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Assume that F is a nonlinear operator which is Lipschitzian and strongly monotone on a nonempty
closed convex subset C of a real Hilbert space H. Assume also that Q is the intersection of the fixed
point sets of a finite number of Lipschitzian pseudocontractive self-mappings on C. By combining
hybrid steepest-descent method, Mann’s iteration method and projection method, we devise a
hybrid iterative algorithm with perturbation F, which generates two sequences from an arbitrary
initial point xy € H. These two sequences are shown to converge in norm to the same point Pgxg
under very mild assumptions.

1. Introduction and Preliminaries

Let H be a real Hilbert space with inner product -, -) and norm ||- || and C a nonempty closed
convex subset of H. Let T : C — C be a self-mapping of C. Recall that T is said to be a
pseudocontractive mapping if

ITx =Tyl < fla -yl + (T - T)x - (1= Thy]P",

Vx,y €C, (L1)

and T is said to be a strictly pseudo-contractive mapping if there exists a constant k € [0, 1)
such that

|Tx - Ty|* < ||x-y|* + k| (I -T)x - I -T)y|>, Vx,yeC. (1.2)

For such cases, we also say that T is a k-strict pseudo-contractive mapping. We use F(T) to
denote the set of fixed points of T.
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It is well known that the class of strictly pseudo-contractive mappings strictly includes
the class of nonexpansive mappings which are the mappings T on C such that

ITx-Ty| <lx-v

, VYx,yeC. (1.3)

Iterative methods for nonexpansive mappings have been extensively investigated; see
[1-16] and the references therein.

However, iterative methods for strictly pseudo-contractive mappings are far less
developed than those for nonexpansive mappings though Browder and Petryshyn initiated
their work in 1967; the reason is probably that the second term appearing on the right-
hand side of (1.2) impedes the convergence analysis for iterative algorithms used to find
a fixed point of the strictly pseudo-contractive mapping T. However, on the other hand,
strictly pseudo-contractive mappings have more powerful applications than nonexpansive
mappings do in solving inverse problems; see Scherzer [17]. Therefore, it is interesting to
develop iterative methods for strictly pseudo-contractive mappings. As a matter of fact,
Browder and Petryshyn [18] showed that if a k-strict pseudo-contractive mapping T has a
fixed point in C, then starting with an initial xo € C, the sequence {x,} generated by the
recursive formula:

Xp1 =ax, +(1-a)Tx,, VYn>0, (1.4)

where a is a constant such that k < a < 1 converges weakly to a fixed point of T.
Recently, Marino and Xu [19] have extended Browder and Petryshyn’s result by
proving that the sequence {x,} generated by the following Mann’s algorithm:

Xp1 = Xy + (1 —a,)Tx,, VYn>0 (1.5)

converges weakly to a fixed point of T, provided that the control sequence {a,} satisfies the
condition that k < a, < 1 for all nand > (ay — k)(1 — a,) = co. However, this convergence
is in general not strong. It is well known that if C is a bounded and closed convex subset of
H,and T : C — C is a demicontinuous pseudocontraction, then T has a fixed point in C
(Theorem 2.3 in [20]). However, all efforts to approximate such a fixed point by virtue of the
normal Mann’s iteration algorithm failed.

In 1974, Ishikawa [21] introduced a new iteration algorithm and proved the following
convergence theorem.

Theorem I (see [21]). If C is a compact convex subset of a Hilbert space H,T : C — Cisa
Lipschitzian pseudocontraction and xo € C is chosen arbitrarily, then the sequence {x,},o converges
strongly to a fixed point of T, where {x,} is defined iteratively for each positive integer n > 0 by

Xn+l = (1 - an)xn + anTynr

1.6
Yn = (1 - ﬂn)xn + ﬁnTxn/ ( )

where {a,} and {B,} are sequences of real numbers satisfying the conditions (i) 0 < a,, < B, < 1; (ii)
Pn — 0asn — oo; (iii) Dy Anfn = 0.
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Since its publication in 1974, it remains an open question whether or not Mann’s
iteration algorithm converges under the setting of Theorem I to a fixed point of T if the
mapping T is Lipschitzian pseudo-contractive. In [22], Chidume and Mutangadura gave an
example of a Lipschitzian pseudocontraction with a unique fixed point for which Mann’s
iteration algorithm fails to converge.

In an infinite-dimensional Hilbert space, Mann and Ishikawa’s iteration algorithms
have only weak convergence, in general, even for nonexpansive mapping. So, in order to
get strong convergence for strictly pseudo-contractive mappings, several attempts have been
made based on the CQ method (see, e.g., [19, 23, 24]). The last scheme, in such a direction,
seems for us to be the following due to Zhou [25]:

xo9 € C chosen arbitrarily,
Yo =1 —an)x, +a,Tx,,
zn = (1= Pun)Xn + PuTYn,
Co={z€Ct 1z =2l < - 2l - anfa (1 - 2, - L2 ) 0 = T},
Qun={zeC:{(xp—z,x0—x,) >0},

Xn+1 = Pc,ng, X0, Vn 2>0.

(1.7)

He proved, under suitable choice of the parameters a, and f,, that the sequence {x,}
generated by (1.7) strongly converges to Pr(r)Xo.

Among classes of nonlinear mappings, the class of pseudocontractions is one of the
most important. This is due to the relation between the class of pseudocontractions and the
class of monotone mappings (we recall that a mapping A is monotone if (Ax — Ay, x —y) >
0 for all x,y € H). A mapping A is monotone if and only if (I — A) is pseudo-contractive. It
is well known (see, e.g., [26]) that if S is monotone, then the solutions of the equation Sx =0
correspond to the equilibrium points of some evolution systems. Consequently, considerable
research efforts, especially within the past 30 years or so, have been devoted to iterative
methods for approximating fixed points of a pseudo-contractive mapping T (see e.g., [27-
32] and the references therein).

Very recently, motivated by the work in [19, 25, 33] and the related work in the
literature, Yao et al. [34] suggested and analyzed a hybrid algorithm for pseudo-contractive
mappings in Hilbert spaces. Further, they proved the strong convergence of the proposed
iterative algorithm for Lipschitzian pseudo-contractive mappings.

Theorem YLM (see [34]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — C bea L-Lipschitzian pseudo-contractive mapping such that F(T) # (. Assume that the
sequence a, € [a,b] for some a,b € (0, 1/(L +1)). Let xo € H. For C; = C and x1 = Pc,xo, let
{xn} be the sequence in C generated iteratively by

Yn=(1—an)x, +a,Txy,
Cpi1 = {z €Cp: ||anI- T)yn”2 <2a,(xy—z,(I- T)yn>}, (1.8)

Xns1 = Pe,yx0, n21.

n+l

Then {x,} converges strongly to Pr(ryxo.



4 Journal of Applied Mathematics

Inspired by the above research work of Yao et al. [34], in this paper we will continue
this direction of research. Let C be a nonempty closed convex subset of a real Hilbert
space H. We will propose a new hybrid iterative scheme with perturbed mapping for
approximating fixed points of a Lipschitzian pseudo-contractive self-mapping on C. We
will establish a strong convergence theorem for this hybrid iterative scheme. To be more
specific, let T : C — C be a L-Lipschitzian pseudo-contractive mapping and F : C — H
a mapping such that for some constants «,# > 0, F is x-Lipschitzian and 7-strong monotone.
Let {a,} C (0,1), {\,} C [0,1) and take a fixed number p € (0, 27/x*). We introduce the
following hybrid iterative process with perturbed mapping F. Let xo € H. For C; = C and
x1 = Pc,xo, two sequences {x,}, {y,} are generated as follows:

Yn = (1= an)xn + 2, Pc[Txy, — \yuF (Txy)],
Cot = {z € Cyt [lan(l = Pe(I = LuptF) Ty |* < 2 [(0 = 2, (I = Pe (I = \uptF)T)yn)

~(Tyn = Pe(I = M F) T,y = 2)] |

Xns1 = Pc,, %0, n2>1.

n+l

(1.9)

It is clear that if A, = 0, for all n > 1, then the hybrid iterative scheme (1.9) reduces to the
hybrid iterative process (1.8). Under very mild assumptions, we obtain a strong convergence
theorem for the sequences {x,} and {y,} generated by the introduced method. Our proposed
hybrid method with perturbation is quite general and flexible and includes the hybrid
method considered in [34] and several other iterative methods as special cases. Our results
represent the modification, supplement, extension, and improvement of [34, Algorithm 3.1

and Theorem 3.1]. Further, we consider the more general case, where {Ti}f-f1 are N L-
Lipschitzian pseudo-contractive self-mappings on C with N > 1 an integer. In this case,
we propose another hybrid iterative process with perturbed mapping F for approximating
a common fixed point of {Ti}f\ll. Let xo € H. For C; = C and x; = Pc,xg, two sequences
{x,} and {y,} are generated as follows:

Yn = (1= an)xn + 2, Pe [Tpxn — Ay F (Tyxy)],

Cor = {z € C ¢ [lan(I = Pe(I = uptF) Tyl < 2000 [(6 = 2, (I = Pe(I = AaptF)T,) )

_<Tnyn_PC (I - )‘nﬂF)Tnynr yn_z>] }

Xn41 = Pc,, %0, n2>1,

n+l

(1.10)

where T,, := T, moda N, for integer n > 1, with the mod function taking values in the set
{1,2,...,N} (ie,if n = jN + g for some integers j > 0 and 0 < g < N, then T,, = Ty if
g=0and T, =T,if1 <g < N).Itis clear thatif N = 1, then the hybrid iterative scheme (1.10)
reduces to the hybrid iterative process (1.9). Under quite appropriate conditions, we derive
a strong convergence theorem for the sequences {x,} and {y,} generated by the proposed

method.
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We now give some preliminaries and results which will be used in the rest of this
paper. A Banach space X is said to satisfy Opial’s condition if whenever {x,} is a sequence in
X which converges weakly to x, then

liminf ||x, — x|| <liminf ||x, - y|, VyeX, y#x. (1.11)

It is well known that every Hilbert space H satisfies Opial’s condition (see, e.g., [35]).
Throughout this paper, we shall use the notations: “—” and “—" standing for the weak
convergence and strong convergence, respectively. Moreover, we shall use the following
notation: for a given sequence {x,} C X, wy (x,) denotes the weak cw-limit set of {x,}, that is,

W (X)) = {x € X : x,; — x for some subsequence {n;} of {n} } (1.12)

In addition, for each point x € H, there exists a unique nearest point in C, denoted by Pcx,
such that

lx—Pex|| < ||x-y|, YyeC (1.13)

where Pc is called the metric projection of H onto C. It is known that Pc is a nonexpansive
mapping.

Now we collect some lemmas which will be used in the proof of the main result in the
next section. We note that Lemmas 1.1 and 1.2 are well known.

Lemma 1.1. Let H be a real Hilbert space. There holds the following identity:

lx=ylI* = lIxI” - |yl|* - 2(x - v, y), Vx,yeH. (1.14)

Lemma 1.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Given x € H and
z € C. Then z = Pcx if and only if there holds the relation:

(x-z,y-2z)<0, VyeC (1.15)

Lemma 1.3 (see [23]). Let C be a nonempty closed convex subset of H. Let {x,} be a sequence in H
and u € H. Let g = Pcu. If {x,,} is such that w,(x,) C C and satisfies the condition:

llxn —ull < ||lu—g|, VYn>o0. (1.16)

Then x, — q.

Lemma 1.4 (see [27]). Let X be a real reflexive Banach space which satisfies Opial’s condition. Let
C be a nonempty closed convex subset of X, and T : C — C be a continuous pseudo-contractive
mapping. Then, I — T is demiclosed at zero.
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Let T : C — C be a nonexpansive mapping and F : C — H be a mapping such that

for some constants «,7 > 0, F is k-Lipschitzian and #-strongly monotone, that is, F satisfies
the following conditions:

[Fx - Fyl| < xllx -y

, Yx,yeC,
X (1.17)
(Fx-Fy,x-y)2nllx-y||", VxyeC

respectively. For any given numbers A € [0,1) and p € (0, 217/x?), we define the mapping
T :C — H:

T'x := Tx - \uF(Tx), VYxeC. (1.18)
Lemma 1.5 (see [36]). If0 < A < 1and 0 < u < 21/x>, then there holds for T* : C — H:

|T'x-T'y| < a-an)llx-yll, vryec, (1.19)

where T =1 —1/1—pu(2n — ux?) € (0,1).

In particular, whenever T = I the identity operator of H, we have

|(I-AuF)x - (I-ApF)y|| <A -A7)||x-y|, Vx,yeC (1.20)

2. Main Result

In this section, we introduce a hybrid iterative algorithm with perturbed mapping for pseudo-
contractive mappings in a real Hilbert space H.

Algorithm 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T :
C — C be a pseudo-contractive mapping and F : C — H be a mapping such that for some
constants «, 71 > 0, F is x-Lipschitzian and 7-strong monotone. Let {a,} C (0,1), {1,} C [0,1)
and take a fixed number y € (0,27/ x?). Let xo € H. For C; = C and x; = Pc, xo, define two
sequences: {x,} and {y,} of C as follows:

Yn = (1= an)xy + anPc[Tx, — \yuF (Txy)],
Crit = {z € Cu t [lan(I = Pe(I = L))y |* < 2 [(0 = 2, (I = Pe(I = \uptF)T)yn)
~(Tyn = Pe(I = LapF) Ty, yn - 2)] |

Xus1 = Pc,,,x0, n2>1.

n+1

2.1)

Now we prove the strong convergence of the above iterative algorithm for Lipschitzian
pseudo-contractive mappings.
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Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C be
a L-Lipschitzian pseudo-contractive mapping such that F(T) #@, and let F : C — H be a mapping
such that for some constants x,1 > 0, F is x-Lipschitzian and n-strong monotone. Assume that
{an} C [a,b] for some a,b e (0, 1/(L+1))and {1} C [0,1) such that lim,_, .\, = 0. Take a fixed
number p € (0, 211/x?). Then the sequences {x,} and {y,} generated by (2.1) converge strongly to
the same point Pr)xo.

Proof. Firstly, we observe that Pr(ry and {x,} are well defined. From [19, 27], we note that
F(T) is closed and convex. Indeed, by [27], we can define a mapping g : C — C by g(x) =
(21 - T)™" for every x € C. It is clear that g is a nonexpansive self-mapping such that F(T) =
F(g). Hence, by [23, Proposition 2.1 (iii)], we conclude that F(g) = F(T) is a closed convex
set. This implies that the projection Pr(r) is well defined. It is obvious that {C,} is closed and
convex. Thus, {x,} is also well defined.

Now, we show that F(T) C C, for all n > 0. Indeed, taking p € F(T), we note that
(I-T)p =0, and (1.1) is equivalent to

(I-T)x-(I-T)y,x-y)>0, Vx,yeC. (2.2)
Using Lemma 1.1 and (2.2), we obtain

120 = p = @t (T = Pe (T = LuptF)T) |

= I = PlI* = llan (I = Pe(I = LuptF)T) ya®
= 20, ( (I = Pe(I = AgptF) Ty, 2 — p — (I = Pe(I = LyptF)T) )

= [l0 = pII* = llatn (T = Pe(I = LuptF)T)ya|* = 200 (I = Ty = (I = T)p, y — p)
= 20w (Tyn = Pc(I = AaptF)TYn, yn = p)
—2an<(I - PC(I —JlnyF)T)yn,xn —Yn— an(I - PC(I —JlnptF)T)yn>

< |l%n =pII* = llan (T = Pe(I = LuptF)T)yoll* = 280 Ty = Pe(I = AuptF) Ty, Y = p)
= 20, ( (I = Pe(I = AgptF)T) Y, 2 = Y — (I = Pe(I = AytF)T) y)

=[x = pII* = %0 = Y + Y = X + @ (I = P (I = LuptF) ) ||
= 20, (Tyn = Pc(I = AgplF)TYn, Y = p)
=20, ((I = Pc(I = AuptF)T) Y, X = Y — an (I = Pc(I = AyuF)T) y)

=l = PI* = N0 = ¥all” = |y = % + @ (I = Pe(T = L) T) |
= 2(X = Y Yn — 2n + tn (I = Pe(I = AgtF)T) y,)
+ 20, (I = Pe (I = Mt F)T) Y, Yo = %0 + (I = Pe (I = A tF)T) )
= 20w (Tyn = Pc(I = MaptF)TYn, yn = p)

= [l2n =PI = 160 = yall” = llyn = %0 + @ (I = Pe(T = L F) T ]|
—2(xp = Y = (I = Pe(T = Mt F)T) Y, Y — X + 2t (I = Pe (I = Ay tF)T) )
= 20 (Tyn = Pc(I = MaptF) TYn, yn = p)
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< [l =PI = 2w = yll” = llym = 2+ @ (I = Pe(I = A F) Ty
+2|{(xtn = Y — an (I = Pc (I = AyptF)T) Y, Y — X + 0y (I = Pc(I = AyuF)T) y) |
=20 (Tyn = Pc(I = AaptF) TYn, Yn = p)-

(2.3)
Since T is L-Lipschitzian, utilizing Lemma 1.5 we derive
[I(1 = Pe (I = AupF)T) s = (I = Pe(I = aptF) Ty |
< lotn = yul| + [[Pe(I = AuptF) Tty = Pe(I = XuptF) Ty
< Nl = yull + 1[(T = 2apF) T = (1 = XuptF) Ty 24

< [l%n =ynll + A= 2a7) [ T2t = Ty
< [l%n = yull + T2 = Ty
< (L 1) o=yl
From (2.1), we observe that x, — y, = a,(I - Pc(I — A\,uF)T)x,. Hence, utilizing Lemma 1.5
and (2.4) we obtain
|on = Y = an (I = Pe(I = AuptF)T)Yn, Yn = Xn + atu (I = Pe(I = AaptF)T) yn) |
au|((I = Pc(I = AyptF)T)xy, — (I = Po(I = AuptF)T )y,
Yn = Xn + (I = Pc(I = Ayt F)T)y) |
3l (1 = Pe(l = Ay )T, = (1 = Pe(1 = AaF)T) | 5
X [y = 2 + @ (I = Pe(I = 4apF) T)ya|

an(L + 1) = yul[[lyn = 20 + @n (I = Pe(T = LupF) T) ya|

2(L+1
: (2 )<”xn _]/n”2 + || yn = xn +“n(I_PC(I_)‘"#F)T)y"“2>'

IN

IN

Combining (2.3) and (2.5), we get

120 = p = & (I = Pe (I = LupF) Ty
< [l =PI = [0 = yall = [[yn = %0 + @ (I = Pe (T = L F) T |
# an(L+ D) ([0 = yll® + 1Y = 20+ (1 = Pe(I = LopF) T)y*)
=204 (Tyn = Pc(I = MaptF) T, yn = p)
= [l =PI+l + 1) = 11 ([1% = yll* + [[ya = %0 + @a (I = Pe(I = 1apF) Ty |*)
= 2004 (Tyn = Pc(I = MaptF) T, Y = p)

< | = pII* = 26Ty = Pc(I = X\uptF) T, Y = p).-
(2.6)
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At the same time, we observe that

1 = p = (T = Pe (1 = XapF)T)ya* = |0 = pII” = 20t = p, (I = Pe(T = AuptF)T) )

+ ||t (T = Po (I = XuptF)T) ya|.

(2.7)
Therefore, from (2.6) and (2.7) we have
et (1 = P (L= L F)T) P < 2, [ = p, (I = Pe(I = AuptF)T)y,) .
~(Tyn = Pc(I = \apF)Tyn, yn = p)],
which implies that
p€Cy, (2.9)
that is,
F(T)cC,, Vn>0. (2.10)
From x, = Pc,xo, we have
(x0 = %xn,xn,—y) >0, VyeC,. (2.11)
Utilizing F(T) c C,, we also have
(x0—Xp,xp—u) >0, VueF(T). (2.12)
So, for all u € F(T) we have
0 < (x0 = Xp, X — 1)
= (X0 — Xy, X — X+ Xg—U)
) (2.13)
= —|lxo — xnll” + (x0 — xn, X0 — 1)
< =lloco = xull® + lloco = 2l 1200 — ul,
which hence implies that
%o - xall < llxo — ull, Vu € F(T). (2.14)

Thus, {x,} is bounded and so are {y,} and {Ty,}.
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From x,, = Pc,xo and x,,.1 = Pc,,,x0 € Cp1 C C,, we have

n+l
(x0 — Xp, Xp — Xps1) > 0. (2.15)
Hence,

0 < (x0 = Xp, Xp — Xps1)

= (X0 = Xp, Xy — X0 + X0 — Xp41)

. (2.16)
= —|lxo = xn|I” + (x0 — Xn, X0 — Xps1)
< —|lxo = xull* + [|2¢0 = xnlllx0 = X1l
and therefore
ll2¢0 = xul < [0 = Xps1]l- (2.17)
This implies that lim,, _, .-||x, — X0l exists.
From Lemma 1.1 and (2.15), we obtain
2 2
12¢ns1 = xnll™ = [|(Xne1 = X0) = (20 = X0) |
= |12ns1 = Xoll* = [|%n = XoI* = 2(Xns1 = Xu, Xu = X0)
(2.18)

< e = xol* = llen — X0l

— 0.

Since x,41 € Cpi1 C Cy, from ||x,, — xp11|| — 0and A, — 0 it follows that

llaa (I = Pe (I = LapF)T)
< 2ay [(xn = X1, (I = Pe(I = AaptF)T)yn) = (Tyn = P (I = AaptF) Ty, Y = X1 )]
< 20 [[|xn = Xpsalll|yn = Pe (I = aptF) Ty || + [ Tyn = Pe(T = Lt F) Ty ||y = e ]
< 20 [[|xn = Xnaall[|yn = Pe (T = XaptF) Ty || + | Tym = (T = XaptF) Ty || |y = 2001 ]
= 20 [[|xn = Xnaall[|yn = P (T = XnptF) Ty || + Anptl|[F(Tym) ||y = 2 ]

— 0.

(2.19)
Noticing that a,, € [a, b] for some a,b € (0, 1/(L + 1)), thus, we obtain

Y = Pc(I = AF) Ty || — . (2.20)
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Also, we note that ||Ty, — Pc(I = LyptF)Tyy|| < Aup||F(Ty,)|| — 0. Therefore, we get
¥ = Tyall < lyn = Pe(T = XaptF) Ty | + [ Tyn = Pe(T = AapF) Tyn|| — 0. (221)
On the other hand, utilizing Lemma 1.5 we deduce that

|26 = P (I = AyptF) Ty |
< lxn = yull + lyn = Pe(I = MaptF) Ty || + [|Pe (T = AuptF) Tyn = P (I = LuptF) T |
< lxn = yull + lyn = Pe(I = MaptF) Ty || + [| (T = At F) Ty = (I = At F) T |
< |l = yull + 1y = Pe(T = AaptF) Ty || + (1 = An7) | Ty — T |
< |2 = yull + lyn = Pe(T = AuptF) Ty || + L||yn = xa|
= (L+ D)2 = yall + [lyn = Pe(I = \aptF) Typ|
= (L +1)|Jxn = Pe(I = AaptF) Totu| + ||y = Pe (I = XuptF) Ty,

(2.22)
that is,
60 = Pe(I = Ao F) T || < m [y — Pe(T = LyF) T]| — . (2.23)
Meantime, it is clear that
T2 = Pe (I = AuptF) Tt || < Anpel| F(Toxn) || — 0. (2.24)
Consequently,
12 = Tl < ||xn = Pc (I = MyuuF) Ty || + || T2t = Po(I = AyptF) T || — O. (2.25)

Now (2.25) and Lemma 1.4 guarantee that every weak limit point of {x,} is a fixed point
of T, that is, wy(x,) C F(T). In fact, the inequality (2.14) and Lemma 1.3 ensure the strong
convergence of {x,} to Prrxo. Since ||x, — yul| = |lan(I = Pc(I = AyuF)T)x,|| — 0, it is
immediately known that {y,} converges strongly to Pr)xo. This completes the proof. O

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C
be a nonexpansive mapping such that F(T) #@, and let F : C — H be a mapping such that for some
constants «,1 > 0, F is x-Lipschitzian and n-strong monotone. Assume that {a,} C [a,b] for some
a,b € (0, 1/2) and {\,} C [0,1) such that lim, _, ,A, = 0. Take a fixed number p € (0, 21/%?).
Then the sequences {x,} and {y,} generated by (2.1) converge strongly to the same point Prt)xo.

Corollary 2.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C be
a L-Lipschitzian pseudo-contractive mapping such that F(T) # (. Assume that {a,} C [a, b] for some
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a,be (0, 1/(L+1))and {A,} C [0,1) such that lim,,_, A, = 0. Then the sequences {x,} and {y,}
generated by the scheme

Yn = (I —au)x, + a,Pe((1 - Ay)Txy),
Cor = {2 € Cut [Jan(n = Pe((1 = M) Ty))|I* < 20020 = 2,y = Pe((1= L) Tyn))

~(Tyn = Pe((1=A)Tya), yu = 2)] }

Xn+1 = Pc,,, X0

n+l

(2.26)

converge strongly to the same point Pr)xo.

Proof. Put y =2 and F = (1/2)I in Theorem 2.2. Then, in this case we have x = = 1/2, and
hence

(Q%):@@. (2.27)

This implies that y = 2 € (0, 217/«x?) = (0,4). Meantime, it is easy to see that the scheme (2.1)
reduces to (2.26). Therefore, by Theorem 2.2, we obtain the desired result. O

Corollary 2.5 ([34, Corollary 3.2]). Let A: H — H be a L-Lipschitzian monotone mapping for
which A71(0) # 0. Assume that the sequence {a,} C [a,b] for some a,b € (0, 1/(L + 2)). Then the
sequence {x,} generated by the scheme

Yn =Xn — Ay Axy,
Cpi1 = {z €C,: ||oc,,Ayn||2 <2a,(xy — 2, AYn) }, (2.28)

Xns1 = Pc,,, X0

n+1

strongly converges to Pa-1g)Xo.

Proof. Put A, =0and T = I — A in Corollary 2.4. Then, it is easy to see that the scheme (2.26)
reduces to (2.28). Therefore, by Corollary 2.4, we derive the desired result. O

Next, consider the more general case where £ is expressed as the intersection of the
fixed-point sets of N pseudo-contractive mappings T; : C — C with N > 1 an integer, that is,

Q= ("F(T)). (2.29)

In this section, we propose another hybrid iterative algorithm with perturbed mapping for a
finite family of pseudo-contractive mappings in a real Hilbert space H.
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Algorithm 2.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {T;} %,
be N pseudo-contractive self-mappings on C with N > 1 an integer, and let F : C — H be a
mapping such that for some constants x,7 > 0, F is x-Lipschitzian and #-strong monotone.
Let {a,} C (0,1),{A,} C [0,1), and take a fixed number p € (0,217/x?). Let xo € H. For
C;1 = C and x; = Pc, xp, define two sequences {x,}, {y.} of C as follows:

Yn = (1= an)xn + anPc [Tyxy — Ayt F(Tuxy,)],
Cut = {z € Cu s [lan(I = Pe(I = LupF) T, )y

<20, [(xn —z, (I = Pc(I = A\yptF)Ty) Y ) (2.30)

(T~ Pe(T = AaptF) Ty, v - 2] |,

Xus1 = Pc,,,x0, n2>1,

n+l

where
Ty =Ty mod N, (231)

for integer n > 1, with the mod function taking values in the set {1,2,..., N} (ie., ifn = jN+gq
for some integers j >0and 0< g < N, thenT, =Ty ifg=0and T, = T;if 1 <q < N).

Theorem 2.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {T;} Y, be N L-
Lipschitzian pseudo-contractive self-mappings on C such that Q = "N, F(T;) #0,and let F : C — H
be a mapping such that for some constants x,1 > 0,F is x-Lipschitzian and n-strong monotone.
Assume that {a,,} C [a,b] for some a,b € (0, 1/(L+1))and {A,} C [0,1) such that lim,,_, ,,A,, = 0.
Take a fixed number p € (0, 21/x2). Then the sequences {x,}, {y.} generated by (2.30) converge
strongly to the same point Pgxy.

Proof. Firstly, as stated in the proof of Theorem 2.2, we can readily see that each F(T;) is closed
and convex fori=1,2,...,N. Hence, Q is closed and convex. This implies that the projection
Pq is well defined. It is clear that the sequence {C,} is closed and convex. Thus, {x,} is also
well defined.

Now let us show that Q C C, forall n > 0. Indeed, taking p € Q, we note that (I-T,,)p =
0 and

(I-Tw)x-(I-Ty)y,x-y)>0, Vx,yeC. (2.32)
Using Lemma 1.1 and (2.32), we obtain

1260 = p = @ (I = Pe(I = LuptF) T )y
= [lxn = pI|* = [|etn (T = Pe(T = LuptF) T) ||
=20, ((I = Pc(I = AaptF)T) Y, X0 = p — n (I = Pc(I = AyptF)Tyy) )
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= {20 = pII* = lata (I = Pe (I = AaptF)T) v ||* = 200 {(I = Tu)yu = (I = T)p, Y — )
- 2“n<Tn]/n - PC (I - )Ln#F)Tn]/nr Yn — P>
=20, ((I = Pc(I = AaptF)T) Y, X0 = Y — an (I = P (I = AyptF) ) )

< Nl = plI* = o (I = Pe(I = LuptF)Ta)yll* = 200 (Tayn = Pe(I = AaptF) Ty, Yo = p)
=20, ((I = Pc(I = AaptF)T) Y, X = Y — @ (I = P (I = Ayt F)T) Y )

= NIt = pII* = 1% = Y + Y = X0 + @ (I = Pe(I = Ly F) T) |
- 2an<Tnyn - PC (I - )Ln//‘F)Tnynr Yn — P>
=20, ((I = Pc(I = AuptF)T) Y, X = Y — @ (I = P (I = Ayt F)T) Y )

= Nl = pII* = 1% = yull* = |y = 20 + @n (I = Pe (T = LuptF) T, )y |
= 2(xn = Y, Yn — Xn + @y (I = Pc (I = Ayt F) Ty Yn)
+ 20, (I = Pc(I = MgptF)T) Yy Yn — Xn + an (I = Po (I = Ayt F)Ty) Y )
- 2an<Tnyn - PC (I - )‘n/’lF)Tnynr Yn — P>

= [l =PI = 10 = ¥l = |9 = X0 + @ (T = Pe(T = AptF) T)y®
= 2(xtp = Yn — (I = Pc(I = MyptF)T) Y, Yn — Xn + a0y (I = Po (I = Ayt F) Ty Yn)
- 2“n<Tnyn - PC (I - )LnﬂF)Tnynr Yn — P>

<l =2 = 1200 = ¥l = |9 = 0 + @ (T = Pe(T = AaptF) T) i ®
+2|{xn = Y = an (I = Pc(I = AuptF) 1) Y, Y — Xn + (I = Pe (I = AyptF)Ty,) 7 )|
=20 (Toyn = Pc(I = XuptF) Tuln, Yn = p)-

(2.33)
Since each T; is L-Lipschitzian fori=1,2,..., N, utilizing Lemma 1.5 we derive
(L= P (I = Lk F)T, ) = (1= Pe(I = A F)T,) s
< lotn = yull + [[Pe (T = AaptF) Tty = Pe (I = AntF) Ty |
< |2 =yl + | (T = XAaptF) Tty = (I = AuptF) Ty
(2.34)

< |[xn = Y| + (1 = Xa7) | Tuxtn = Ty |
< |loen =yl + | Tuxtn = Tuyra|
< (L+1)||2n = yaul|-

From (2.30), we observe that x, — v, = a,,(I - Pc(I — A\,uF)T,)x,. Hence, utilizing Lemma 1.5
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and (2.34) we obtain

|20 = Y = an(I = Pe(I = AaptF) T) Y, Y = Xn + (I = Pe(I = AnptF) T ) yn) |
= a,|((I = Pc(I = \ypuF)Ty)xy — (I = Po(I = AuptF)Ty) Y,
Yn = Xn + an (I = Pc(I = LgpF) T ) yn) |
< || (T = Pe(I = AuptF)T) xn = (I = Pe(I = AaptF) T yu| (2.35)
x ||yn = 2n + (I = Pe(T = LypF) T yn|
< an(L+1)|[xn = Y| [|yn = 20 + @ (I = Pe(T = Ly F) T yn|

< a,(L+1)

< =2 ([ = yall® + [l = o+ (I = Pe(I = 1aptF) T

Combining (2.33) and (2.35), we get

12w = p = @t (T = Pe (I = AuptF) Ty |
< Nloen =PI = N0 = yll* = llyn = 20 + @ (I = Pe (T = LapF) Ty
+a, (L + 1)<||xn — Yl + | Yn = Xn + (I = Pe(I - )u,,yP)Tn)yn”Z)
=200 (Tpyn = Pc(I = AptF) Ty, Yn = p)
= [l = > + [ (L + 1) = 11 (10 = Yl + |y = 200 + 0a (1 = P (I = huptF) T )y
= 2an(Tuyn — Pc(I = Al F) Tuln, Yn — p)

< % = pII* = 20(Tutyn = Pe (I = MaptF) Ty, Y — p)-

(2.36)
Meantime, we observe that
2
|3 = p = (I = Pc(I = XupiF) To) |
= |2 = p|* = 22 (x0 = p, (T = Pe (I = \yuiF) T y) (2.37)
+ llan (I = Pe(I = AuptF) T, ) yu|.

Therefore, from (2.36) and (2.37) we have

|t (I = Pe(I = MuptF)T) yn|? < 200 [(x0 = p, (I = P (I = XyptF) T, )y, ) 039)

~(Tuyn = Pc(I = Mt F)TuYn, Y — p)],
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which implies that

peC,,

that is,

QcC, VYn>0.

From x, = Pc,xo, we have

X0 = Xn, Xn — >0, YyecC,
y Y

Utilizing Q ¢ C,,, we also have

(xg = xp,xp—u) >0, YueQ.

So, for all u € Q we have
0< (xg—xp,%x, —U)
= <x0 — Xn, Xn — X + Xo _u>
= —lxo = xul* + (X0 — Xu, X0 — 1)

< =llxo = xall* + ll2co = xullll2t0 = 2],

which hence implies that

llxo — xu| < Jlxo —u||, YueQ.

Thus {x,} is bounded and so are {y,} and {T,y,}.
From x,, = Pc,xo and x,,.1 = Pc,,,x0 € Cpi1 C C,, we have

n+l

(X0 = Xp, Xp — Xps1) 2 0.

Hence,
0 < (X0 = Xp, Xpn — Xps1)
= (X0 = Xp, Xn — X0 + X0 — Xp41)
= —||JCO - xn”2 + <x0 - Xpn, X0 — xn+1>

2
< =llxo = xnl” + llx0 = Xullllx0 = Xnsal,

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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and therefore

[12¢0 = x| < [lxx0 = 2 - (2.47)

This implies that lim,, _, o, ||x, — x| exists.
From Lemma 1.1 and (2.45), we obtain

26ne1 = Xnll* = [[ (st = X0) = (20 = x0) ||
2 2
= %1 = %0l* = [l = X0I* = 2(Xns1 — X, X0 — X0) (2.48)

< lxn = x0||2 = lxn = xOH2 —0 asn-— oo

Thus,
lim [|x1 — x4 = 0. (2.49)
n— oo

Obviously, it is easy to see that lim,,_, o»||x, — Xpi|]| = O for each i = 1,2,...,N. Since x,,1 €

Cpi1 C Cy, from ||x, — xp11|] — 0and A, — 0 it follows that

llaa(I = Pe(I = Ayt F)T) yu|®

< 20 [(xn = X1, (I = Pe(I = At F) ) Yn) = (Tutyn = Pe(I = AatF) T, Y = Xni )]

< 20 [0 = Xnarll[|yn = Pe (I = XnptF) Tuyl| + | Tutyn = Pe (I = AnptF) Ty || |y = 2 ]
< 2an [ll2¢n = Xna1ll||yn = Pe (T = AuptF) Tuyul| + | Tutyn = (I = XaptF) Ty | |y = e [|]
[

=2a, ”xn - xn+1|| ”yn - PC(I - )LnﬂF)Tnyn” + )Ln,u”F(Tnyn) ” ”yn — Xn+1 ”] — 0.
(2.50)

Noticing that a,, € [a, b] for some a,b € (0, 1/(L + 1)), thus, we obtain
lyn — Pc(I = AuptF) Tpyu|| — O. (2.51)
Also, we note that ||T,,y, — Pc(I = Ay F) T yul| < Anpl|[F(Tyn)|l — 0. Therefore, we get

[y = Tuynll < [lyn = Pe(T = 2aptF) Tuynl| + | Touyn = Pe(T = AuptF) Tayul| — 0. (252)
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On the other hand, utilizing Lemma 1.5 we deduce that

||2cn = Pe (I = AuptF) Ty |

< |l2n = yull + |yn = Pc(I = XaptF) Ty || + || Pe (I = AuptF) Tuyyn = Po (I = XuptF) Tt |

< 2w = yull + |0 = Pc(I = XaptF) Ty || + || (I = XMaptF) Tutgn = (I = AuptF) Tt |

< oo = Yall + Nlyn = Pe(I = MapF) Tayu| + (1= 4a7) | Ty = Tt |
< Ml = Yull + Nlyn = Pe(I = AaptF) Tuyul| + Ll| yn = 2|

= (L4 |20 = yall + [[yn = Pe(T = LupF) Tuya|

= ap(L+1)||xn = Pc(I = AgptF) Tuxtu || + ||y = Pe(I = AnptF) Toyn

7

that is,

1
len = Pe (T = LpE)Tutul| < 37— 1y

— Pc(I = \ypuF) Ty || — 0.
Furthermore, it is clear that
| Tnxn = Po(I = ApptF) Tuxn || < Appl|F (Tuxn)|| — 0 as n — oo.
Consequently,
l3n = Tuxull < ||xn = Po(I = AypbF) T || + || Tuxxn = P (I = AuptF) Tuxy]| — O,
and hence foreachi=1,2,...,N:

||xn - Tn+ixn” < ||xn - xn+i” + ||xn+i - Tn+ixn+i|| + ”Tn+ixn+i - Tn+ixn||

< (L +1)||2y, = xXnsill + |n4i = TwiXnsill — 0 as n — oo.

So, we obtain lim,, _, oo ||X; — Tpsixn|| = 0 for each i =1,2,..., N. This implies that

lim ||x, — Tjx,|| =0 foreachl=1,2,...,N.
n—oo

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

Now (2.58) and Lemma 1.4 guarantee that every weak limit point of {x,} is a fixed point of
T;. Since [ is an arbitrary element in the finite set {1,2,..., N}, it is known that every weak
limit point of {x,} lies in Q, thatis, wy, (x,) C Q. This fact, the inequality (2.44) and Lemma 1.3
ensure the strong convergence of {x,} to Poxo. Since ||x,—yy,|| = |lan(I-Pc(I-AypuF)T,)x,|| —
0, it follows immediately that {y,} converges strongly to Poxy. This completes the proof. [

Remark 2.8. Algorithm 3.11in [34] for a Lipschitzian pseudocontraction is extended to develop
our hybrid iterative algorithm with perturbation for N-Lipschitzian pseudocontractions; that
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is, Algorithm 2.6. Theorem 2.7 is more general and more flexible than Theorem 3.1 in [34].
Also, the proof of Theorem 2.7 is very different from that of Theorem 3.1 in [34] because our
technique of argument depends on Lemma 1.5. Finally, we observe that several recent results
for pseudocontractive and related mappings can be found in [37-42].
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