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Riordan arrays are useful for solving the combinatorial sums by the help of generating functions.
Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix
and define a new generalization of Fibonacci polynomials called (p, q)-Fibonacci polynomials. We
obtain combinatorial identities and by using Riordanmethodwe get factorizations of Pascal matrix
involving (p, q)-Fibonacci polynomials.

1. Introduction

Large classes of polynomials can be defined by Fibonacci-like recurrence relation and yield
Fibonacci numbers [1]. Such polynomials, called the Fibonacci polynomials, were studied in
1883 by the Belgian Mathematician Eugene Charles Catalan and the German Mathematician
E. Jacobsthal. The polynomials fn(x) studied by Catalan are defined by the recurrence relation

fn(x) = xfn−1(x) + fn−2(x), (1.1)

where f1(x) = 1, f2(x) = x, and n ≥ 3. Notice that fn(1) = Fn, the nth Fibonacci number. The
Fibonacci polynomials studied by Jacobsthal were defined by

Jn(x) = Jn−1(x) + xJn−2(x), (1.2)

where J1(x) = 1 = J2(x) and n ≥ 3. The Pell polynomials pn(x) are defined by

pn(x) = 2xpn−1(x) + pn−2(x), (1.3)
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where p0(x) = 0, p1(x) = 1 and n ≥ 2. The Lucas polynomials Ln(x), originally studied in
1970 by Bicknell, are defined by

Ln(x) = xLn−1(x) + Ln−2(x), (1.4)

where L0(x) = 2, L1(x) = x, and n ≥ 2.
Horadam [2] introduced the polynomial sequence {wn(x)} defined recursively by

wn(x) = p(x)wn−1(x) + q(x)wn−2(x), (n ≥ 2), (1.5)

where

w0(x) = c0, w1(x) = c1x
d, p(x)c2xd, q(x) = c3x

d (1.6)

in which c0, c1, c2, c3 are constants and d = 0 or 1. Special cases of the w(x) with given initial
conditions are given in Table 1.

For a fixed n, Brawer and Pirovino [3] defined the n × n lower triangular Pascal as
matrix Pn = [pi,j]i,j=1,2,...,n

Pi,j =

⎧
⎪⎪⎨

⎪⎪⎩

(
i − 1
j − 1

)

if i ≥ j,

0 otherwise.

(1.7)

The Pascal matrices have many applications in probability, numerical analysis, surface
reconstruction, and combinatorics. In [4] the relationships between the Pascal matrix and
the Vandermonde, Frobenius, Stirling matrices are studied. Also in [4] other applications
in stability properties of numerical methods for solving ordinary differential equations are
shown. In [5–8] the binomial coefficients, fibonomial coefficients, Pascal matrix, and its
generalizations are studied. The authors in [9] factorized the Pascal matrix involving the
Fibonacci matrix.

Lee et al. [10] defined the n × n Fibonacci matrix as follows:

Fn =
[
fij
]
=

{
Fi−j+1 if i − j + 1 ≥ 0,
0 if i − j + 1 < 0.

(1.8)

Also in [10] factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices
are studied. The inverse of this matrix is given as follows;

F−1
n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 · · · 0
−1 1 0 0 · · · 0
−1 −1 1 0 · · · 0

0 −1 −1 1
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 −1 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.9)
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Table 1: Special cases of the w(x) with given initial conditions are given.

p(x) q(x) w0(x) = 0, w1(x) = 1 w0(x) = 2, w1(x) = x

x 1 Fibonacci Polynomial Lucas Polynomial
2x 1 Pell Polynomial Pell-Lucas Polynomial
1 2x Jacobsthal Poly Jacobsthal-Lucas Poly.
3x −2 Fermat Polynomial Fermat-Lucas Polynomial
2x −1 Cheby. Poly. 2nd kind Cheby. Poly. first kind

The Riordan group was introduced by Shapiro et al. in [6] as follows.
Let R = [rij]i,j≥0 be an infinite matrix with complex entries. Let ci(t) =

∑∞
n≥0 rn,it

n be the

generating function of the ith column of R. We call R a Riordan matrix if ci(t) = g(t)[f(t)]i,
where

g(t) = 1 + g1t + g2t
2 + g3t

3 + · · · , f(t) = t + f2t
2 + f3t

3 + · · · . (1.10)

In this case we write R = (g(t), f(t)) and we denote by R the set of Riordan matrices. Then
the set R is a group under matrix multiplication ∗, with the following properties:

(R1) (g(t), f(t)) ∗ (h(t), l(t)) = (g(t)h(f(t)), l(f(t))),

(R2) I = (1, t) is the identity element,

(R3) the inverse of R is given by R−1 = (1/g(f(t)), f(t)), where f(t) is the compositional
inverse of f(t), that is, f(f(t)) = f(f(t)) = t,

(R4) if (a0, a1, a2, . . .)
T is a column vector with the generating function A(t), then

multiplying R = (g(t), f(t)) on the right by this column vector yields a column
vector with the generating function B(t) = g(t)A(f(t)).

This group has many applications. Three of them are given in [6] such as Euler’s
problem of the King walk, binomial and inverse identities, and Bessel-Neumann expansion.

Riordan arrays are also useful for solving the combinatorial sums by the help of
generating functions. For example, in [11], Cheon, Kim, and Shapiro have many results
including a generalized Lucas polynomial sequences from Riordan array and combinatorial
interpretations for a pair of generalized Lucas polynomial sequences.

2. The (p, q)-Fibonacci and (p, q)-Lucas Polynomials with
Some Properties

In [12], the authors introduced the h(x)-Fibonacci polynomials, where h(x) is a polynomial
with real coefficients. The h(x)-Fibonacci polynomials {Fh,n(x)}∞n=0 are defined by the recur-
rence relation

Fh,n+1(x) = h(x)Fh,n(x) + Fh,n−1(x), n ≥ 1, (2.1)

with initial conditions Fh,0(x) = 0, Fh,1(x) = 1.
In this paper, we introduce a generalization of the h(x)-Fibonacci polynomials.
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Definition 2.1. Let p(x) and q(x) be polynomials with real coefficients. The (p, q)-Fibonacci
polynomials {Fp,q,n(x)}∞n=0 are defined by the recurrence relation

Fp,q,n+1(x) = p(x)Fp,q,n(x) + q(x)Fp,q,n−1(x), n ≥ 1 (2.2)

with the initial conditions Fp,q,0(x) = 0 and Fp,q,1(x) = 1.

For later use Fp,q,2(x) = p(x), Fp,q,3(x) = p2(x) + q(x), Fp,q,4(x) = p3(x) + 2p(x)q(x),
Fp,q,5(x) = p4(x) + 3p2(x)q(x) + q2(x) · · · .

Now, we introduce (p, q)-Lucas polynomials {Lp,q,n(x)}∞n=0 as the following definition.

Definition 2.2. The (p, q)-Lucas polynomials {Lp,q,n(x)}∞n=0 are defined by the recurrence
relation

Lp,q,n(x) = Fp,q,n+1(x) + q(x)Fp,q,n−1(x). (2.3)

Also for later use Lp,q,0(x) = 2, Lp,q,1(x) = p(x), Lp,q,2(x) = p2(x) + 2q(x), Lp,q,3(x) =
p3(x) + 3p(x)q(x), Lp,q,4(x) = p4(x) + 4p2(x)q(x) + 2q2(x) · · · .

In [12], the authors defined h(x)-Lucas polynomials as follows:

Lh,n+1(x) = h(x)Lh,n(x) + Lh,n−1(x), n ≥ 1, (2.4)

with initial conditions Lh,0(x) = 2, Lh,1(x) = h(x). However, we defined (p, q)-Lucas
polynomials in the Definition 2.2 which is different from h(x)-Lucas polynomials. From the
Definition 2.2, for p(x) = 1 and q(x) = 1, we obtain the usual Lucas numbers. And, for
p(x) = h(x) and q(x) = 1, we obtain the h(x)-Lucas polynomials.

For the special cases of p(x) and q(x), we can get the polynomials given in Table 1.
The generating function gF(t) of the sequence {Fp,q,n(x)} is defined by

gF(t) =
∞∑

n=0

Fp,q,n(x)tn. (2.5)

We know that the generating function gF(t) is a convergence formal series.

Theorem 2.3. Let gF(t) be the generating function of the (p, q)-Fibonacci polynomial sequence
Fp,q,n(x). Then

gF(t) =
t

1 − p(x)t − q(x)t2
. (2.6)
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Proof. Let gF(t) be the generating function of the (p, q)-Fibonacci polynomial sequence
Fp,q,n(x), then

gF(t) =
∞∑

n=0

Fp,q,n(x)tn

= Fp,q,1(x)t + Fp,q,2(x)t2 +
∞∑

n=3

Fp,q,n(x)tn

= t + t2p(x) +
∞∑

n=3

[
p(x)Fp,q,n−1(x) + q(x)Fp,q,n−2(x)

]
tn

= t + t2p(x) +
∞∑

n=3

p(x)Fp,q,n−1(x)tn +
∞∑

n=3

q(x)Fp,q,n−2(x)tn

= t + t2p(x) + t
∞∑

n=3

p(x)Fp,q,n−1(x)tn−1 + t2
∞∑

n=3

q(x)Fp,q,n−2(x)tn−2

= t + t2p(x) + tp(x)
∞∑

n=2

Fp,q,n(x)tn + t2q(x)
∞∑

n=1

Fp,q,n(x)tn

= t + t2p(x) + tp(x)

[ ∞∑

n=1

Fp,q,n(x)tn − t

]

+ t2q(x)
∞∑

n=1

Fp,q,n(x)tn

= t + t2p(x) + tp(x)
[
gF(t) − t

]
+ t2q(x)gF(t).

(2.7)

By taking gF(t) parenthesis we get

gF(t) =
t

1 − p(x)t − q(x)t2
. (2.8)

The proof is completed.

Corollary 2.4. Let gL(t) be the generating function of the (p, q)-Lucas polynomial sequence Lp,q,n(x).
Then

gL(t) =
2 − p(x)t

1 − p(x)t − q(x)t2
. (2.9)

The Binet formula is also very important in Fibonacci numbers theory. Now we can
get the Binet formula of (p, q)-Fibonacci polynomials. Let α(x) and β(x) be the roots of the
characteristic equation

t2 − p(x)t − q(x) = 0 (2.10)
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of the recurrence relation (2.2). Then

α(x) =
p(x) +

√

p2(x) + 4q(x)

2
, β(x) =

p(x) −
√

p2(x) + 4q(x)

2
. (2.11)

Note that α(x)+β(x) = p(x) and α(x)β(x) = −q(x). Nowwe can give the Binet formula
for the (p, q)-Fibonacci and (p, q)-Lucas polynomials.

Theorem 2.5. For n ≥ 0

Fp,q,n(x) =
αn(x) − βn(x)
α(x) − β(x)

,

Lp,q,n(x) = αn(x) + βn(x).

(2.12)

Proof. The theorem can be proved by mathematical induction on n.

Lemma 2.6. For n ≥ 1,

tn = Fp,q,n(x)t + q(x)Fp,q,n−1(x). (2.13)

Proof. From the characteristic equation of the (p, q)-Fibonacci polynomials we have

t2 = p(x)t + q(x)

= Fp,q,2(x)t + q(x)Fp,q,1(x).
(2.14)

By induction on n we get

tn+1 = tnt

=
(
Fp,q,n(x)t + q(x)Fp,q,n−1(x)

)
t

= Fp,q,n(x)t2 + q(x)tFp,q,n−1(x)

= Fp,q,n(x)
(
p(x)t + q(x)

)
+ q(x)tFp,q,n−1(x)

=
(
Fp,q,n(x)p(x) + q(x)Fp,q,n−1(x)

)
t + q(x)Fp,q,n(x)

= Fp,q,n+1(x)t + q(x)Fp,q,n(x).

(2.15)

Thus we have

tn = Fp,q,n(x)t + q(x)Fp,q,n−1(x). (2.16)
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Theorem 2.7. Let Lp,q,n(x) = Fp,q,n+1(x) + q(x)Fp,q,n−1(x). Then for n ≥ 3,

Lp,q,n(x) = p(x)Lp,q,n−1(x) + q(x)Lp,q,n−2(x). (2.17)

Proof. If n = 3 then

Lp,q,3 = p3(x) + 3p(x)q(x)

= p(x)Lp,q,2(x) + q(x)Lp,q,1(x).
(2.18)

By induction on n we have

p(x)Lp,q,n(x) + q(x)Lp,q,n−1(x) = p(x)
(
Fp,q,n+1(x) + q(x)Fp,q,n−1(x)

)

+ q(x)
(
Fp,q,n(x) + q(x)Fp,q,n−2(x)

)

= p(x)Fp,q,n+1(x) + p(x)q(x)Fp,q,n−1(x)

+ q(x)Fp,q,n(x) + q2(x)Fp,q,n−2(x)

= p(x)Fp,q,n+1(x) + q(x)Fp,q,n(x)

+ q(x)
(
p(x)Fp,q,n−1(x) + q(x)Fp,q,n−2(x)

)

= Fp,q,n+2(x) + q(x)Fp,q,n(x)

= Lp,q,n+1(x).

(2.19)

In [12], the author introduced the matrixQh(x) that plays the role of the Q-matrix. The
Q-matrix is associated with the Fibonacci numbers and is defined as

Q =
[
1 1
1 0

]

. (2.20)

Actually, in [12], Nalli and Pentti defined the matrix Qh(x) as follows

Qh(x) =
[
h(x) 1
1 0

]

. (2.21)

We now introduce the matrix Qp,q(x) which is a generalization of the Qh(x).

Definition 2.8. Let Qp,q(x) denote the 2 × 2 matrix defined as

Qp,q(x) =
[
p(x) q(x)
1 0

]

. (2.22)
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Theorem 2.9. Let n ≥ 1. Then

Qn
p,q(x) =

[
Fp,q,n+1(x) q(x)Fp,q,n(x)
Fp,q,n(x) q(x)Fp,q,n−1(x)

]

. (2.23)

Proof. We can prove the theorem by induction on n. The result holds for n = 1. Suppose that
it holds for n = m (m ≥ 1). Then

Qm+1
p,q (x) = Qm

p,q(x) ·Qp,q(x)

=
[
Fp,q,m+1(x) q(x)Fp,q,m(x)
Fp,q,m(x) q(x)Fp,q,m−1(x)

][
p(x) q(x)
1 0

]

=
[
Fp,q,m+2(x) q(x)Fp,q,m+1(x)
Fp,q,m+1(x) q(x)Fp,q,m(x)

]

(2.24)

which completes the proof.

Corollary 2.10. Let m,n ≥ 0. Then

Fp,q,m+n+1(x) = Fp,q,m+1(x)Fp,q,n+1(x) + q(x)Fp,q,m(x)Fp,q,n(x). (2.25)

If an integer a/= 0 divides an integer b, we denote a | b.

Corollary 2.11. For k ≥ 1,

Fp,q,n(x) | Fp,q,kn(x). (2.26)

Corollary 2.12. The roots of characteristic equation of Qn
p,q(x) are α

n(x) and βn(x).

Corollary 2.13. For n ≥ 1

Fp,q,n(x) =
�(n−1)/2�∑

n=0

(
n − i
i

)

pn−2i(x)qi(x). (2.27)

The following identities of which originated fromKoshy (1998) [1] are a generalization
of Koshy’s results.

Theorem 2.14. For k ≥ 1, one has

n∑

i=0

Fp,q,ki+j(x)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fp,q,nk+j(x)pk(x) + Fp,q,j(x) − Fp,q,nk+k+j(x) + Fp,q,k−j(x)
(−q(x))j

pk(x) − Lp,q,k(x) + 1
, j < k,

Fp,q,nk+j(x)pk(x)+Fp,q,j(x)−Fp,q,nk+k+j(x)+Fp,q,j−k(x)
(−q(x))k

pk(x) − Lp,q,k(x) + 1
, otherwise.

(2.28)
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Proof. We know that

α(x) − β(x) =
√

p2(x) + 4q(x), Lp,q,n(x) = αn(x) + βn(x). (2.29)

Since Fp,q,n(x) = (αn(x) − βn(x))/
√

p2(x) + 4q(x), from Theorem 2.5, we have

n∑

i=0

Fp,q,ki+j(x) =
n∑

i=0

αki+j(x) − βki+j(x)
√

p2(x) + 4q(x)

=
1

√

p2(x) + 4q(x)

(

αj(x)
n∑

i=0

αki(x) − βj(x)
n∑

i=0

βki(x)

)

=
1

√

p2(x) + 4q(x)

(

αj(x)
αnk+k(x) − 1
αk(x) − 1

− βj(x)
βnk+k(x) − 1
βk(x) − 1

)

=
1

√

p2(x) + 4q(x)

(
αnk+k+j(x) − αj(x)

αk(x) − 1
− βnk+k+j(x) − βj(x)

βk(x) − 1

)

.

(2.30)

Set 1/
√

p2(x) + 4q(x) = A(x) and

C(x) =

{
Fp,q,k−j(x)

(−q(x))j if j < k,

Fp,q,j−k(x)
(−q(x))k otherwise.

(2.31)

Then we have
n∑

i=0

Fp,q,ki+j(x) =
A(x)

(
α(x)β(x)

)k − (αk(x) + βk(x)
)
+ 1

×
(
αnk+k+j(x)βk(x) − αj(x)βk(x) − αnk+k+j(x) + αj(x) − βnk+k+j(x)αk(x)

+αk(x)βj(x) + βn(x)
)

=
A(x)

pk(x) − Lp,q,k(x) + 1

×
(

Fp,q,nk+jp
k(x)

1
A(x)

+ Fp,q,j(x)
1

A(x)
− Fp,q,nk+k+j(x)

1
A(x)

+αk(x)βj(x) − αj(x)βk(x)
)

=
Fp,q,nk+j(x)pk(x) + Fp,q,j(x) − Fp,q,nk+k+j(x) + C(x)

pk(x) − Lp,q,k(x) + 1
.

(2.32)

Thus the proof is completed.
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Theorem 2.15. For n ≥ 0 one has

n∑

k=0

(
n
k

)

pk(x)qn−k(x)Fp,q,k(x) = Fp,q,2n(x). (2.33)

Proof. By Theorem 2.5 we have

n∑

k=0

(
n
k

)

pk(x)qn−k(x)Fp,q,k(x) =
n∑

k=0

(
n
k

)

pk(x)qn−k(x)
αk(x) − βk(x)
α(x) − β(x)

=
1

α(x) − β(x)

(
n∑

k=0

(
n
k

)

pk(x)qn−k(x)
(
αk(x) − βk(x)

)
)

=
1

α(x) − β(x)

(
n∑

k=0

(
n
k

)
(
p(x)α(x)

)k
qn−k(x)

−
n∑

k=0

(
n
k

)
(
p(x)β(x)

)k
qn−k(x)

)

=
1

α(x) − β(x)
((
p(x)α(x) + q(x)

)n +
(
p(x)β(x) + q(x)

)n)
.

(2.34)

Since α(x) and β(x) are the solutions of the equation t2 − p(x)t − q(x) = 0,

α2(x) = p(x)α(x) + q(x),

β2(x) = p(x)β(x) + q(x).
(2.35)

Thus we have

n∑

k=0

(
n
k

)

pk(x)qn−k(x)Fp,q,k(x) =

(
α2(x)

)n − (β2(x))n
α(x) − β(x)

= Fp,q,2n(x).

(2.36)

The proof is completed.

Theorem 2.16. For n ≥ 0, one has

n∑

k=0

(
n
k

)

pk(x)
(−q(x))n−kFp,q,k(x) =

n∑

k=0

(
n
k

)
(−2q(x))kFp,q,2(n−k)(x). (2.37)
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Proof. By Theorem 2.5 we have

n∑

k=0

(
n
k

)

pk(x)
(−q(x))n−kFp,q,k(x) =

n∑

k=0

(
n
k

)

pk(x)
(−q(x))n−k α

k(x) − βk(x)
α(x) − β(x)

=
1

α(x) − β(x)

(
n∑

k=0

(
n
k

)

pk(x)
(−q(x))n−k

(
αk(x) − βk(x)

)
)

=
1

α(x) − β(x)

(
n∑

k=0

(
n
k

)
(
p(x)α(x)

)k(−q(x))n−k

−
n∑

k=0

(
n
k

)
(
p(x)β(x)

)k(−q(x))n−k
)

=
1

α(x) − β(x)
((
p(x)α(x) − q(x)

)n +
(
p(x)β(x) − q(x)

)n)
.

(2.38)

Since α(x) and β(x) are the solutions of the equation t2 − p(x)t − q(x) = 0,

p(x)α(x) − q(x) = α2(x) − 2q(x),

p(x)β(x) − q(x) = β2(x) − 2q(x).
(2.39)

Thus we have

n∑

k=0

(
n
k

)

pk(x)
(−q(x))n−kFp,q,k(x) =

(
α2(x) − 2q(x)

)n − (β2(x) − 2q(x)
)n

α(x) − β(x)

=
n∑

k=0

(
n
k

)
(−2q(x))kFp,q,2(n−k)(x).

(2.40)

The proof is completed.

Corollary 2.17. For n ≥ 0 one has

n∑

k=0

(
n
k

)

pn−k(x)(−1)kLp,q,k(x) = Lp,q,n(x). (2.41)

Proof. Since p(x) − α(x) = −q(x)/α(x) and p(x) − β(x) = −q(x)/β(x), we have

n∑

k=0

(
n
k

)

pn−k(x)(−1)kLp,q,k(x) =
n∑

k=0

(
n
k

)

pn−k(x)(−1)k
(
αk(x) + βk(x)

)

=
n∑

k=0

(
n
k

)

pn−k(x)(−1)k(−α(x))k
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+
n∑

k=0

(
n
k

)

pn−k(x)(−1)k(−β(x))k

=
(
p(x) − α(x)

)n +
(
p(x) − β(x)

)n

=
(

−q(x)
α(x)

)n

+
(

−q(x)
β(x)

)n

=
(−q(x))n α

n(x) + βn(x)
(
α(x)β(x)

)n

= Lp,q,n(x).

(2.42)

Corollary 2.18. For n ≥ 0,

Fp,q,2n(x) = Fp,q,n(x)Lp,q,n(x). (2.43)

Corollary 2.19. For n ≥ m,

Fp,q,n+m(x) −
(−q(x))mFp,q,n−m(x) = Fp,q,m(x)Lp,q,n(x). (2.44)

Proof. From the Binet formula of the (p, q)-Fibonacci and Lucas polynomials we have

Fp,q,n+m(x) −
(−q(x))mFp,q,n−m(x)

=
αn+m(x) − βn+m(x)

α(x) − β(x)
− (−q(x))mαn−m(x) − βn−m(x)

α(x) − β(x)

=
αn+m(x) − βn+m(x) − (−q(x))m(αn−m(x) − βn−m(x)

)

α(x) − β(x)
.

(2.45)

Since α(x)β(x) = −q(x) then

Fp,q,n+m(x) −
(−q(x))mFp,q,n−m(x)

=
αn+m(x) − βn+m(x) − (α(x)β(x))m(αn−m(x) − βn−m(x)

)

α(x) − β(x)

=
αn+m(x) − βn+m(x) − (αn(x)βm(x) − αm(x)βn(x)

)

α(x) − β(x)



Journal of Applied Mathematics 13

=

(
αm(x) − βm(x)

) − (αn(x) + βn(x)
)

α(x) − β(x)

=
αm(x) − βm(x)
α(x) − β(x)

((
αn(x) + βn(x)

))

= Fp,q,m(x)Lp,q,n(x).

(2.46)

Corollary 2.20. For n ≥ 0 one has

n∑

k=0

(
n
k

)

pk(x)qn−k(x)Lp,q,k(x) = Lp,q,2n(x). (2.47)

Theorem 2.21. For n ≥ 1, one has

Fp,q,n−1(x)Fp,q,n+1(x) − F2
p,q,n(x) = (−1)nqn−1(x). (2.48)

Proof. We will prove the theorem by mathematical induction on n. Since

Fp,q,0(x)Fp,q,1(x) − F2
p,q,1(x) = 0p(x) − 12 = 0 − 1

= (−1)1
(
q0(x)

)
,

(2.49)

the given statement is true when n = 1.
Now, we assume that it is true for an arbitrary positive integer k, that is,

Fp,q,k−1(x)Fp,q,k+1(x) − F2
p,q,k(x) = (−1)kqk−1(x). (2.50)

Then

Fp,q,k(x)Fp,q,k+2(x) − F2
p,q,k+1(x) =

1
p(x)

(
Fp,q,k+1(x) − q(x)Fp,q,k−1(x)

)

× (p(x)Fp,q,k+1(x) + q(x)Fp,q,k(x)
) − F2

p,q,k+1(x)

=
1

p(x)

(
q(x)Fp,q,k+1(x)Fp,q,k(x) + p(x)F2

p,q,k+1(x)

−q2(x)Fp,q,k(x)Fp,q,k−1(x) − p(x)q(x)Fp,q,k−1(x)Fp,q,k+1(x)
)

− F2
p,q,k+1(x)
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=
q(x)
p(x)

Fp,q,k+1(x)Fp,q,k(x)+F2
p,q,k+1(x)−

q2(x)
p(x)

Fp,q,k(x)Fp,q,k−1(x)

− q(x)Fp,q,k−1(x)Fp,q,k+1(x) − F2
p,q,k+1(x)

=
q(x)
p(x)

Fp,q,k+1(x)Fp,q,k(x) −
q2(x)
p(x)

Fp,q,k(x)Fp,q,k−1(x)

− q(x)Fp,q,k−1(x)Fp,q,k+1(x).

(2.51)

By assumption we have

Fp,q,k(x)Fp,q,k+2(x) − F2
p,q,k+1(x) =

q(x)
p(x)

Fp,q,k+1(x)Fp,q,k(x)

− q2(x)
p(x)

Fp,q,k(x)Fp,q,k−1(x) − q(x)
(
(−1)kqk(x) + F2

p,q,k(x)
)

=
q(x)
p(x)

Fp,q,k+1(x)Fp,q,k(x) −
q2(x)
p(x)

Fp,q,k(x)Fp,q,k−1(x)

− q(x)F2
p,q,k(x) − (−1)kqk(x)

=
q(x)
p(x)

Fp,q,k+1(x)Fp,q,k(x) − q(x)Fp,q,k(x)

×
(
q(x)
p(x)

Fp,q,k−1(x) + Fp,q,k(x)
)

+ (−1)k+1qk(x)

=
q(x)
p(x)

Fp,q,k+1(x)Fp,q,k(x)

− q(x)Fp,q,k(x)
1

p(x)
Fp,q,k+1(x) + (−1)k+1qk(x)

= (−1)k+1qk(x).
(2.52)

Thus the formula works for n = k + 1. So by mathematical induction, the statement is true for
every integer n ≥ 1.

3. The Infinite (p, q)-Fibonacci and (p, q)-Lucas Polynomial Matrix

In this section we define a newmatrix which we call (p, q)-Fibonacci polynomials matrix. The
infinite (p, q)-Fibonacci polynomials matrix

F(x) = [Fp,q,i,j(x)
]

(3.1)
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is defined as follows:

F(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

p(x) 1 0 0
...

p2(x) + q(x) p(x) 1 0
...

p3(x) + 2p(x)q(x) p2(x) + q(x) p(x) 1
· · · · · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
(
gF(x)(t), fF(x)(t)

)
.

(3.2)

The matrix F(x) is an element of the set of Riordan matrices. Since the first column of F(x) is
(
1, p(x), p2(x) + q(x), p3(x) + 2p(x)q(x), p4(x) + 3p2(x)q(x) + q2(x), . . .

)T
, (3.3)

then it is obvious that gF(x)(t) =
∑∞

n=0 Fp,q,n(x)tn = 1/(1 − p(x)t − q(x)t2). In the matrix F(x)
each entry has a rule with the upper two rows, that is,

Fp,q,n+1,j(x) = p(x)Fp,q,n,j(x) + q(x)Fp,q,n−1,j(x). (3.4)

Then fF(t) = t, that is,

F(x) = (gF(x)(t), fF(x)(t)
)

=
(

1
1 − p(x)t − q(x)t2

, t

)

;
(3.5)

hence F(x) is in R.
Similarly we can define the (p, q)-Lucas polynomials matrix. The infinite (p, q)-Lucas

polynomials matrix

L(x) =
[
Lp,q,i,j(x)

]
(3.6)

can be written as

L(x) =
(
gL(x)(t), fL(x)(t)

)

=
(

2 − p(x)t
1 − p(x)t − q(x)t2

, t

)

.
(3.7)

In this section we give two factorizations of Pascal Matrix involving the (p, q)-
Fibonacci polynomial matrix. For these factorizations we need to define two matrices. Firstly
we define an infinite matrix M(x) = (mij(x)) as follows:

mij(x) =
(
i − 1
j − 1

)

− p(x)
(
i − 2
j − 1

)

− q(x)
(
i − 3
j − 1

)

. (3.8)
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We have the infinite matrix M(x) as follows:

M(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 − p(x) 1 0 0

1 − p(x) − q(x) 2 − p(x) 1 0
...

1 − p(x) − q(x) 3 − 2p(x) − q(x) 3 − p(x) 1
· · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.9)

Now we can give the first factorization of the infinite Pascal matrix via the infinite
(p, q)-Fibonacci polynomial matrix and the infinite matrix M(x) defined in (3.8) by the
following theorem.

Theorem 3.1. Let M(x) be the infinite matrix as in (3.8) and F(x) be the infinite (p, q)-Fibonacci
polynomial matrix; then,

P(x) = F(x) ∗M(x), (3.10)

where P is the usual Pascal matrix.

Proof. From the definitions of the infinite Pascal matrix and the infinite (p, q)-Fibonacci
polynomial matrix we have the following Riordan representations:

P =
(

1
1 − t

,
t

1 − t

)

, F(x) =
(

1
1 − p(x)t − q(x)t2

, t

)

. (3.11)

Now we can find the Riordan representation of the infinite matrix

M(x) =
(
gM(x)(t), fM(x)(t)

)
(3.12)

as follows:

M(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 − p(x) 1 0 0

1 − p(x) − q(x) 2 − p(x) 1 0
...

1 − p(x) − q(x) 3 − 2p(x) − q(x) 3 − p(x) 1
· · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.13)

From the first column of the matrix M(x)we obtain

gM(x)(t) =
1 − p(x)t − q(x)t2

1 − t
. (3.14)
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From the rule of the matrix M(x), fM(x)(t) = t/(1 − t). Thus

M(x) =

(
1 − p(x)t − q(x)t2

1 − t
,

t

1 − t

)

. (3.15)

Finally by the Riordan representations of the matrices F(x) andM(x)we complete the proof.

Now we define the n × nmatrix R(x) = (rij(x)) as follows:

(
rij(x)

)
=
(
i − 1
j − 1

)

− p(x)
(
i − 1
j

)

− q(x)
(
i − 1
j + 1

)

. (3.16)

We have the infinite matrix R(x) as follows.

R(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 − p(x) 1 0 0

1 − 2p(x) − q(x) 2 − p(x) 1 0
...

1 − 3p(x) − 3q(x) 3 − 3p(x) − q(x) 3 − p(x) 1
· · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.17)

Now we can give second factorization of Pascal matrix via the infinite (p, q)-Fibonacci
polynomial matrix by the following corollary.

Corollary 3.2. Let R(x) be the matrix as in (3.16). Then

P = R(x) ∗ F(x). (3.18)

We can find the inverses of the matrices by using the Riordan representations of the
matrices easily.

Corollary 3.3. One has

F−1(x) =
(
1 − p(x)t − q(x)t2, t

)

M−1(x) =

(
1 + t

1 +
(
2 − p(x)

)
t − (1 − p(x) − q(x)

)
t2
,

t

1 + t

)

L−1 =

(
1 − p(x)t − q(x)t2

2 − p(x)t
, t

)

.

(3.19)
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