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Symmetries of nth-order approximate stochastic ordinary differential equations (SODEs) are
studied. The determining equations of these SODEs are derived in an Itô calculus context. These
determining equations are not stochastic in nature. SODEs are normally used tomodel nature (e.g.,
earthquakes) or for testing the safety and reliability of models in construction engineering when
looking at the impact of random perturbations.

1. Introduction

The modelling power of a SODE has been applied to many diverse fields of research, from
the modelling of turbulent diffusion to neuronal activity in the brain. Models such as these
are often influenced by more than one Wiener process. In these models, we assume that the
Wiener processes are independent of one another. As a result of this increase in the number
of Wiener processes affecting the model, the form of the Itô formula is slightly different to
the one used in Fredericks and Mahomed [1, 2]. The Itô formula is able to relate an arbitrary
sufficiently smooth function F(t, x) of time and space to a particular SODE, of which it is a
solution. This formula, however, needs the SODE of the spatial random processX(t, ω)which
drives the arbitrary function F(X(t, ω), ω). The application of an SODE to an approximate
analysis algorithm has been done by Ibragimov et al. [3] for scalar SODEs of first order. We
extend this work for higher dimensions and order. We derive a similar conditioning on the
temporal infinitesimal τ as had been performed by Ünal [4] and Fredericks and Mahomed
[2]. We introduce operators to write the determining equations in a neater form.
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Wafo Soh andMahomed [5] gave an algorithm to obtain Lie point symmetries for both
first- and nth-order SODEs. We briefly review their work and follow up with an extension
from point symmetries to generalized symmetries.

The first section begins with the transformations of the spatial, temporal, and Wiener
variables for an nth-order Itô process. These transformations have the same properties as
stated in Fredericks and Mahomed [6].

Using the Itô formula in conjunction with the infinitesimal transformations which
preserve form invariance, we derive conditions for nth-ordered SODEs that ensure the
recovery of invariance preserving finite transformations from the infinitesimal ones. This has
not been done in the past.

This is followed up with the development of recursive relations needed for finding the
prolonged spatial infinitesimals in a SODE context by using the concept of form invariance.
This differs from the methodology used by [5], where the recursive relation defined was
predefined from anODE context. As a result we also derive a conditioning on these prolonged
spatial infinitesimal variables. We further derive a conditioning on the diffusion coefficient of
the temporal generalised symmetry τ , which is similar to that of Ünal [4]. We conclude the
article with an introduction of operators which generalize the determining equations for any
order SODE that is adaptable to both point and generalized symmetries.

The symmetries of high-ordered multidimensional stochastic ordinary differential
equations (SODEs) are found using form invariance arguments on both the instantaneous
drift and diffusion properties of the SODEs. We then apply this work to a generalized
approximation analysis algorithm. The determining equations of SODEs are derived in an
Itö calculus context. We also use the random time change formula used by Wafo Soh and
Mahomed [5] to transform the Wiener processes.

2. Review of Wafo Soh and Mahomed [5] for nth-Order SODEs

An nth-order Itô process has the following vector form:

dX(n−1)(t) = f
(
t,X(t), Ẋ(t), . . . ,X(n−1)(t)

)
dt +G

(
t,X(t), Ẋ(t), . . . ,X(n−1)(t)

)
dW(t), (2.1)

dX
(k)
j (t) = X

(k+1)
j (t)dt, (2.2)

X
(0)
j (t) = Xj(t) (2.3)

for k = 0, 1, . . . , n − 2. Since the instantaneous mean, f, is an N-vector valued function, the
index j runs from one to N, that is, j = 1, . . . ,N. The diffusion coefficent G is an N × M-
matrix valued function and W(t) is an M-dimensional standard Wiener process. From here
onwards we denote {X(t), Ẋ(t), . . . ,X(n−1)(t)} byX(n−1)(t). The context of this processes is that
both the instantaneous drift and diffusion coefficients are Lipschitz continuous with respect
to the right norm. A good example of the type of norm used for this is given by [7] in their
seventh chapter.

The Lie point transformation methodology used by Wafo Soh and Mahomed [5] does
all calculations to O(θ). As a result, the recoverability of the finite transformations, which
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keep invariance, from the infinitesimal ones is not verified. The symmetry operator H of
point symmetry is

H = τ(x, t)
∂

∂t
+ ξj(x, t)

∂

∂xj
, (2.4)

where there is summation j = 1,N. However since we are dealing with an nth-ordered SODE,
prolongation formulation is necessary. In the Banach space, the transformation for the (n −
1)th-ordered spatial derivative is

x(n−1) = eθH
[n−1]

x(n−1),

x(k) = eθH
[n−1]

x(k)

= eθH
[k]
x(k), k < n − 1,

(2.5)

where

H[n−1] = H(n−2) + ξ
[n−1]
j

∂

∂x
(n−1)
j

, n ≥ 1,

H[0] = H.

(2.6)

Applying Itô’s formula on an arbitrarily ordered prolongation of a spatial infinitesimal,
ξj

[r](t,X(r−1)(t)), gives

dξj
[r]
(
t,X(r−1)(t)

)
= f(ξ[r])j

(
t,X(r−1)(t)

)
dt +Gl

(ξ[r])j

(
t,X(r−1)(t)

)
dWl(t), (2.7)

where

f(ξ[r])j
(
t,X(r−1)(t)

)
=

∂ξj
[γ]

∂t
+ fi

∂ξj
[γ]

∂x
(n−1)
i

+
1
2

M∑
k=1

Gk
i G

k
p

∂2ξj
[γ]

∂x
(n−1)
i ∂x

(n−1)
p

+
n−2∑
α=0

x
(α+1)
p

∂ξj
[r]

∂x
(α)
p

, where n ≥ 2;

Gl

(ξ[r])j

(
t,X(r−1)(t)

)
=

∂ξj
[γ]

∂x
(n−1)
i

Gl
ir, for each j ranging from 1 to N.

(2.8)

If the summation operator runs from a nonnegative value, for example, 0, to a negative one;
that is, −1, the outcome of the entire summation is set to zero. With this convention, we are
able to recover the Itô formula for first-order SODEs. Due to the repeated index summation
convention, the spatial indices i and p both run from 1 to N in the summation; the Wiener
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indices l and k run from 1 toM. Similarly, the Itô’s formula for the temporal variable, τ(x, t),
gives

dτ = f(τ)(X(t, ω), t)dt +Gl
(τ)(X(t, ω), t)dWl(X(t, ω), t), (2.9)

where

f(τ)(X(t, ω), t) =
∂τ

∂t
+ fi

∂τ

∂x
(n−1)
i

+
1
2

M∑
k=1

Gk
i G

k
p

∂2τ

∂x
(n−1)
i ∂x

(n−1)
p

+
n−2∑
α=0

x
(α+1)
p

∂τ

∂x
(α)
p

, (2.10)

which reduces to the total derivative, since the temporal infinitesimal is a point transforma-
tion

f(τ)(X(t, ω), t) = D(τ), (2.11)

where the total derivative is defined as

D =
∂

∂t
+

n−2∑
α=0

x
(α+1)
p

∂

∂x
(α)
p

. (2.12)

The diffusion coefficient of the temporal infinitesimal is given by

Gl
(τ)(X(t, ω), t) = Gl

i

∂τ

∂x
(n−1)
i

(2.13)

reduces to zero as well because of the fact that we are dealing with point transformations,
that is,

Gl
(τ)(X(t, ω), t) = 0. (2.14)

The drift and diffusion coefficients of the (n − 1)th-order spatial derivative are, respectively,
transformed as

fj

(
X(n−1)(

t
)
, t

)
= fj
(
X(n−1)(t), t

)
+ θH[n−1]

(
fj
(
X(n−1)(t), t

))
+O
(
θ2
)
, (2.15)

Gl
j

(
X(n−1)(

t
)
, t

)
= Gl

j

(
X(n−1)(t), t

)
+ θH[n−1]

(
Gl

j

(
X(n−1)(t), t

))
+O
(
θ2
)
. (2.16)

The Itô formula of the finite time index transformation is

dt = Γ
(
eθH

[n−1]
(t)
)
dt + Y l

(
eθH

[n−1]
(t)
)
dWl, (2.17)
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which Wafo Soh and Mahomed [5] simply write as

dt = dt(1 + θD(τ)) +O
(
θ2
)
, (2.18)

since the temporal infinitesimal is a point transformation. We also have that the transformed
time index should keep invariance in the following probabilistic way:

EQ

[
dt(t, ω)

]
= dt(t, ω). (2.19)

This requires

Y l
(
eθH

[n−1]
(t)
)
= 0, l = 1,M, (2.20)

which is automatically satisfied since τ is point transformation. Condition (2.19) also forces

D
(
eθH

[n−1]
(t)
)
= Constant, (2.21)

which is overlooked in [5]. Thus the finite transformation of the Wiener process is

dWl

(
t, ω
)
=
√
D
(
eθH[n−1] (t)

)
dWl(t, ω), (2.22)

which Wafo Soh and Mahomed [5] simplify as

dWl

(
t, ω
)
= dWl(t, ω)

(
1 +

ε

2
D(τ)

)
+O
(
θ2
)
, (2.23)

where [5] used a generalized binomial expansion of the square-root of the derivative of the
transformed time index with respect to time. The Itô SODE associated with Lie point nth-
ordered spatial transformation is

dX
(n−1)
j

(
t
)
= dX

(n−1)
j (t) + θ

(
f(ξ[n−1])jdt +Gl

(ξ[n−1])jdWl(t)
)
+O
(
θ2
)
. (2.24)

Wafo Soh and Mahomed [5] make the assumption that only the system of nth order SODEs,
(2.1), remains invariant under the symmetry operator (2.4), which implies that

dX
(n−1)
j

(
t
)
= fj

(
t,X(n−1)(

t, ω
))

dt +Gl
j

(
t,X(n−1)(

t, ω
))

dWl

(
t
)
, (2.25)

where we denote {X(t), Ẋ(t), . . . ,X(r−1)
(t)} by X(r−1)

(t) for an arbitrary r ∈ N.
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Expanding the drift component fj(t,X
(n−1)

(t, ω))dt of (2.25) using (2.15) and (2.18)
gives

f
(
t,X(n−1)(t)

)
dt =

⎧
⎨
⎩f
(
t,X(n−1)(t)

)
+ θ
(
D(τ) +H[n−1]

)
f
(
t,X(n−1)(t)

)

+
∞∑
k=2

θk

k!

⎛
⎝(D(τ) +H[n−1]

)k
f
(
t,X(n−1)(t)

)

+
k−2∑
j=0

(
k

k − j

)
Hj
(
f
(
t,X(n−1)(t)

))

×
(
D
(
Hk−j(t)

)
− [D(τ)]k−j

)
⎞
⎠
⎫
⎬
⎭dt.

(2.26)

In order for the finite transformations to keep invariance, we require a higher ordered θ-terms
to be solely dependent on the O(1) and O(θ) terms, this forces the condition

eθD(τ) = D
(
eθH

[n−1]
(t)
)
, (2.27)

which is satisfied as a result of condition (2.21). Whence the finite transformation of the
Wiener process becomes

dWl

(
t, ω
)
= eθD(τ)/2dWl(t, ω). (2.28)

The diffusion component of (2.25) can easily be expanded with the utility of (2.16) and (2.23)

Gl
j

(
t,X(n−1)(t)

)
dWl =

{
Gl

j

(
t,X(n−1)(t)

)
+ θ

(
D(τ)
2

+H[n−1]
)
Gl

j

(
t,X(n−1)(t)

)

+
∞∑
k=2

θk

k!

(
D(τ)
2

+H[n−1]
)k

Gl
j

(
t,X(n−1)(t)

)}
dWl.

(2.29)

This allows us to make a comparison with the Itô SODE associated with the nth-ordered
spatial transformation (2.24), which furnishes the determining equations used by Wafo Soh
and Mahomed [5], that is,

f(ξ[n−1])j =
(
D(τ) +H[n−1]

)
fj
(
X(n−1)(t), t

)
,

Gl
(ξ[n−1])j =

(
D(τ)
2

+H[n−1]
)
Gl

j

(
X(n−1)(

t
)
, t

)
.

(2.30)
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Constructing the prolonged variables was carried out in [5] by using preexisting recursive
relations based on the Lie point theory for ODEs, that is,

ξj
[k] = Dξj

[k−1] − x
(k)
j Dτ , ξj

[0] = ξj , (2.31)

for k ≤ n. The sketch of the methodology used for Lie point symmetries for nth-ordered
SODEs by Wafo Soh and Mahomed [5] ends here. However, it is possible to construct the
recursive relations using form invariance arguments on the SODEs described in (2.2), that is,

dX
(k)
j

(
t
)
= X

(k+1)(
t
)
dt, (2.32)

which after expanding yields the following θ-ordered relations:

dX
(k)
j

(
t
)
= X(k+1)dt + θ

(
ξj

[k+1] + x
(k+1)
j D(τ)

)
dt +O

(
θ2
)
, (2.33)

Γ
(
ξ[k]
)
=
(
Γ(τ) +H[k+1]

)
X

(k+1)
i , (2.34)

G
j

i

∂ξ[k]

∂x
(n−1)
i

= 0, for k < n − 1 (2.35)

a new condition, which is not mentioned in [5], which is automatically satisfied since the
terms ξ[k], where k < n − 1, are not functions of x(n−1). In conjunction with this, we have the
Itô SODE associated with the transformation of the kth-ordered spatial transformation, that
is,

dX
(k)
j

(
t
)
= dX

(k)
j (t) + θ

(
f(ξ[k])jdt +Gl

(ξ[k])jdWl(t)
)
+O
(
ε2
)
, (2.36)

which reduces to

dX
(k)
j

(
t
)
= dX

(k)
j (t) + θD

(
ξ
[k]
j

)
dt +O

(
θ2
)

(2.37)

as a result of the fact that the lower ordered prolongation infinitesimals ξ[k]j , are not a function
of x(n−1) for k < (n − 1). Thus the recursive relations, defined by Wafo Soh and Mahomed [5]
from an ODE context, are easily derived using a form invariance philosophy, namely

D
(
ξ
[k]
j

)
= ξj

[k+1] + x
(k+1)
j D(τ). (2.38)

We now adapt the relations (2.30), (2.31), and (2.35) to an approximate SODE.
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3. Symmetries of nth Order Multidimensional Approximate Stochastic
Ordinary Differential Equations

We now consider the following:

dX(n−1)
(
t
)
=f
(
t,X(t), Ẋ(t), . . . ,X(n−1)(t), Rμ

)
dt + · · ·+G

(
t,X(t), Ẋ(t), . . . ,X(n−1)(t), Rν

)
dW(t),

dX
(k)
i (t) = X

(k+1)
i dt,

X
(0)
i (t) = Xi(t)

(3.1)

for k = 0, 1, . . . , n − 2. The function f is an approximate drift, which is an N vector-valued
function, i = 1, . . . ,N. G is an N × M matrix-valued function approximating diffusion and
W(t) is an M-dimensional Wiener process. Here f and G are defined as follows:

f
(
t, x(t), ẋ(t), . . . , x(n−1)(t), Rμ

)
= εrμfr

(
t, ẋ(t), . . . , x(n−1)(t)

)
, (3.2)

where the repeated index r runs from 0 to Rμ, where Rμ is the largest positive integer such
that μRμ < 2ρ and

G
(
t, x(t), ẋ(t), . . . , x(n−1)(t), Rν

)
= εrνGr

(
t, x(t), ẋ(t), . . . , x(n−1)(t)

)
, (3.3)

where the repeated index r runs from 0 to Rν; Rν is the largest positive integer such that
νRν < 2ρ. The order of accuracy to which we choose to work is ρ.

The spatial and temporal variables of our infinitesimal generator

H = τ
(
t, x, ρ

) ∂
∂t

+ ξj
(
t, x, ρ

) ∂

∂xj
, (3.4)

are defined as

τ
(
t, x, ρ

)
= εrτr(t, x),

ξ
(
t, x, ρ

)
= εrξr(t, x).

(3.5)
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The repeated index runs from 0 to ρ, since throughout this paper we will be working on
O(ερ). Using Itô’s formula on the (n − 1)th-prolongation of the spatial, we get

dξ
[n−1]
j =

⎛
⎝∂ξj

[n−1]

∂t
+ fi

∂ξj
[n−1]

∂x
(n−1)
i

+
1
2

M∑
s=1

Gs
iG

s
k

∂2ξj
[n−1]

∂x
(n−1)
i ∂x

(n−1)
k

+
n−2∑
α=0

x
(α+1)
k

∂ξj
[n−1]

∂x
(α)
k

⎞
⎠dt

+ · · · + ∂ξj
[n−1]

∂x
(n−1)
i

Gk
i dWk(t)

=

⎛
⎜⎜⎝

⎛
⎝1

2

M∑
s=1

G0s
i G0s

k

∂2ξ
l[n−1]
j

∂x
(n−1)
i ∂x

(n−1)
k

+
0
fi

∂ξ
l[n−1]
j

∂xi
+
∂ξ

l[n−1]
j

∂t
+

n−2∑
α=0

x
(α+1)
k

∂ξ
l[n−1]
j

∂x
(α)
k

⎞
⎠εl

+ · · · + 1
2

M∑
s=1

G
ps

i G
ps

k

∂2ξ
l[n−1]
j

∂x
(n−1)
i ∂x

(n−1)
k

εl+2pν +
M∑
s=1

Grs
i G

ps

k

∂2ξ
l[n−1]
j

∂x
(n−1)
i ∂x

(n−1)
k

εl+ν(r+p)

+ · · ·+
q

f i

∂ξ
l[n−1]
j

∂x
(n−1)
i

εl+μq

⎞
⎠dt + · · · +G

ps

i

∂ξ
l[n−1]
j

∂x
(n−1)
s

εl+νpdW (i)

(3.6)

and on the temporal infinitesimal

dτ = D(τ)dt

= εl

⎛
⎝∂τl

∂t
+

n−2∑
α=0

x
(α+1)
k

∂τl

∂x
(n−1)
k

⎞
⎠dt

(3.7)

with

p

Gs
i

∂τl

∂x
(n−1)
s

εl+νp = 0, (3.8)

which is automatically satisfied since τ is point symmetry. The repeated indices r, p, q, and l
run from 0 to Rν −1, Rν, Rμ, and ρ, respectively in our repeated index summation convention;
r < p. Thus, by substitution, we get

dX
(n−1)

= dX(n−1) + · · · + θ

⎛
⎝∂ξ[n−1]

∂t
+ fi

∂ξ[n−1]

∂x
(n−1)
i

+
1
2

M∑
k=1

Gk
i G

k
j

∂2ξ[n−1]

∂x
(n−1)
i ∂x

(n−1)
j

+
n−2∑
α=0

x
(α+1)
j

∂ξ[n−1]

∂x
(α)
j

⎞
⎠dt + θGi

j

∂ξ[n−1]

∂x
(n−1)
i

dW
(j)
t +O

(
θ2
)
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dt = dt + θD(τ)dt +O
(
θ2
)
,

dWt = dW
(l)
t

(
1 +

θ

2
D(τ)

)
+O
(
θ2
)
.

(3.9)

The transformation of f and G under our prolongated infinitesimal generator H[β] is

fi
(
t, X̂(n−1)

)
= fi
(
t,X(n−1)

)
+ θH[β]fi

(
t,X(n−1)

)
+O
(
θ2
)

= fi + θ

⎛
⎝τ
(
t, Ẋ(t)

)∂fi
∂t

+ ξ
[β]
j

(
t,X(n−1)

) ∂fi

∂x
(β)
j

⎞
⎠ +O

(
θ2
)

= εqf
q

i + θξlj
[β] ∂f

q

i

∂x
(β)
j

εl+μq + θτl
∂f

q

i

∂t
εl+μq +O

(
θ2
)

= εqf
q

i + θεl+μq

⎛
⎝ξlj

[β] ∂f
q

i

∂x
(β)
j

+ τl
∂f

q

i

∂t

⎞
⎠ +O

(
θ2
)

Gi
k

(
t, X̂(n−1)

)
= Gi

k

(
t,X(n−1)

)
+ θH[β]Gi

k

(
t,X(n−1)

)
+O
(
θ2
)

= Gi
k + θ

⎛
⎝τ
(
t, Ẋ(t)

)∂Gi
k

∂t
+ ξ

[β]
j

(
t,X(n−1)

) ∂Gi
k

∂x
(β)
j

⎞
⎠ +O

(
θ2
)

= εpG
pi

k
+ θενp+l

⎛
⎝ξlj

[β] ∂G
pi

k

∂x
(β)
j

+ τl
∂G

pi

k

∂t

⎞
⎠ +O

(
θ2
)
,

(3.10)

where {X, Ẋ, . . . , X(n−1)} is represented byX(n−1) and the transformed set {X, Ẋ, . . . , X(n−1)} is
represented by X̂(n−1). The repeated indices q, p, l, and n run from 0 to Rμ, Rν, ρ, and n − 1,
respectively.

3.1. Operators

Thus the determining equations (2.30), (2.31), and (2.35) become

εμq+l
(
f
q
m

(
Γ0
(
τl
)
+ εν(r+p)�rp

(
τl
)
+ ε2νpΥp

(
τl
)
+ εμjΨj

(
τl
))

+Hl
β

(
f
q
m

))
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+ · · · − εl
(
Γ0
(
ξ
l[n−1]
m

)
+ εν(r+p)�rp

(
ξ
l[n−1]
m

)

+ε2νpΥp

(
ξ
l[n−1]
m

)
+ εμqΨq

(
ξ
l[n−1]
m

))
= 0,

(3.11)

εl+νp
(
Hl

β

(
G

pm

k

)
+
1
2
G

pm

k

×
(
Γ0
(
τl
)
+ εν(r+p)�rp

(
τl
)
+ ε2νpΥp

(
τl
)
+ εμqΨq

(
τl
))

− Y
pk

n−1
(
ξ
l[n−1]
m

))
= 0,

(3.12)

εl+νpY
pi

n−1
(
τl
)
= 0, (3.13)

εl+νpY
pi

n−1
(
ξ
l[k]
i

)
= 0, k < n − 1, (3.14)

εl
(
Γ0
(
ξ
l[k]
m

)
+ εν(r+p)�rp

(
ξ
l[k]
m

)
+ ε2νpΥp

(
ξ
l[k]
m

)
+ εμqΨq

(
ξ
l[k]
m

))

= εl
(
x
(k+1)
i

(
Γ0
(
τl
)
+ εν(r+p)�rp

(
τl
)
+ ε2νpΥp

(
τl
)
+ εμjΨj

(
τl
))

+ ξ
l[k+1]
i

)
,

(3.15)

respectively, where

Γ0 =
1
2

M∑
s=1

G0s
i G0s

k

∂2

∂x
(n−1)
i ∂x

(n−1)
k

+ f0
i

∂

∂x
(n−1)
i

+
∂

∂t
+ · · · +

n−1−1∑
α=0

x
(α+1)
k

∂

∂x
(n−1)
k

, (3.16)

�rp =
M∑
s=1

Grs
i G

ps

k

∂2

∂x
(n−1)
i ∂x

(n−1)
k

,
(
0 ≤ r < p ≤ Rν

)
, (3.17)

Υp =
1
2

M∑
s=1

G
ps

i G
ps

k

∂2

∂x
(n−1)
i ∂x

(n−1)
k

,
(
0 < p ≤ Rν

)
, (3.18)

Ψq = f
q

i

∂

∂x
(n−1)
i

,
(
0 < q, j ≤ Rμ

)
, (3.19)

Y
pi

n−1 = G
pk

i

∂

∂x
(n−1)
k

,
(
0 ≤ p ≤ Rν

)
, (3.20)

Hl
β = τl

∂

∂t
+ ξ

l[β]
j

∂

∂x
(β)
j

,
(
0 ≤ β ≤ n − 1

)
. (3.21)

Note that we cannot cancel out the terms εl and εl+νp in (3.11) and (3.12), respectively, in
order to simplify them. These terms are a part of the summation convention implied by the
repeated indices. These terms contribute to the order of error as a result of this implication.
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We now apply our generalized methodology for finding approximate symmetries to
the Itô system considered in [3]. Our application should be consistent with the determining
equations found in Ibragimov et al. [3].

3.1.1. Example 1

For their approximate stochastic ordinary differential equations, n − 1 = 0, μ = 1, ν = 1/2,
Rμ = 1, Rν = 1, and ρ = 1. Thus the diffusion coefficient G, which was taken to be constant,
and the drift f appeared as follows in the Itô system:

dx =
(
f0 + εf1

)
dt +

√
εGdWt, (3.22)

where the drift is a N × 1 vector and the constant diffusion coefficient is a matrix with
dimension N ×M. The determining equations are

− 1
2

M∑
s=1

G1s
k G1s

i ε

⎛
⎝ ∂2ξ0j

∂xi∂xk
+ ε

∂2ξ1j

∂xi∂xk

⎞
⎠ +

(
ξ0i + εξ1i

)
⎛
⎝∂f0

j

∂xi
+ ε

∂f1
j

∂xi

⎞
⎠ − f0

i

⎛
⎝∂ξ0j

∂xi
+ ε

∂ξ1j

∂xi

⎞
⎠

− εf1
i

⎛
⎝∂ξ0j

∂xi
+ ε

∂ξ1j

∂xi

⎞
⎠ +

(
τ0 + ετ1

)
⎛
⎝∂f0

j

∂t
+ ε

∂f1
j

∂t

⎞
⎠ −

∂ξ0j

∂t
− ε

∂ξ1j

∂t
+
(
f0
j + εf1

j

)

×
(

1
2
ε

M∑
s=1

G1s
k G1s

i

(
∂2τ0

∂xi∂xk
+ ε

∂2τ1

∂xi∂xk

)
+ f0

i

(
∂τ0

∂xi
+ ε

∂τ1

∂xi

)

+εf1
i

(
∂τ0

∂xi
+ ε

∂τ1

∂xi

)
+
∂τ0

∂t
+ ε

∂τ1

∂t

)
= 0,

√
ε
(
ξ0i + εξ1i

)∂G1j
k

∂xi
− √

εG1i
k

⎛
⎝∂ξ0j

∂xi
+ ε

∂ξ1j

∂xi
)

⎞
⎠ +

√
ε
(
τ0 + ετ1

)∂G1j
k

∂t
+
1
2
√
εG

1j
k

×
(

1
2
ε

(
∂2τ0

∂xi∂xl
+ ε

∂2τ1

∂xi∂xl

)
M∑
s=1

G1s
i G1s

l + f0
i

(
∂τ0

∂xi
+ ε

∂τ1

∂xi

)

+εf1
i

(
∂τ0

∂xi
+ ε

∂τ1

∂xi

)
+
∂τ0

∂t
+ ε

∂τ1

∂t

)
= 0.

(3.23)

Now since we are working to order ρ, we get the following groups of determining equations
which are exactly what Ibragimov et al. [3] get

−
∂ξ0j

∂t
− f0

i

∂ξ0j

∂xi
+ ξ0i

∂f0
j

∂xi
+ τ0

∂f0
j

∂t
+ f0

j f
0
i

∂τ0

∂xi
+ f0

j

∂τ0

∂t
= 0, (3.24)
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which we get by comparing coefficients with no ε’s

f0
j f

0
i

∂τ1

∂xi
−
∂ξ1j

∂xi
f0
i + f0

j f
1
i

∂τ0

∂xi
+ f1

j f
0
i

∂τ0

∂xi
+
1
2

∂2τ0

∂xi∂xl

M∑
s=1

G1s
i G1s

l f0
j +

∂τ1

∂t
f0
j + ξ1i

∂f0
j

∂xi
+ ξ0i

∂f1
j

∂xi

− f1
i

∂ξ0j

∂xi
− 1
2

∂2ξ0j

∂xi∂xl

M∑
s=1

G1s
i G1s

l +
∂f0

j

∂t
τ1 +

∂f1
j

∂t
τ0 −

∂ξ1j

∂t
+
∂τ0

∂t
f1
j = 0,

(3.25)

which all share the same coefficient ε. In a similar fashion, we get the following for
√
ε and ε,

respectively

1
2
G

1j
k

(
∂τ0

∂t
+ f0

i

∂τ0

∂xi

)
−G1i

k

∂ξ0j

∂xi
= 0, (3.26)

−G1i
k

∂ξ1j

∂xi
+
1
2
G

1j
k

(
∂τ1

∂t
+ f0

i

∂τ1

∂xi

)
+
1
2
G

1j
k f

1
i

∂τ0

∂xi
+
G

1j
k

4

M∑
s=1

G1s
i G1s

l

∂2τ0

∂xi∂xl
= 0. (3.27)

Notice that we used (2.21) and the fact that G was constant to simplify the above.

Remark 3.1. Our application is consistent with the findings of [3] for this example.

3.1.2. Example 2

We consider

dẊ = −ω2Xdt + σdW +
√
εXdW. (3.28)

By applying the condition (2.35), we have that

ξ = ξ(t, x) (3.29)

and thus the prolongation formula (2.34) becomes

ξ[1] = D(ξ) − ẋD(τ), (3.30)

where D is the total time derivative operator. Our determining equations at ε0 are

−ω2xΓ0
(
τ0
)
+H0

(
−ω2x

)
= Γ0

(
ξ0[1]
)
,

H0
(
G0
)
+
1
2
G0Γ0

(
τ0
)
= Y 0

(
ξ0[1]
)
.

(3.31)
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The determining equations at ε are

−ω2xΓ0
(
τ1
)
+H1

(
−ω2x

)
−ω2xΥ1

(
τ0
)
= Γ0

(
ξ1[1]
)
+ Υ1

(
ξ0
)
, (3.32)

H1
(
G0
)
+
1
2
G0Γ0

(
τ1
)
= Y 0

(
ξ1[1]
)
. (3.33)

At ε1/2 the determining equations are

H0
(
G1
)
+
1
2
G1Γ0

(
τ0
)
+
1
2
G0

�10

(
τ0
)
= Y 1

(
ξ0[1]
)

(3.34)

and the final determining equation at ε3/2 is

1
2
G0

�12

(
τ0
)
+
1
2
G1Γ0

(
τ1
)
= Y 1

(
ξ1[1]
)
. (3.35)

Equation (3.31) for the infinitesimals at the zeroth echelon, that is, τ0 and ξ0, have been solved
earlier in the oscillating-spring mass example

τ0 = C0,

ξ0 = C1 cos(ωt) + C2 sin(ωt).
(3.36)

Whence, (3.34) and (3.35) force

ξ0 = 0,

τ1 = C3.
(3.37)

From (3.32), we get

−ω2ξ1 = D2
(
ξ1
)
, (3.38)

which solves as

ξ1 = C4 cos(ωt) + C5 sin(ωt). (3.39)

Therefore we have

ξ = ε(C4 cos(ωt) + C5 sin(ωt)),

τ = C0 + εC3.
(3.40)
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4. Concluding Comments

Lie group analysis for nth-ordered Itô SODEs was first pursued in Wafo Soh and Mahomed
[5]. Though it had only been done for point symmetries, it has led to many interesting
findings in this paper. We have shown that it is possible to derive the prolongation formulas
by using the philosophy of form invariance.

With the use of the philosophy that the properties of the Wiener processes should
remain invariant under the Lie group transformations, we derive conditions on the temporal
and lower level derivative spatial infinitesimals that are a generalization of the condition
derived by Ünal [4] for one-dimensional SODEs.

In this more general approximate approach to higher order SODE, we derive the
same conditioning as Ünal [4] did without recourse to the Itô’s multiplication table for
the transformed variables. Our results are consistent with that of [3] in the first-order case.
However, we have a generalization to nth-order SODEs. We also applied our method to an
example taken from [3] as well as another.
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