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We study the dynamic properties (equilibrium points, local and global stability, chaos and
bifurcation) of the continuous dynamical system of the logistic equation of complex variables.
The existence and uniqueness of uniformly Lyapunov stable solution will be proved.

1. Introduction

Dynamical properties and chaos synchronization of deterministic nonlinear systems have
been intensively studied over the last two decades on a large number of real dynamical
systems of physical nature (i.e., those that involve real variables). However, there are also
many interesting cases involving complex variables. As an example, we mention here the
complex Lorenz equations, complex Chen and Lü chaotic systems, and some others (see [1–
8] and the references therein).

The topic of fractional calculus (derivatives and integrals of arbitrary orders) is
enjoying growing interest not only among mathematicians, but also among physicists and
engineers (see [9–16] and references therein).

Consider the following fractional-order Logistic equation of complex variables:

Dαz(t) = ρz(t)(1 − z(t)) = ρz(t) − ρz2(t), t > 0, (1.1)

z(0) = zo = xo + iyo, (1.2)
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where

z(t) = x(t) + iy(t), |z(t)| ≤ 1,

ρ = a + ib, a, b > 0.
(1.3)

Here we study the dynamic properties (equilibrium points, local and global stability, chaos
and bifurcation) of the continuous dynamical system of complex variables (1.1)-(1.2). The
the existence of a unique uniformly stable solution and the continuous dependence of the
solution on the initial data (1.2) are also proved.

Now we give the definition of fractional-order integration and fractional-order
differentiation.

Definition 1.1. The fractional integral of order β ∈ R+ of the function f(t), t ∈ I is

Iβf(t) =
∫ t

0

(t − s)β−1

Γ
(
β
) f(s) ds, (1.4)

and the Caputo’s definition for the fractional order derivative of order α ∈ (0, 1] of f(t) is
given by

Dαf(t) = I1−α
d

dt
f(t). (1.5)

2. Existence and Uniqueness

The following lemma (formulation of the problem) can be easily proved.

Lemma 2.1. The discontinuous dynamical system (1.1)-(1.2) can be transformed to the system

Dαx(t) = ax(t) − by(t) − a
(
x2(t) − y2(t)

)
+ 2bx(t)y(t), t > 0, (2.1)

Dαy(t) = bx(t) + ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t), t > 0, (2.2)

with the initial values

x(0) = xo, y(0) = yo, (2.3)

where |x(t)| ≤ 1 and |y(t)| ≤ 1.
Let C[0, T] be the class of continuous functions defined on [0, T].
Let Y be the class of columns vectors (x(t), y(t))τ , x, y ∈ C[0, T] with the norm

∥∥(x, y)τ∥∥Y = ‖x‖ + ∥∥y∥∥ = sup
t∈[0,T]

|x(t)| + sup
t∈[0,T]

∣∣y(t)∣∣. (2.4)
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Let X be the class of columns vectors (x(t), y(t))τ , x, y ∈ C[0, T] with the equivalent norm

∥∥(x, y)τ∥∥X = ‖x‖∗ + ∥∥y∥∥∗ = sup
t∈[0,T]

e−Nt|x(t)| + sup
t∈[0,T]

e−Nt
∣∣y(t)∣∣, N > 0. (2.5)

Write the problem (2.1)-(2.3) in the following matrix form:

Dα(x, y)τ =
(
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t), bx(t)

+ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t)

)τ
,

(2.6)

and

(
x(0), y(0)

)τ =
(
xo, yo

)τ
, (2.7)

where τ is the transpose of the matrix.
Now we have the following theorem.

Theorem 2.2. The problem (2.6)-(2.7) has a unique solution (x, y) ∈ X.

Proof. Integrating (2.6) α-times we obtain

(
x(t), y(t)

)τ =
(
x(0), y(0)

)τ + Iα
(
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t), bx(t)

+ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t)

)τ
.

(2.8)

Define the operator F : X → X by

F
(
x(t), y(t)

)τ =
(
x(0), y(0)

)τ + Iα
(
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t), bx(t)

+ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t)

)τ
,

(2.9)

then by direct calculations, we can get

∥∥F(x, y) − F(u, v)τ
∥∥
X ≤ K

∥∥(x, y) − (u, v)τ
∥∥
X, (2.10)

where

K = 5(a + b)
1
Nα

. (2.11)

Choose N large enough we find that K < 1 and by the contraction fixed theorem [17] the
problem (2.6)-(2.7) has a unique solution (x, y) ∈ X.
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From the continuity of the solution we deduce that (see [10])

Iα
(
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t), bx(t)

+ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t)

)τ∣∣∣
t=0

= 0,
(2.12)

then the solution satisfies the initial condition. Differentiating (2.8), then by the same way as
in ([18, 19]), we deduce that the integral equation (2.8) satisfies the problem (2.6)-(2.7)which
completes the proof.

3. Uniform Stability

Theorem 3.1. The solution of the problem (2.6)–(2.7) is uniformly stable in the sense that

|xo − x∗
o| +

∣∣yo − y∗
o

∣∣ ≤ δ =⇒ ∥∥(x, y) − (
x∗, y∗)∥∥

X ≤ ε, (3.1)

where (x∗(t), y∗(t)) is the solution of the differential equation (2.6) with the initial data

(
x(0), y(0)

)τ =
(
x∗
o, y

∗
o

)τ
. (3.2)

Proof. Direct calculations give

∥∥(x, y) − (
x∗, y∗)τ∥∥

X ≤ |xo − x∗
o| +

∣∣yo − y∗
o

∣∣ +K
∥∥(x, y) − (

x∗, y∗)τ∥∥
X, (3.3)

which implies that

∥∥(x, y) − (
(
x∗, y∗)τ∥∥

X ≤ (1 −K)−1
(|xo − x∗

o| +
∣∣yo − y∗

o

∣∣) ≤ ε, (3.4)

ε = (1 −K)−1δ. (3.5)

4. Equilibrium Points and Their Asymptotic Stability

Let α ∈ (0, 1] and consider the system ([9, 20–22])

Dαy1(t) = f1
(
y1, y2

)
,

Dαy2(t) = f2
(
y1, y2

)
,

(4.1)

with the initial values

y1(0) = yo1, y2(0) = yo2. (4.2)
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To evaluate the equilibrium points, let

Dαyj(t) = 0 =⇒ fj
(
y
eq
1 , y

eq
2

)
= 0, j = 1, 2, (4.3)

from which we can get the equilibrium points yeq
1 , y

eq
2 .

To evaluate the asymptotic stability, let

yj(t) = y
eq
j + εj(t). (4.4)

So the the equilibrium point (yeq
1 , y

eq
2 ) is locally asymptotically stable if both the

eigenvalues of the Jacobian matrix A

⎡
⎢⎢⎢⎣
∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

⎤
⎥⎥⎥⎦ (4.5)

evaluated at the equilibrium point satisfies (| arg(λ1)| > απ/2, | arg(λ2)| > απ/2) ([9, 20–23]).
For the fractional-order Logistic equation of complex variables consider the following:

Dαx(t) = ax(t) − by(t) − a
(
x2(t) − y2(t)

)
+ 2bx(t)y(t), t > 0,

Dαy(t) = bx(t) + ay(t) − b
(
x2(t) − y2(t)

)
− 2ax(t)y(t), t > 0.

(4.6)

To evaluate the equilibrium points, let

Dαx = 0,

Dαy = 0,
(4.7)

then (xeq, yeq) = (0, 0), (1, 0), are the equilibrium points.
For (xeq, yeq) = (0, 0) we find that

A =
[
a −b
b a

]
(4.8)

its eigenvalues are

λ = a ∓ bi. (4.9)

A sufficient condition for the local asymptotic stability of the equilibrium point (0, 0) is

∣∣arg(λ1)∣∣ > απ

2
,

∣∣arg(λ2)∣∣ > απ

2
, 0 < α < 1, (4.10)
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that is,

b

a
> tan

(απ
2

)
(4.11)

and x0 is small.
For (xeq, yeq) = (1, 0) we find that

A =
[−a b
−b −a

]
(4.12)

its eigenvalues are

λ = −a ± bi. (4.13)

A sufficient condition for the local asymptotic stability of the equilibrium point (1, 0) is a > 0
and x0 is not close to zero.

5. Numerical Methods and Results

An Adams-type predictor-corrector method has been introduced and investigated further in
([24–26]). In this paper we use an Adams-type predictor-corrector method for the numerical
solution of fractional integral equation.

The key to the derivation of the method is to replace the original problem (2.1)-(2.2)
by an equivalent fractional integral equations

x(t) = x(0) + Iα
[
ax(t) − by(t) − a

(
x2(t) − y2(t)

)
+ 2bx(t)y(t)

]
,

y(t) = y(0) + Iα
[
bx(t) + ay(t) − b

(
x2(t) − y2(t)

)
− 2ax(t)y(t)

]
,

(5.1)

and then apply the PECE (Predict, Evaluate, Correct, Evaluate) method.
The approximate solutions displayed in Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12

for different 0 < α ≤ 1. In Figures 1–4 we take x(0) = 0.1, y(0) = 0.9, a = 0.1, b = 0.9 and
found that the equilibrium point (0, 0) is local asymptotic stable for α = 0.8, 0.9 because the
condition b/a > tan(απ/2) is satisfied and the equilibrium point (1, 0) is local asymptotic
stable for α = 1.0. In Figures 5–8 we take x(0) = 0.2, y(0) = 0.7, a = 0.1, b = 0.5 and found
that the equilibrium point (0, 0) is local asymptotic stable for α = 0.8 because the condition
b/a > tan(απ/2) is satisfied and the equilibrium point (1, 0) is local asymptotic stable for
α = 0.9, 1.0. In Figures 9–12 we take x(0) = 0.5, y(0) = 0.5, a = 0.1, b = 0.4 and found that the
equilibrium point (1, 0) is local asymptotic stable for α = 0.8, 0.9, 1.0.

6. Conclusions

In this paper we considered the fractional-order Logistic equations of complex variables.
Here we studied the dynamic properties (equilibrium points, local and global stability, chaos
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Figure 1: x(0) = 0.1, y(0) = 0.9, a = 0.1, b = 0.9, alpha = 0.8.
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Figure 2: x(0) = 0.1, y(0) = 0.9, a = 0.1, b = 0.9, alpha = 0.9.
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Figure 3: x(0) = 0.1, y(0) = 0.9, a = 0.1, b = 0.9, alpha = 1.0.
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Figure 4: x(0) = 0.1, y(0) = 0.9, a = 0.1, b = 0.9.
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Figure 5: x(0) = 0.2, y(0) = 0.7, a = 0.1, b = 0.5, alpha = 0.8.
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Figure 6: x(0) = 0.2, y(0) = 0.7, a = 0.1, b = 0.5, alpha = 0.9.
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Figure 7: x(0) = 0.2, y(0) = 0.7, a = 0.1, b = 0.5, alpha = 1.0.
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Figure 8: x(0) = 0.2, y(0) = 0.7, a = 0.1, b = 0.5.

2.5

2

1.5

1

0.5

0

−0.5

x(t)
y(t)

t

0 10 20 30 40 50 60 70 80 90 100

Figure 9: x(0) = 0.5, y(0) = 0.5, a = 0.1, b = 0.4, alpha = 0.8.
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Figure 10: x(0) = 0.5, y(0) = 0.5, a = 0.1, b = 0.4, alpha = 0.9.
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Figure 11: x(0) = 0.5, y(0) = 0.5, a = 0.1, b = 0.4, alpha = 1.0.
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Figure 12: x(0) = 0.5, y(0) = 0.5, a = 0.1, b = 0.4.
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and bifurcation). The existence of a unique uniformly stable solution and the continuous
dependence of the solution on the initial data (1.2) are also proved. Also we studied the
numerical solution of the system (1.1)-(1.2).

We like to argue that fractional-order equations are more suitable than integer-order
ones in modeling biological, economic, and social systems (generally complex adaptive
systems) where memory effects are important.
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