solution u(t) = (u1(t), u2(t), . . . , un(t))
T of (1.1) is called an almost periodic

solution if and only if for each i = 1, 2, . . . , n, ui(t) is almost periodic.
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For convenience, we denoteAP(R) the set of all real-valued, almost-periodic functions
on R and for each j = 1, 2, . . . , n, let

∧(fj
)
=

{
λ̃ ∈ R : lim

T→∞
1
T

∫T

0
fj(s)e−iλ̃sds /= 0

}
,

mod
(
fj

)
=

{
N∑
i=1

niλ̃i : ni ∈ Z, N ∈N+, λ̃i ∈ ∧(fj
)}

(2.1)

be the set of Fourier exponents and the module of fj , respectively, where fj(·) is almost
periodic. Suppose fj(t, φj) is almost periodic in t, uniformly with respect to φj ∈ C([−τ, 0],R).
Kj(fj , ε, φj) denote the set of ε-almost periods for fj uniformly with respect to φj ∈
C([−τ, 0],R). lj(ε) denote the length of inclusion interval. Let m(fj) = (1/T)

∫T
0 fj(s)ds be

the mean value of fj on interval [0, T], where T > 0 is a constant. clearly, m(fj) depends on
T. m[fj] = limT→∞(1/T)

∫T
0 fj(s)ds.

Lemma 2.3 (see [20]). Suppose that f and g are almost periodic. Then the following statements are
equivalent.

(i) mod(f) ⊃ mod(g),

(ii) for any sequence {t∗n}, if limn→∞f(t + t∗n) = f(t) for each t ∈ R, then there exists a
subsequence {tn} ⊆ {t∗n} such that limn→∞g(t + tn) = f(t) for each t ∈ R.

Lemma 2.4 (see [21]). Let u ∈ AP(R). Then
∫ t
t−τ u(s)ds is almost periodic.

Let X and Z be Banach spaces. A linear mapping L : dom(L) ⊂ X → Z is called
Fredholm if its kernel, denoted by ker(L) = {X ∈ dom(L) : Lx = 0}, has finite dimension and
its range, denoted by Im(L) = {Lx : x ∈ dom(L)}, is closed and has finite codimension. The
index of L is defined by the integer dimK(L) − codimdom(L). If L is a Fredholm mapping
with index 0, then there exist continuous projections P : X → X and Q : Z → Z such
that Im(P) = ker(L) and ker(Q) = Im(L). Then L|dom(L)∩ker(P) : Im(L) ∩ ker(P) → Im(L) is
bijective, and its inverse mapping is denoted byKP : Im(L) → dom(L)∩ker(P). Since ker(L)
is isomorphic to Im(Q), there exists a bijection J : ker(L) → Im(Q). Let Ω be a bounded
open subset of X and let N : X → Z be a continuous mapping. If QN(Ω) is bounded and
KP (I −Q)N : Ω → X is compact, thenN is called L-compact on Ω, where I is the identity.

Let L be a Fredholm linear mapping with index 0 and letN be a L-compact mapping
onΩ. Define mapping F : dom(L)∩Ω → Z by F = L−N. If Lx/=Nx for all x ∈ dom(L)∩∂Ω,
then by using P, Q,KP , J defined above, the coincidence degree of F inΩwith respect to L is
defined by

degL(F,Ω) = deg
(
I − P −

(
J−1Q +KP (I −Q)

)
N,Ω, 0

)
, (2.2)

where deg(g,Γ, p) is the Leray-Schauder degree of g at p relative to Γ.
Then The Mawhin’s continuous theorem is given as follows.
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Lemma 2.5 (see [22]). Let Ω ⊂ X be an open bounded set and let N : X → Z be a continuous
operator which is L-compact on Ω. Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ dom(L), Lx /=λNx;

(b) for each x ∈ ∂Ω ∩ L, QNx/= 0;

(c) deg(JNQ,Ω ∩ ker(L), 0)/= 0.

Then Lx =Nx has at least one solution in Ω ∩ dom(L).

In this paper, since we need some related properties of M-matrix we introduce them
as follows. In addition, A matrix A = (aij) ≥ 0 means that each elements aij ≥ 0.

Definition 2.6 (see [23]). If a real matrixA = (aij)n×n satisfies the following conditions (1) and
(2):

(1) aii > 0, i = 1, 2, . . . , n, aij ≤ 0, i /= j, i, j = 1, 2, . . . , n,

(2) A is a positive-definite matrix,

then A is called aM-matrix.

Lemma 2.7 (see [23]). If matrix A = (aij)n×n is aM-matrix, then A−1 exists and its every element
is nonnegative.

Lemma 2.8. Suppose that matrix A = (aij)n×n is aM-matrix, then AX ≤ B implies X ≤ A−1B.

Proof. In fact, there exists a nonnegative positive vector ε0 = (ε1, ε2, . . . , εn)
T ∈ Rn such that

AX − B + ε0 = (0, 0, . . . , 0)T which imply that X − A−1B + A−1ε0 = (0, 0, . . . , 0)T . According to
Lemma 2.4, there exists at least one positive element in the every row of A−1, which imply
A−1ε0 ≥ (0, 0, . . . , 0)T . Thus, we obtain X ≤ A−1B.

3. Main Result

In this section, we state and prove our main results of our this paper. By making the sub-
stitution

ui(t) = eyi(t), i = 1, 2, . . . , n, (3.1)

Equation (1.1) can be reformulated as

ẏi(t) = ri(t) − bi(t)eyi(t−τii(t)) +
n∑

j=1,i /= j

cij(t)eyj (t−τij (t)), i = 1, 2, . . . , n. (3.2)

The initial condition (1.2) can be rewritten as follows:

yi(s) = lnφi(s) =: ψi(s), i = 1, 2, . . . , n. (3.3)
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Set X = Z = V1 ⊕ V2, where

V1 =
{
y(t) =

(
y1(t), y2(t), . . . , yn(t)

)T ∈ C(R,Rn) : yi(t) ∈ AP(R) ,

mod
(
yi(t)

) ⊂ mod(Hi(t)), ∀λ̃i ∈ ∧(yi(t)
)
satisfies

∣∣∣λ̃i
∣∣∣ > β, i = 1, 2, . . . , n

}
,

V2 =
{
y(t) ≡ (h1, h2, . . . , hn)

T ∈ R
n
}
,

Hi(t) = ri(t) − bi(t)eψi(−τii(0)) +
n∑

j=1,i /= j

cij(t)eψj (−τij (0))

(3.4)

and ψ(·) is defined as (3.3), i = 1, 2, . . . , n, β > 0 is a given constant. For y = (y1, y2, . . . , yn)
T ∈

Z, define ‖y‖ = max1≤i≤nsupt∈R
|yi(t)|.

Lemma 3.1. Z is a Banach space equipped with the norm ‖ · ‖.

Proof. If y{k} ⊂ V1 and y{k} = (y{k}
1 , y

{k}
2 , . . . , y

{k}
n )T converges to y = (y1, y2, . . . , yn)

T , that
is, y{k}

j → yj , as k → ∞, j = 1, 2, . . . , n. Then it is easy to show that yj ∈ AP(R) and

mod(yj) ∈ mod(Hj). For any |̃λj | ≤ β, we have that

lim
T→∞

1
T

∫T

0
y
{k}
j (t)e−iλ̃j tdt = 0, j = 1, 2, . . . , n; (3.5)

therefore,

lim
T→∞

1
T

∫T

0
yj(t)e

−iλ̃j tdt = 0, j = 1, 2, . . . , n, (3.6)

which implies y ∈ V1. Then it is not difficult to see that V1 is a Banach space equipped with
the norm ‖ · ‖. Thus, we can easily verify that X and Z are Banach spaces equipped with the
norm ‖ · ‖. The proof of Lemma 3.1 is complete.

Lemma 3.2. Let L : X → Z, Ly = ẏ, then L is a Fredholm mapping of index 0.

Proof. Clearly, L is a linear operator and ker(L) = V2. We claim that Im(L) = V1. Firstly, we
suppose that z(t) = (z1(t), z2(t), . . . , zn(t))

T ∈ Im(L) ⊂ Z. Then there exist z{1}(t) = (z{1}1 (t),
z
{1}
2 (t), . . . , z{1}n (t))T ∈ V1 and constant vector z{2} = (z{2}1 , z

{2}
2 , . . . , z

{2}
n )T ∈ V2 such that

z(t) = z{1}(t) + z{2}, (3.7)

that is,

zi(t) = z
{1}
i (t) + z{2}i , i = 1, 2, . . . , n. (3.8)
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From the definition of zi(t) and z
{1}
i (t), we can easily see that

∫ t
t−τ zi(s)ds and

∫ t
t−τ z

{1}
i (s)ds are

almost-periodic functions. So we have z{2}i ≡ 0, i = 1, 2, . . . , n, then z{2} ≡ (0, 0, . . . , 0)T , which
implies z(t) ∈ V1, that is Im(L) ⊂ V1.

On the other hand, if u(t) = (u1(t), u2(t), . . . , un(t))
T ∈ V1 \ {0}, then we have∫ t

0 uj(s)ds ∈ AP(R), j = 1, 2, . . . , n. If λ̃j /= 0, then we obtain

lim
T→∞

1
T

∫T

0

(∫ t

0
uj(s)ds

)
e−iλ̃j tdt =

1

iλ̃j
lim
T→∞

1
T

∫T

0
uj(t)e−iλ̃j tdt, j = 1, 2, . . . , n. (3.9)

It follows that

∧
[∫ t

0
uj(s)ds −m

(∫ t

0
uj(s)ds

)]
= ∧(uj(t)

)
, j = 1, 2, . . . , n, (3.10)

hence

∫ t

0
u(s)ds −m

(∫ t

0
u(s)ds

)
∈ V1 ⊂ X. (3.11)

Note that
∫ t
0 u(s)ds −m(

∫ t
0 u(s)ds) is the primitive of u(t) in X, we have u(t) ∈ Im(L), that is,

V1 ⊂ Im(L). Therefore, Im(L) = V1.
Furthermore, one can easily show that Im(L) is closed in Z and

dim ker(L) = n = co dim Im(L); (3.12)

therefore, L is a Fredholm mapping of index 0. The proof of Lemma 3.2 is complete.

Lemma 3.3. LetN : X → Z,Ny = (Gy

1 , G
y

2 , . . . , G
y
n)

T , where

G
y

i = ri(t) − bi(t)yi(t−τi(t)) +
n∑

j=1,i /= j

cij(t)eyj (t−τij (t)), i = 1, 2, . . . , n. (3.13)

Set

P : X −→ Z, Py =
(
m

(
y1

)
, m

(
y2

)
, . . . , m

(
yn

))T
,

Q : Z −→ Z, Qz = (m[z1], m[z2], . . . , m[zn])T .
(3.14)

ThenN is L-compact on Ω, where Ω is an open bounded subset of X.

Proof. Obviously, P and Q are continuous projectors such that

ImP = ker(L), Im(L) = ker(Q). (3.15)
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It is clear that (I −Q)V2 = {(0, 0, . . . , 0)}, (I −Q)V1 = V1. Hence

Im(I −Q) = V1 = Im(L). (3.16)

Then in view of

Im(P) = ker(L), Im(L) = ker(Q) = Im(I −Q), (3.17)

we obtain that the inverse KP : Im(L) → ker(P) ∩ dom(L) of LP exists and is given by

KP (z) =
∫ t

0
z(s)ds −m

[∫ t

0
z(s)ds

]
. (3.18)

Thus,

QNy =
(
m

[
G
y

1

]
, m

[
G
y

2

]
, . . . , m

[
G
y
n

])T

KP (I −Q)Ny =
(
f
(
y1

) −Q(
f
(
y1

))
, f

(
y2

) −Q(
f
(
y2

))
, . . . , f

(
yn

) −Q(
f
(
yn

)))T
,

(3.19)

where

f
(
yi

)
=

∫ t

0

(
G
y

i −m
[
G
y

i

])
ds, i = 1, 2, . . . , n. (3.20)

Clearly, QN and (I − Q)N are continuous. Now we will show that KP is also con-
tinuous. By assumptions, for any 0 < ε < 1 and any compact set φi ⊂ C([−τ, 0],R), let
li(εi) be the length of the inclusion interval of Ki(Hi, εi, φi), i = 1, 2, . . . , n. Suppose that
{zk(t)} ⊂ Im(L) = V1 and zk(t) = (zk1(t), z

k
2(t), . . . , z

k
n(t))

T uniformly converges to z(t) =
(z1(t), z2(t), . . . , zn(t))

T , that is zki → zi, as k → ∞, i = 1, 2, . . . , n. Because of
∫ t
0 z

k(s)ds ∈ Z,
k = 1, 2, . . . , n, there exists σi (0 < σi < εi) such that Ki (Hi, σi, φi) ⊂ Ki (

∫ t
0 z

k
i (s)ds, σi, φi),

i = 1, 2, . . . , n. Let li(σi) be the length of the inclusion interval of Ki(Hi, σi, φi) and

li = max{li(εi), li(σi)}, i = 1, 2, . . . , n. (3.21)

It is easy to see that li is the length of the inclusion interval of Ki(Hi, σi, φi) and Ki(Hi, εi, φi),
i = 1, 2, . . . , n. Hence, for any t /∈ [0, li], there exists ξt ∈ Ki(Hi, σi, φi) ⊂ Ki(

∫ t
0 z

k
i (s)ds, σi, φi)
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such that t + ξt ∈ [0, li], i = 1, 2, . . . , n. Hence, by the definition of almost periodic function we
have
∥∥∥∥∥
∫ t

0
zk(s)ds

∥∥∥∥∥ = max
1≤i≤n

sup
t∈R

∣∣∣∣∣
∫ t

0
zki (s)ds

∣∣∣∣∣

≤ max
1≤i≤n

sup
t∈[0,li]

∣∣∣∣∣
∫ t

0
zki (s)ds

∣∣∣∣∣ +max
1≤i≤n

sup
t/∈[0,li]

∣∣∣∣∣
∫ t

0
zki (s)ds −

∫ t+ξt

0
zki (s)ds +

∫ t+ξt

0
zki (s)ds

∣∣∣∣∣

≤ 2max
1≤i≤n

sup
t∈[0,li]

∣∣∣∣∣
∫ t

0
zki (s)ds

∣∣∣∣∣ +max
1≤i≤n

sup
t/∈[0,li]

∣∣∣∣∣
∫ t

0
zki (s)ds −

∫ t+ξt

0
zki (s)ds

∣∣∣∣∣

≤ 2max
1≤i≤n

∣∣∣∣∣
∫ li

0
zki (s)ds

∣∣∣∣∣ +max
1≤i≤n

εi.

(3.22)

From this inequality, we can conclude that
∫ t
0 z(s)ds is continuous, where z(t) = (z1(t), z2(t),

. . . , zn(t))
T ∈ Im(L). Consequently, KP and KP (I −Q)Ny are continuous.

From (3.22), we also have
∫ t
0 z(s)ds andKP (I−Q)Ny also are uniformly bounded inΩ.

Further, it is not difficult to verify thatQN(Ω) is bounded andKP (I−Q)Ny is equicontinuous
in Ω. By the Arzela-Ascoli theorem, we have immediately concluded that KP (I −Q)N(Ω) is
compact. ThusN is L-compact on Ω. The proof of Lemma 3.3 is complete.

Theorem 3.4. Assume that the following conditions (H1) and (H2) hold:

(H1) ei := m[ri(t)] > 0, m[bi(t)] > 0, m[cij(t))] > 0, i, j = 1, 2, . . . , n;

(H2) D is a positive-definite matrix, where dii = m[bi(t)], dij = m[cij(t)], i /= j, i, j =
1, 2, . . . , n,

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

d11 −d12 · · · −d1n
−d21 d22 · · · −d2n
...

...
...

...

−dn1 −dn2 · · · dnn

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.23)

Then (1.1) has at least one positive almost periodic solution.

Proof. To use the continuation theorem of coincidence degree theorem to establish the exist-
ence of a solution of (3.2), we set Banach space X and Z the same as those in Lemma 3.1
and set mappings L,N, P , Q the same as those in Lemmas 3.2 and 3.3, respectively. Then we
can obtain that L is a Fredholm mapping of index 0 andN is a continuous operator which is
L-compact on Ω.

Now, we are in the position of searching for an appropriate open, bounded subset Ω
for the application of the continuation theorem. Corresponding to the operator equation

Ly = λNy, λ ∈ (0, 1), (3.24)
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we obtain

ẏi(t) = λ

⎡
⎣ri(t) − bi(t)eyi(t−τi(t)) +

n∑
j=1,i /= j

cij(t)eyj (t−τij (t))
⎤
⎦, i = 1, 2, . . . , n. (3.25)

Assume that y(t) = (y1(t), y2(t), . . . , yn(t))
T ∈ X is a solution of (3.25) for some λ ∈ (0, 1).

DenoteMi = supt∈R{yi(t)},Mi = inft∈R{yi(t)}.
On the one hand, by (3.25), we derive

−∣∣ẏi(t)
∣∣ ≤ λ

⎡
⎣ri(t) − bi(t)eyi(t−τi(t)) +

n∑
j=1,i /= j

cij(t)eyj (t−τij (t))
⎤
⎦, i = 1, 2, . . . , n. (3.26)

On the both sides of (3.26), integrating from 0 to T and applying the mean value theorem of
integral calculus, we have

0 ≤ λ
⎡
⎣m(ri(t)) −m(bi(t))eyi(ξi−τi(ξi)) +

n∑
j=1,i /= j

m
(
cij(t)

)
eyj (ηij−τij (ηij ))

⎤
⎦

+m
(∣∣ẏi(t)

∣∣), i = 1, 2, . . . , n,

(3.27)

where ξi ∈ [0, T], ηij ∈ [0, T], i, j = 1, 2, . . . , n. In the light of (3.27), we get for i = 1, 2, . . . , n,

λ
[
m(bi(t))eyi(ξi−τi(ξi))

]
≤ λ

⎡
⎣m(ri(t)) +

n∑
j=1,i /= j

m
(
cij(t)

)
eyj (ηij−τij (ηij ))

⎤
⎦ +m

(∣∣ẏi(t)
∣∣). (3.28)

On the both sides of (3.28), taking the supremum with respect to ξi, ηij and letting T → +∞,
we obtain

m[bi(t)]eMi ≤ m[ri(t)] +
n∑

j=1,j /= i

+m
[
cij(t)

]
eMj , (3.29)

that is,

diie
Mi −

n∑
j=1,j /= i

dije
Mj ≤ ei, i = 1, 2, . . . , n. (3.30)



10 Journal of Applied Mathematics

Equation (3.30) can be written by the following matrix form

⎛
⎜⎜⎜⎜⎜⎜⎝

d11 −d12 · · · −d1n
−d21 d22 · · · −d2n
...

...
...

...

−dn1 −dn2 · · · dnn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

eM1

eM2

...

eMn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤

⎛
⎜⎜⎜⎜⎜⎜⎝

e1

e2

...

en

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.31)

By Lemma 2.8 and assumption, we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

eM1

eM2

...

eMn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤ D−1

⎛
⎜⎜⎜⎜⎜⎜⎝

e1

e2

...

en

⎞
⎟⎟⎟⎟⎟⎟⎠

=:

⎛
⎜⎜⎜⎜⎜⎜⎝

H+
1

H+
2

...

H+
n

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.32)

which imply that

Mi ≤ lnH+
i , i = 1, 2, . . . , n. (3.33)

On the two sides of (3.28), taking the infimumwith respect to ξi, ηij , and letting T → +∞, we
obtain

Mi ≤ lnH+
i , i = 1, 2, . . . , n. (3.34)

On the other hand, according to (3.25), we derive

λri(t) − ẏi(t) < λbi(t)eyi(t−τi(t)), i = 1, 2, . . . , n. (3.35)

On the both sides of (3.35), integrating from 0 to T and using the mean value theorem of
integral calculus, we get

λm(ri(t)) < m
(
ẏi(t)

)
+ λm(bi(t))eyi(ζi−τi(ζi)), i = 1, 2, . . . , n, (3.36)

where ζi ∈ [0, T], i = 1, 2, . . . , n. On the both sides of (3.36), take the supremum and infimum
with respect to ζi, respectively, and let T → +∞, then we have for i = 1, 2, . . . , n,

m[ri(t)] < m[bii(t)]eMi , m[ri(t)] < m[bii(t)]eMi , (3.37)

namely,

eMi >
m[ri(t)]
m[bi(t)]

=
ei
dii
, eMi >

m[ri(t)]
m[bi(t)]

=
ei
dii

(3.38)
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which imply that

Mi > ln
ei
dii
, Mi > ln

ei
dii
. (3.39)

Combining with (3.33), (3.34), and (3.39), we derive for all t ∈ R, i = 1, 2, . . . , n,

min
1≤i≤n

{
ln

ei
dii

}
≤ ln

ei
dii

< Mi ≤ yi(t) ≤Mi ≤ lnH+
i < max

1≤i≤n
{
lnH+

i

}
+ 1. (3.40)

DenoteM = max{|min1≤i≤n{ln(ei/dii)}|, |max1≤i≤n{lnH+
i }+ 1|}. Clearly,M is independent of

λ. Take

Ω =
{
y =

(
y1, y2, . . . , yn

)T ∈ X :
∥∥y∥∥ < M

}
. (3.41)

It is clear that Ω satisfies the requirement (a) in Lemma 2.5. When y ∈ ∂Ω ∩ ker(L), y =
(y1, y2, . . . , yn)

T is a constant vector in R
n with ‖y‖ =M. Then

QNy = (m[G1], m[G2], . . . , m[Gn])T , y ∈ X, (3.42)

where

Gi = ri(t) − bi(t)eyi +
n∑

j=1,j /= i

cij(t)eyj , i = 1, 2, . . . , n,

m[Gi] = m[ri(t)] −m[bii(t)]eyi +
n∑

j=1,j /= i

m
[
cij(t)

]
eyj = ei − diieyi

+
n∑

j=1,j /= i

dije
yj , i = 1, 2, . . . , n.

(3.43)

If QNy = (0, 0, . . . , 0])T , then we have

⎛
⎜⎜⎜⎜⎜⎜⎝

d11 −d12 · · · −d1n
−d21 d22 · · · −d2n
...

...
...

...

−dn1 −dn2 · · · dnn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ey1

ey2

...

eyn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

e1

e2

...

en

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.44)

which imply that yi = lnH+
i , i = 1, 2, . . . , n. Thus, y = (y1, y2, . . . , yn)

T ∈ Ω, this contradicts the
fact that y ∈ ∂Ω ∩ ker(L). Therefore, QNy/= (0, 0, . . . , 0)T , which implies that the requirement
(b) in Lemma 2.5 is satisfied. If necessary, we can letM be greater such that yTQNy < 0, for
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any y ∈ ∂Ω ∩ ker(L). Furthermore, take the isomorphism J : Im(Q) → ker(L), Jz ≡ z and let
Φ(γ ;y) = −γy + (1 − γ)JQNy, then for any y ∈ ∂Ω ∩ ker(L), yTΦ(γ ;y) < 0, we have

deg{JQN,Ω ∩ ker(L), 0} = deg
{−y,Ω ∩ ker(L), 0

}
/= 0. (3.45)

So, the requirement (c) in Lemma 2.5 is satisfied. Hence, (3.2) has at least one almost-periodic
solution in Ω, that is, (1.1) has at least one positive almost periodic solution. The proof is
complete.

4. An Example and Simulation

Consider the following two species cooperative system with time delay:

ẋ(t) = x(t)
(
r1(t) − b1(t)x(t − τ1(t)) + c12(t)y(t − τ12(t))

)
,

ẏ(t) = y(t)
(
r2(t) − b2(t)y(t − τ2(t)) + c21(t)x(t − τ21(t))

)
,

(4.1)

where r1(t) = 2+sin
√
2t+sin

√
3t, b1(t) = 2+sin

√
3t+sin

√
5t, c12(t) = (2+cos

√
2t+cos

√
3t)/2,

τ1(t) = esin
√
2t+sin

√
5t, τ12(t) = esin t+cos

√
2t, r2(t) = 2−sin√2t−sin√3t, b2(t) = 2+sin

√
3t−sin√5t,

c21(t) = (2 − cos
√
2t + cos

√
3t)/2, τ2(t) = esin

√
2t+cos

√
5t, τ21(t) = esin t−cos

√
2t. Since

e1 = m[r1(t)] = 2, d11 = m[b1(t)] = 2, d12 = m[c12(t)] = 1,

e2 = m[r1(t)] = 2, d22 = m[b1(t)] = 2, d21 = m[c12(t)] = 1,

D =

(
2 −1
−1 2

)
, det

(
2 −1
−1 2

)
= 3 > 0, D−1 =

1
3

(
2 1

1 2

)
,

(4.2)

then, the matrix D is positive definite, and

ln
e1
d11

= ln
e2
d22

= 0,

(
H+

1

H+
2

)
= D−1

(
e1

e2

)
=

(
2

2

)
,

(
lnH+

1

lnH+
2

)
=

(
ln 2

ln 2

)
,

M = max
{∣∣∣∣min

1≤i≤n

{
ln

ei
dii

}∣∣∣∣,
∣∣∣∣max
1≤i≤n

{
lnH+

i

}
+ 1

∣∣∣∣
}

= 1 + ln 2,

Ω =
{
y =

(
y1,y2, . . . , yn

)T ∈ X :
∥∥y∥∥ < 1 + In 2

}
.

(4.3)

Therefore, all conditions of Theorem 3.4 are satisfied. By Theorem 3.4, system (4.1) has one
positive almost-periodic solution. The resulting numerical simulation is depicted in Figure 1.
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