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Two induced aggregation operators with novelly designed TOPSIS order-inducing variables are
proposed: Induced Interval-valued Intuitionistic Fuzzy Hybrid Averaging (I-IIFHA) operator and
Induced Interval-valued Intuitionistic Fuzzy Hybrid Geometric (I-IIFHG) operator. The merit of
two aggregation operators is that they can consider additional preference information of decision
maker’s attitudinal characteristics besides argument-dependent information and argument-
independent information. Some desirable properties of I-IIFHA and I-IIFHG are studied and
theoretical analysis also shows that they can include a wide range of aggregation operators as
special cases. Further, we extend these operators to form a novel group decision-making method
for selecting the most desirable alternative in multiple attribute multi-interest group decision-
making problems with attribute values and decision maker’s interest values taking the form
of interval-valued intuitionistic fuzzy numbers, and application research to real estate purchase
selection shows its practicality.

1. Introduction

In many practical decision-making activities, the available knowledge of decision makers
is vague or imprecise and cannot be assessed with numerical values, so Zadeh’s fuzzy
set theory [1] and Atanassov’s intuitionistic fuzzy set (IFS) theory [2] are introduced to
deal with uncertain decision environments. Over the last decades, the increasing researches
have indicated that Atanassov’s IFS and interval-valued intuitionistic fuzzy set (IVIFS) [3]
characterized by a membership function and nonmembership function are more suitable to
deal with fuzziness and uncertainty than the generalization of fuzzy set developed by Zadeh.
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So recently, particular aggregation operators and corresponding decision-making methods
have been studied and widely used for solving different decision-making problems under
intuitionistic fuzzy or interval-valued intuitionistic fuzzy environments. As for the studies
on single-person multiattribute decision-making (MADM) problems, Xu [4] investigated
the methodology for solving multiattribute decision-making problems with intuitionistic
fuzzy preference information aggregated by the intuitionistic fuzzy-weighted averaging
(IFWA) operator, the intuitionistic fuzzy-ordered weighted averaging (IFOWA) operator,
and the intuitionistic fuzzy hybrid averaging (IFHA) operator. Xu and Yager [5] proposed
some geometric aggregation operators based on intuitionistic fuzzy sets, such as the
intuitionistic fuzzy-weighted geometric (IFWG) operator, the intuitionistic fuzzy-ordered
weighted geometric (IFOWG) operator and the intuitionistic fuzzy hybrid geometric (IFHG)
operator and then applied them to multiple attribute decision-making. Xu and Xia [6]
studied a method for multiattribute decision-making under IFS environment with induced
generalized aggregation operators (I-GIFCOA and BS I-GIFCOA) designed by introducing
Choquet integral and Dempster-Shafer evidence theory. Tan and Chen [7] considered
interactions phenomena among the decision-making criteria under IFS environment and
also introduced Choquet integral to design an intuitionistic fuzzy operator (I-IFC) for
multicriteria decision-making, and so forth. With respect to the researches on dynamic
multiattribute decision-making (DMADM) problems, Xu and Yager [8] developed two new
dynamic intuitionistic fuzzy aggregation operators to solve the dynamic intuitionistic fuzzy
multi-attribute decision-making problems. Wei [9] proposed the dynamic intuitionistic
fuzzy-weighted geometric (DIFWG) operator and developed a procedure based on the
DIFWG and IFWG operators to solve dynamic intuitionistic fuzzy multi-attribute decision-
making (DIF-MADM) problems where all the decision information about attribute values
takes the form of intuitionistic fuzzy numbers collected at different periods. For the
researches on multiple attribute group decision-making (MAGDM) problems, Xu and Chen
[10, 11] investigated decision-making methods for the IVIFS environment and defined
several arithmetic aggregation operators and geometric aggregation operators, such as
the interval-valued intuitionistic fuzzy-weighted averaging (IIFWA) operator, the interval-
valued intuitionistic fuzzy-ordered weighted averaging (IIFOWA) operator, the interval-
valued intuitionistic fuzzy hybrid averaging (IIFHA) operator, interval-valued intuitionistic
fuzzy geometric (IIFG) operator, and interval-valued intuitionistic fuzzy-weighted geometric
(IIFWG) operator. Wei [12] developed some induced geometric aggregation operators based
on IFS and IVIFS, such as the induced intuitionistic fuzzy-ordered weighted geometric
(I-IFOWG) operator and induced interval-valued intuitionistic fuzzy-ordered weighted
geometric (I-IIFOWG) operator, and also extended them to solve the multi-attribute decision-
making problems, and so forth.

As can be seen from the researches mentioned, aggregation operators for fusion of
decision preference information play a central role in solving different kinds of decision-
making problems. In the existing literatures, different types of aggregation operators and
their extensions can be found for fusing intuitionistic fuzzy and interval-valued intuitionistic
fuzzy information, such as the weighted aggregation operators IFWA, IFWG, IIFWA, and
IIFG, the ordered weighted aggregation operators IFOWA, IFOWG, IIFOWA, and IIFWG;
the induced aggregation operators I-GIFCOA, I-GIFCOA, I-IFC, I-IFOWG, and I-IIFOWG;
the hybrid aggregation operators IFHA, IFHG, and IIFHA. From the aggregation process
of these representative operators, it can be seen that weighted aggregation operators or
ordered weighted aggregation operators can manage to utilize argument-dependent (value
weights) or argument-independent (position weights) decision preference information [4,
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13–17]; hybrid operators combine the advantages of both ordered weighted aggregation and
weighted aggregation operators and manage to consider both position weights and value
weights [17–23]; induced operators [24–32] and generalized induced operators [6, 31, 33–38]
integrating order-inducing variables are able to consider additional reordering criteria that do
not depend on the values of the arguments. Obviously the combination of hybrid operators
and induced operators can enable the aggregation process to utilize all the argument-
dependent preference information, argument-independent preference information and
additional preference criteria, and so as to select the most desirable alternative in accordance
with preference of decision makers. Such as, Merigó and Casanovas [20] presented
an induced generalized hybrid averaging (IGHA) operator under the exact numerical
environment by combination of the induced aggregation operator and the hybrid aggregation
operator. But there is scarcely any research on the induced hybrid aggregation operators for
the intuitionistic fuzzy or interval-valued intuitionistic fuzzy decision environment as far as
can be seen from existing literatures.

In this paper, we investigate the induced hybrid operators with order-inducing
variables not directly given by decision makers and their application to multiple attribute
group decision-making with multi-interests under the interval-valued intuitionistic fuzzy
decision environment. We present two induced interval-valued intuitionistic fuzzy hybrid
aggregation operators: Induced Interval-valued Intuitionistic Fuzzy Hybrid Averaging (I-
IIFHA) operator and Induced Interval-valued Intuitionistic Fuzzy Hybrid Geometric (I-
IIFHG) operator. The two operators manage to use information more completely through
two aspects: (1) hybridly including argument-dependent weighting vector and argument-
independent weighting vector under interval-valued intuitionistic fuzzy environment, and
(2) extending the IIFHA and IIFHG operators by including order-inducing variables ensured
with a designed TOPSIS-based method in the aggregation process to use more attitudinal
information in accordance with different decision maker’s interests.

The first main advantage of this paper is that the proposed I-IIFHA and I-IIFHG
operators can help decision-making process to consider preference information in a more
complete way during aggregation than other ordinary aggregation operators mentioned
previously. And obviously, if the order-inducing variables are the argument ordering, then
the proposed induced operators can be reduced to other ordinary aggregation operators. So
the I-IIFHA and I-IIFHG operators can include a wide range of interval-valued intuitionistic
fuzzy aggregation operators as special cases, such as IIFHA, IIFOWA, IIFWA, IIFHG, IIFOWG
and IIFWG operators. The other important contribution of this paper is the proposal
of using the information related to various decision makers’ interests to deduce order-
inducing criteria in induced interval-valued intuitionistic fuzzy hybrid aggregation. Recently,
although many researches have been conducted on various induced operators, there are
few researches on the methods to ensure order-inducing variables. Order-inducing variables
as the reordering step can enable induced aggregation operators to consider additional
decision rules that do not depend on the values of the arguments, such as attitudinal
characteristic information of decision makers. In the literature [27, 39, 40], Merigó and
Casanovas introduced some induced aggregation operators under exact number decision
environment with a complex reordering process by using Euclidean or Hamming distance
measures and the man-provided order-inducing variables according to the experts’ interests.
But sometimes, when decision makers cannot provide their exact preference directly because
of time pressure or limited expertise related to the problem domain, certain methods
should be developed to ensure order-inducing variables. Marin et al. [25] proposed to use
the specificity and fuzziness measures of the unbalanced linguistic terms to induce the
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order-inducing variables of the arguments. For the two situations with or without man-
provided additional preference, Chiclana et al. [24] presented three induced aggregation
operators under exact number environment: Importance IOWA, consistency IOWA, and
preference IOWA operator; the former two operators are based on the reliability of the
given arguments; the latter operator is based on a relative preference associated with each
one of given arguments. In this paper, we also consider the situation where the decision
makers provide their own interests, but the difference is that the decision makers express
their attitudinal characteristics in the form of interval-valued intuitionistic fuzzy values
which can represent the information in a more complete way, and meanwhile, they can
provide both ideal solutions and negative solutions. To do this, in I-IIFHA and I-IIFHG
we introduce the TOPSIS method to induce the order-inducing variables, which is called
TOPSIS order-inducing variables. The developed TOPSIS order-inducing method especially
can also be used to induce the order-inducing variables in the situation of more than one ideal
solution or negative solution provided and in the situation of no ideal solution or negative
solution provided. We can use the proposed induced hybrid aggregation operators with
TOPSIS order-inducing variables to utilize preference information more completely under
interval-valued intuitionistic fuzzy decision environment for solvingmultiple attribute group
decision-making problems with multi-interests.

The remainder of this paper is organized as follows. In Section 2, we give a review
of basic concepts related to intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy
sets, and overview some aggregation operators. In Section 3, we propose induced interval-
valued intuitionistic fuzzy hybrid averaging (I-IIFHA) operator and induced interval-
valued intuitionistic fuzzy hybrid geometric (I-IIFHG) operator and analyze some desirable
properties; then we introduce TOPSIS method to ensure order-inducing variables that reflect
the complex attitudinal characteristic of the decisionmaker. In Section 4, based on the I-IIFHA
and I-IIFHG operators, an approach is developed to solve the multiple attribute decision-
making problems under the interval-valued intuitionistic fuzzy environment. In Section 5,
an example is given to illustrate validity and practicality of the proposed methods. Finally,
we conclude the paper.

2. Preliminaries

2.1. Related Definitions of IVIFSs

Some basic concepts on IVIFSs are introduced here in after to facilitate future discussions.
In 1986, Atanassov [2] generalized the concept of fuzzy set and defined the concept of

intuitionistic fuzzy set as follows.

Definition 2.1 (see [2]). A generalized fuzzy set called intuitionistic fuzzy set is shown as
follows:

A =
{〈
xi, μA(xi), νA(xi)

〉 | xi ∈ X
}
, (2.1)

in which μA means a membership function, and νA means a nonmembership, with the con-
dition 0 ≤ μA(xi) + νA(xi) ≤ 1, μA(xi), and νA(xi) ∈ [0, 1], for all xi ∈ X. A = μA(xi) = νA(xi)
especially; the given IFS A is degraded to an ordinary fuzzy set.
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In reality, it may not be easy to identify exact values for the membership and non-
membership degrees of an element to a set. In this case, a range of values may be a more
appropriate measurement to accommodate the vagueness. As such, Atanassov and Gargov
[3] introduce the notion of interval-valued intuitionistic fuzzy set (IVIFS).

Definition 2.2 (see [3]). An interval-valued intuitionistic fuzzy set (IVIFS) Ã in X is defined
by

Ã =
{〈
xi, μ̃Ã(xi), ν̃Ã(xi)

〉 | xi ∈ X
}
=
{〈

xi,
[
μL

Ã
(xi), μU

Ã
(xi)
]
,
[
νL
Ã
(xi), νUÃ(xi)

]〉
| xi ∈ X

}
,

(2.2)

where 0 ≤ μL

Ã
(xi) ≤ μU

Ã
(xi) ≤ 1, 0 ≤ νL

Ã
(xi) ≤ νU

Ã
(xi) ≤ 1, 0 ≤ μU

Ã
(xi) + νU

Ã
(xi) ≤ 1 for all xi ∈ X.

Similarity, the intervals μ̃Ã(xi) and ν̃Ã(xi) denote the degree of membership and nonmem-
bership of an element to a set.

Then, we introduce some formulae to calculate the distance of IVIFSs.

Definition 2.3. Suppose that two interval-valued intuitionistic fuzzy sets (IVIFSs) Ã and B̃ in
X are defined as

Ã =
{〈
xi, μ̃Ã(xi), ν̃Ã(xi)

〉 | xi ∈ X
}
=
{〈

xi,
[
μL

Ã
(xi), μU

Ã
(xi)
]
,
[
νL
Ã
(xi), νUÃ(xi)

]〉
| xi ∈ X

}
,

B̃ =
{〈
xi, μ̃B̃(xi), ν̃B̃(xi)

〉 | xi ∈ X
}
=
{〈

xi,
[
μL

B̃
(xi), μU

B̃
(xi)
]
,
[
νL
B̃
(xi), νUB̃ (xi)

]〉
| xi ∈ X

}
.

(2.3)

The normalized Euclidean distance measure is

D1

(
Ã, B̃
)
=

√√√
√ 1

6n

n∑

i=1

[(
μL

Ã
(xi) − μL

B̃
(xi)
)2

+
(
μU

Ã
(xi) − μU

B̃
(xi)
)2

+
(
νL
Ã
(xi) − νL

B̃
(xi)
)2

+ B +H +K
]
,

(2.4)

where B denotes (νU
Ã
(xi) − νU

B̃
(xi))

2
, H denotes (πL

Ã
(xi) − πL

B̃
(xi))

2, and K denotes (πU

Ã
(xi)−

πU

B̃
(xi))2.

The normalized Hamming distance measure is

D2

(
Ã, B̃
)
=

1
6n

n∑

i=1

∣∣∣μL

Ã
(xi) − μL

B̃
(xi)
∣∣∣ +
∣∣∣μU

Ã
(xi) − μU

B̃
(xi)
∣∣∣ +
∣∣∣νL

Ã
(xi) − νL

B̃
(xi)
∣∣∣ +
∣∣∣νU

Ã
(xi) − νU

B̃
(xi)
∣∣∣

+
∣∣∣πL

Ã
(xi) − πL

B̃
(xi)
∣∣∣ +
∣∣∣πU

Ã
(xi) − πU

B̃
(xi)
∣∣∣.

(2.5)
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The normalized Hausdorff distance measure is

D3

(
Ã, B̃
)
=

1
n

n∑

i=1

max
{∣∣
∣μL

Ã
(xi) − μL

B̃
(xi)
∣
∣
∣,
∣
∣
∣μU

Ã
(xi) − μU

B̃
(xi)
∣
∣
∣,
∣
∣
∣νL

Ã
(xi) − νL

B̃
(xi)
∣
∣
∣,

∣
∣
∣νU

Ã
(xi) − νU

B̃
(xi)
∣
∣
∣,
∣
∣
∣πL

Ã
(xi) − πL

B̃
(xi)
∣
∣
∣,
∣
∣
∣πU

Ã
(xi) − πU

B̃
(xi)
∣
∣
∣
}
.

(2.6)

In order to aggregate interval-valued intuitionistic fuzzy information, we introduce
the following relations and operations given by Xu [10].

Definition 2.4 (see [10]). Let α̃ = ([a, b], [c, d]), α̃1 = ([a1, b1], [c1, d1]), α̃2 = ([a2, b2], [c2, d2])
be three IVIFNs; then

(1) α̃1 ⊕ α̃2 = ([a1 + a2 − a1a2, b1 + b2 − b1b2], [c1c2, d1d2]);

(2) α̃1 ⊗ α̃2 = ([a1a2, b1b2], [c1 + c2 − c1c2, d1 + d2 − d1d2]);

(3) λα̃ = ([1 − (1 − a)λ, 1 − (1 − b)λ], [cλ, dλ]);

(4) α̃λ = ([aλ, bλ], [1 − (1 − c)λ, 1 − (1 − d)λ]).

Definition 2.5 (see [10]). Let α̃ = ([a, b], [c, d]), α̃1 = ([a1, b1], [c1, d1]), α̃2 = ([a2, b2], [c2, d2])
be three IVIFNs, λ, λ1, λ2 ≥ 0; then

(1) α̃1 ⊕ α̃2 = α̃2 ⊕ α̃1;

(2) α̃1 ⊗ α̃2 = α̃2 ⊗ α̃1;

(3) λ(α̃1 ⊕ α̃2) = λα̃2 ⊕ λα̃1;

(4) (α̃1 ⊗ α̃2)
λ = α̃2

λ ⊗ α̃1
λ;

(5) λ1α̃ ⊕ λ2α̃ = (λ1 + λ2)α̃;

(6) α̃λ1 ⊗ α̃λ2 = (α̃)λ1+λ2 .

In order to rank alternatives, it is necessary to consider how to compare two IVIFNs.
Xu [10] also devised an approach to compare two IVIFNs based on the concepts of score
function and accuracy function.

Definition 2.6 (see [10]). For any three IVIFNs α̃ = ([μL, μU], [νL, νU]), α̃1 = ([μL
1 , μ

U
1 ],

[νL1 , ν
U
1 ]), α̃2 = ([μL

2 , μ
U
2 ], [ν

L
2 , ν

U
2 ]), score function defined as s(α̃) = (1/2)(μL + μU − νL − νU),

and accuracy function defined as h(α̃) = (1/2)(μL + μU + νL + νU).

If s(α̃1) < s(α̃2), then α̃1 is smaller than α̃2, denoted by α̃1 < α̃2.

If s(α̃1) = s(α̃2), then one has the following.

If h(α̃1) < h(α̃2), then α̃1 is smaller than α̃2, denoted by α̃1 < α̃2.

If h(α̃1) = h(α̃2), then α̃1 and α̃2 represent the same information, denoted by α̃1 =
α̃2.
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2.2. Some Interval-Valued Intuitionistic Fuzzy Aggregation Operators

We first introduce definitions of interval-valued intuitionistic fuzzy-weighted averaging
(IIFWA) and interval-valued intuitionistic fuzzy-weighted geometric (IIFWG) operators.

Definition 2.7 (see [10]). Let α̃1, α̃2, . . . , α̃n be a collection of interval arguments, where α̃j =
([aj , bj], [cj , dj]), and IIFWA operator of dimension n is a mapping IIFWA: Rn → R, that has
an associated vector w = (w1, w2, . . . , wn)

T such that
∑n

j=1 wj = 1 and wj ∈ [0, 1]; then

IIFWAω(α̃1, α̃2, . . . , α̃n) = ω1α̃1 ⊕ω2α̃2 ⊕ · · · ⊕ωnα̃n

=

⎛

⎝

⎡

⎣1 −
n∏

j=1

(
1 − aj

)ωj , 1 −
n∏

j=1

(
1 − bj

)ωj

⎤

⎦,

⎡

⎣
n∏

j=1

cj
ωj ,

n∏

j=1

dj
ωj

⎤

⎦

⎞

⎠.
(2.7)

Definition 2.8 (see [10]). Let α̃1, α̃2, . . . , α̃n be a collection of interval arguments, where α̃j =
([aj , bj], [cj , dj]), and IIFWG operator of dimension n is a mapping IIFWG: Rn → R, that has
an associated weight vector ω = (ω1, ω2, . . . , ωn)

T such that
∑n

j=1 ωj = 1 and ωj ∈ [0, 1]; then

IIFWGω(α̃1, α̃2, . . . , α̃n) = α̃1
ω1 ⊗ α̃2

ω2 ⊗ · · · ⊗ α̃n
ωn

=

⎛

⎝

⎡

⎣
n∏

j=1

aj
ωj ,

n∏

j=1

bj
ωj

⎤

⎦,

⎡

⎣1 −
n∏

j=1

(
1 − cj

)ωj , 1 −
n∏

j=1

(
1 − dj

)ωj

⎤

⎦

⎞

⎠.
(2.8)

Furthermore, consider the ordered positions of the interval-valued intuitionistic fuzzy
values instead of weighting the interval-valued intuitionistic fuzzy values themselves. Xu
and Chen [11] also proposed interval-valued intuitionistic fuzzy-ordered weighted av-
eraging (IIFOWA) and interval-valued intuitionistic fuzzy-ordered weighted geometric
(IIFOWG) operators.

Definition 2.9 (see [11]). Let α̃1, α̃2, . . . , α̃n be a collection of interval arguments, where α̃j =
([aj , bj], [cj , dj]), and IIFOWA operator of dimension n is a mapping IIFOWA: Rn → R, that
has an associated weight vector ω = (ω1, ω2, . . . , ωn)

T such that
∑n

j=1 ωj = 1 and ωj ∈ [0, 1];
then

IIFOWAω(α̃1, α̃2, . . . , α̃n) = ω1α̃π(1) ⊕ω2α̃π(2) ⊕ · · · ⊕ωnα̃π(n)

=

⎛

⎝

⎡

⎣1 −
n∏

j=1

(
1 − aπ(j)

)ωj , 1 −
n∏

j=1

(
1 − bπ(j)

)ωj

⎤

⎦,

⎡

⎣
n∏

j=1

cπ(j)
ωj ,

n∏

j=1

dπ(j)
ωj

⎤

⎦

⎞

⎠,
(2.9)

where α̃π(1), α̃π(2), . . . , α̃π(n) is a permutation of α̃1, α̃2, . . . , α̃n, such that α̃π(j−1) ≥ α̃π(j) for all j.

Definition 2.10 (see [11]). Let α̃1, α̃2, . . . , α̃n be a collection of interval arguments, where α̃j =
([aj , bj], [cj , dj]), and IIFOWG operator of dimension n is a mapping IIFOWG: Rn → R, that
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has an associated weight vector ω = (ω1, ω2, . . . , ωn)
T such that

∑n
j=1 ωj = 1 and ωj ∈ [0, 1];

then

IIFOWGω(α̃1, α̃2, . . . , α̃n) = α̃π(1)
ω1 ⊗ α̃π(2)

ω2 ⊗ · · · ⊗ α̃π(n)
ωn

=

⎛

⎝

⎡

⎣
n∏

j=1

aπ(j)
ωj ,

n∏

j=1

bπ(j)
ωj

⎤

⎦,

⎡

⎣1 −
n∏

j=1

(
1 − cπ(j)

)ωj , 1 −
n∏

j=1

(
1 − dπ(j)

)ωj

⎤

⎦

⎞

⎠,
(2.10)

where α̃π(1), α̃π(2), . . . , α̃π(n) is a permutation of α̃1, α̃2, . . . , α̃n, such that α̃π(j−1) ≥ α̃π(j) for all j.

Ordered weighted aggregation operators only consider the position weights of the
interval-valued intuitionistic fuzzy values themselves. To overcome this limitation, Xu and
Chen [11] provided definitions of interval-valued intuitionistic fuzzy hybrid averaging
(IIFHA) operator and interval-valued intuitionistic fuzzy hybrid geometric (IIFHG) operator,
which weights both the given interval-valued intuitionistic fuzzy value and its ordered
position information.

Definition 2.11 (see [11]). An IIFHA operator of dimension n is a mapping IIFHA: Rn → R
that has an associated vector w = (w1, w2, . . . , wn)

T such that
∑n

j=1 wj = 1 and wj ∈ [0, 1];
then

IIFHAω,w(α̃1, α̃2, . . . , α̃n) = w1 ˙̃απ(1) ⊕w2 ˙̃απ(2) ⊕ · · · ⊕wn
˙̃απ(n), (2.11)

where ˙̃απ(j) is the jth largest of the weighted intuitionistic fuzzy values ˙̃αj = nωjα̃j , ω =
(ω1, ω2, . . . , ωn)

T is the weight vector α̃j(j = 1, 2, . . . , n) with
∑n

j=1 ωj = 1 and ωj ∈ [0, 1], and
n is the balancing coefficient.

Definition 2.12 (see [11]). An IIFHG operator of dimension n is a mapping IIFHG: Rn → R
that has an associated vector w = (w1, w2, . . . , wn)

T such that
∑n

j=1 wj = 1 and wj ∈ [0, 1];
then

IIFHGω,w(α̃1, α̃2, . . . , α̃n) = ˙̃απ(1)
w1 ⊗ ˙̃απ(2)

w2 ⊗ · · · ⊗ ˙̃απ(n)
wn, (2.12)

where ˙̃απ(j) is the jth largest of the weighted intuitionistic fuzzy values ˙̃αj = α̃j
nωj , ω = (ω1,

ω2, . . . , ωn)T is the weight vector α̃j(j = 1, 2, . . . , n) with
∑n

j=1 ωj = 1 and ωj ∈ [0, 1], and n is
the balancing coefficient.

The induced operator is an extension of the ordinary aggregation operators. The main
difference is that the reordering step is not carried out with the arguments values. In this case,
the reordering step is developed with order-inducing variables that reflect a more complex
reordering process. Wei and Yi [29] introduced the induced interval-valued intuitionistic
fuzzy-ordered weighted geometric (I-IIFOWG) operator, which is defined as follows.
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Definition 2.13 (see [29]). An I-IIFOWG operator of dimension n is a mapping I-IIFOWG:
Rn → R that has an associated vector w = (w1, w2, . . . , wn)

T such that
∑n

j=1 wj = 1 and
wj ∈ [0, 1]; then

I-IIFOWGw(〈ε1, α̃1〉, 〈ε2, α̃2〉, . . . , 〈εn, α̃n〉) = α̃π(1)
w1 ⊕ α̃π(2)

w2 ⊕ · · · ⊕ α̃π(n)
wn

=

⎛

⎝

⎡

⎣
n∏

j=1

aπ(j)
wj ,

n∏

j=1

bπ(j)
wj

⎤

⎦,

⎡

⎣1 −
n∏

j=1

(
1 − cπ(j)

)wj , 1 −
n∏

j=1

(
1 − dπ(j)

)wj

⎤

⎦

⎞

⎠,
(2.13)

where α̃π(j) = ([aπ(j), bπ(j)], [cπ(j), dπ(j)]) is the α̃ value of the I-IIFOWG pair 〈εi, α̃i〉 having
the jth largest εi (εi ∈ [0, 1]), and εi in 〈εi, α̃i〉 is referred to as the order-inducing variable and
α̃i = ([ai, bi], [ci, di]) as the interval-valued intuitionistic fuzzy values.

In the same way, we have the definition of interval-valued intuitionistic fuzzy-ordered
weighted averaging (I-IIFOWA) operator.

Definition 2.14. An I-IIFOWA operator of dimension n is a mapping I-IIFOWA: Rn → R, that
has an associated vector with I-IIFOWA operatorw = (w1, w2, . . . , wn)

T such that
∑n

j=1 wj = 1
and wj ∈ [0, 1]; then

I-IIFOWAw(〈ε1, α̃1〉, 〈ε2, α̃2〉, . . . , 〈εn, α̃n〉) = w1α̃π(1) ⊕w2α̃π(2) ⊕ · · · ⊕wnα̃π(n)

=

⎛

⎝

⎡

⎣1 −
n∏

j=1

(
1 − aπ(j)

)wj , 1 −
n∏

j=1

(
1 − bπ(j)

)wj

⎤

⎦,

⎡

⎣
n∏

j=1

cπ(j)
wj ,

n∏

j=1

dπ(j)
wj

⎤

⎦

⎞

⎠,
(2.14)

where α̃π(j) = ([aπ(j), bπ(j)], [cπ(j), dπ(j)]) is the α̃ value of the I-IIFOWA pair 〈εi, α̃i〉 having
the jth largest εi (εi ∈ [0, 1]), and εi in 〈εi, α̃i〉 is referred to as the order-inducing variable and
α̃i = ([ai, bi], [ci, di]) as the interval-valued intuitionistic fuzzy values.

Xu [5] classified all these approaches for determining the weighting vector in ag-
gregation operators into two categories: argument-independent weighting vector method
and argument-dependent weighting vector method. The weights derived by the argument-
independent approaches are associated with particular ordered positions of the aggregated
arguments and have no connection with the aggregated arguments, while the argument-
dependent approaches determine the weights based on the arguments.

In this paper, the argument-weighting vectorω = (ω1, ω2, . . . , ωn)
T associated with the

inputs α̃j can be determined by the normal distribution method [13].
Let α̃1, α̃2, . . . , α̃n be a collection of interval arguments, where α̃j = ([aj , bj], [cj , dj]), the

mean of these interval-valued intuitionistic fuzzy sets ũ = ([aũ, bũ], [cũ, dũ]), where

aũ =
1
n

n∑

j=1

aj , bũ =
1
n

n∑

j=1

bj , cũ =
1
n

n∑

j=1

cj , dũ =
1
n

n∑

j=1

dj , (2.15)
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and the variance of these interval-valued intuitionistic fuzzy arguments:

σ =

√√
√
√ 1

n

n∑

j=1

(
d
(
α̃j , ũ
))2

. (2.16)

then we can have a normal distribution method for deriving the attribute weight associated
with its value:

ωj =
1√
2πσ

e−d
2(α̃j−ũ)/2σ2

, j = 1, 2, . . . , n. (2.17)

Consider that ωj ∈ [0, 1] and
∑n

j=1 ωj = 1; we have normalized attribute weights:

ωj =

(
1/

√
2πσ
)
e−d

2(β̃j−ũ)/2σ2

∑n
j=1

(
1/

√
2πσ
)
e−d2(β̃j−ũ)/2σ2

, j = 1, 2, . . . , n. (2.18)

The position-weighting vector w = (w1, w2, . . . , wn)
T associated with the operator can

be determined by RIM quantifiers [41]:

Q(r) = rα, α ≥ 0,

wi = Q

(
i

n

)
−Q

(
i − 1
n

)
, for i = 1, 2, . . . , n.

(2.19)

3. Induced Interval-Valued Intuitionistic Fuzzy Hybrid Aggregation
Operators with TOPSIS Order-Inducing Variables

3.1. I-IIFHA and I-IIFHG Operators

Induced interval-valued intuitionistic fuzzy hybrid operators are the extensions of ordinary
interval-valued intuitionistic fuzzy hybrid operators, and the difference resides in that they
can consider more preference information during aggregation process by combination of
order-inducing variables independent of arguments. Here, based on the IIFHA and IIFHG,
we propose two more general formulations of the reordering process to form I-IIFHA and
I-IIFHG operators, which can be defined as follows.

Definition 3.1. An I-IIFHA operator of dimension n is a mapping I-IIFHA: Rn → R defined
by an associated weighting vectorw of dimension n such that the sum of the weights is 1 and
wj ∈ [0, 1], a set of order-inducing variables εj , according to the following formula:

I-IIFHAω,w(〈ε1, α̃1〉, 〈ε2, α̃2〉, . . . , 〈εn, α̃n〉) = w1 ˙̃απ(1) ⊕w2 ˙̃απ(2) ⊕ · · · ⊕wn
˙̃απ(n)

=

⎛

⎝

⎡

⎣1 −
n∏

j=1

(
1 − ˙̃aπ(j)

)wj , 1 −
n∏

j=1

(
1 − ˙̃bπ(j)

)wj

⎤

⎦,

⎡

⎣
n∏

j=1

˙̃cπ(j) wj ,
n∏

j=1

˙̃dπ(j)
wj

⎤

⎦

⎞

⎠,
(3.1)



Journal of Applied Mathematics 11

where ˙̃αi = ([ ˙̃αi,
˙̃bi], [ ˙̃ci,

˙̃di]) = nωiα̃i = ([1 − (1 − ãi)
nωi , 1 − (1 − b̃i)

nωi
], [c̃nωi

i , d̃nωi

i ]),
( ˙̃απ(1), ˙̃απ(2), . . . , ˙̃απ(n)) is (α̃1, α̃2, . . . , α̃n) reordered in decreasing order of the order-inducing
variables values of the εj , ω = (ω1, ω2, . . . , ωn)

T is the weight vector α̃j(j = 1, 2, . . . , n) with∑n
j=1 ωj = 1 and ωj ∈ [0, 1], and n is the balancing coefficient.

Definition 3.2. An I-IIFHG operator of dimension n is a mapping I-IIFHG: Rn → R defined
by an associated weighting vectorw of dimension n such that the sum of the weights is 1 and
wj ∈ [0, 1], a set of order-inducing variables εj , according to the following formula:

I-IIFHGω,w(〈ε1, α̃1〉, 〈ε2, α̃2〉, . . . , 〈εn, α̃n〉)

=
n∏

j=1

˙̃απ(j)
wj =

⎛

⎝

⎡

⎣
n∏

j=1

˙̃απ(j)
wj ,

n∏

j=1

˙̃bπ(j)
wj

⎤

⎦,

⎡

⎣1 −
n∏

j=1

(
1 − ˙̃cπ(j)

)wj , 1 −
n∏

j=1

(
1 − ˙̃dπ(j)

)wj

⎤

⎦

⎞

⎠,

(3.2)

where ˙̃αi = ([ ˙̃αi,
˙̃bi], [ ˙̃ci,

˙̃di]) = α̃i
nωi = ([ai

nωi , bi
nωi], [1 − (1 − ci)

nωi , 1 − (1 − di)
nωi]),

( ˙̃απ(1), ˙̃απ(2), . . . , ˙̃απ(n)) is (α̃1, α̃2, . . . , α̃n) reordered in decreasing order of the order-inducing
variables values of the εj , ω = (ω1, ω2, . . . , ωn)

T is the weight vector α̃i(i = 1, 2, . . . , n) with∑n
i=1 ωi = 1 and ωi ∈ [0, 1], and n is the balancing coefficient.

Remark 3.3. The argument-weighting vector ω = (ω1, ω2, . . . , ωn)
T associated with inputs

(α̃1, α̃2, . . . , α̃n) can be determined by normal distribution method defined in (2.17) and (2.18);
The position-weighting vector w = (w1, w2, . . . , wn)

T associated with the operator can be
determined by RIM quantifiers in (2.19).

3.2. TOPSIS Order-Inducing Variables

Order-inducing variables as reordering step can enable induced aggregation operators to
consider additional decision rules that do not depend on the values of the arguments. In
this subsection, we propose a TOPSIS-based method to ensure order-inducing variables to be
included in I-IIFHA and I-IIFHG operators; as such we can be able to deal with the complex
decision-making problems in which the solution with highest score value is not the optimal
one for the decision makers.

For example, we have the temperature problem introduced by Marin et al. [25] under
linguistic environment. If we are dealing with temperatures of the human body, the optimal
term is adequate; if the temperature is higher, the results are not good; and on the other side,
if the temperature is lower, the results are also not good. If we are dealing with temperatures
at which we want to travel, different persons may be interested in a different ordering of the
temperatures; a person may prefer to visit places with cold weather, whereas another person
may prefer to warm weather. So proper order-inducing variables should be introduced to
deal with the problems where the solution with highest values may not be the optimal one,
because of additional decision criteria to influence the ordering of arguments, such as rules
of nature and preference of person.

In the induced operators mentioned previously, such as IOWA operator, ILOWA
operator, and I-IIFOWA operator, the order-inducing variables have been researched under
different environments of exact numbers, interval-valued numbers, or linguistic numbers.
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Here, we let the decision maker define his own preference by interval-valued intuitionistic
fuzzy numbers; then a TOPSIS-based method is proposed as follows to derive the order-
inducing variables, which is called TOPSIS order-inducing variables.

Step 1. Let the decision maker define the interval-valued intuitionistic fuzzy ideal solution(s)
and the interval-valued intuitionistic fuzzy negative ideal solution(s) corresponding to a
collection of interval-valued intuitionistic interval arguments (α̃1, α̃2, . . . , α̃n):

α̃+
j =
(
α̃+
j1, α̃

+
j2, . . . , α̃

+
jp

)
, α̃−

j =
(
α̃−
j1, α̃

−
j2, . . . , α̃

−
jq

)
, (3.3)

where p (p ≥ 0) is the number of ideal solution(s), and q (q ≥ 0) is the number of negative
solution(s).

Step 2. Calculate the distance(s) between the interval-valued intuitionistic interval argu-
ments (α̃1, α̃2, . . . , α̃n) and ideal solution(s) and negative solution(s):

d+
j = max

l=1,2,...,p
d
(
α̃j , α̃

+
jl

)
, d−

j = min
l=1,2,...,q

d
(
α̃j , α̃

−
jq

)
, (3.4)

where d(α̃j , α̃
+
jl
) and d(α̃j , α̃

−
jl
) can be calculated by the distancemeasures defined in Definition

2.3. If there is more than one ideal solution, we choose the maximum distance one(s); if there
exist more than one negative solution, we choose the minimum distance one(s).

Step 3. Calculate the coefficients

cj =
d−
j

d−
j + d+

j

, j = 1, 2, . . . , n. (3.5)

Step 4. Derive the order-inducing variable uj by descending order of cj . The greater the value
cj , the bigger the ordering-induced variable uj .

Remark 3.4. In decision-making problems, one decision maker has no interval-valued
intuitionistic fuzzy ideal solution(s) or negative solution(s), and we assume that d+

j = 1 and
d−
j = 0 if the attribute is the benefit type and d+

j = 0 and d−
j = 1 if it is the cost type.

3.3. Properties

Let fA be the I-IIFHA operator, and let fG be the I-IIFHG operator; ω = (ω1, ω2, . . . , ωn)
T is

argument-weighting vector, andw = (w1, w2, . . . , wn)
T is position-weighting vector. One has

two interval-valued intuitionistic fuzzy vectors:

A =
{〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉}
,

B =
{〈

εβ̃(1), β̃1
〉
,
〈
εβ̃(2), β̃2

〉
, . . . ,
〈
εβ̃(n), β̃n

〉}
.

(3.6)

Then we can get these theorems of I-IIFHA and I-IIFHG operator as follows.
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Theorem 3.5 (monotonicity). The I-IIFHA and I-IIFHG operators are increasingly monotonous
with respect to the argument values if the associated order-inducing variables remain unchanged.

fA
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉) ≥ fA
w,ω

(〈
εβ̃(1), β̃1

〉
,
〈
εβ̃(2), β̃2

〉
, . . . ,
〈
εβ̃(n), β̃n

〉)
,

fG
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉) ≥ fG
w,ω

(〈
εβ̃(1), β̃1

〉
,
〈
εβ̃(2), β̃2

〉
, . . . ,
〈
εβ̃(n), β̃n

〉)
,

if α̃j ≥ β̃j , εα̃(j) = εβ̃(j)∀ j.

(3.7)

Proof. Thus, one has α̃j ≥ β̃j ⇒ ˙̃αj = α̃j
nωα̃(j) ≥ ˙̃βj = β̃j

nωβ̃(j) . And εα̃(j) = εβ̃(j),

fA
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)≥fA
w,ω

(〈
εβ̃(1), β̃1

〉
,
〈
εβ̃(2), β̃2

〉
,. . . ,
〈
εβ̃(n), β̃n

〉)
,

fG
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)≥fG
w,ω

(〈
εβ̃(1), β̃1

〉
,
〈
εβ̃(2), β̃2

〉
,. . . ,
〈
εβ̃(n), β̃n

〉)
.

(3.8)

Theorem 3.6 (commutativity). The I-IIFHA and I-IIFHG operators are commutative.

fA
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)
= fA

w,ω

(〈
εβ̃(1), β̃1

〉
,
〈
εβ̃(2), β̃2

〉
, . . . ,
〈
εβ̃(n), β̃n

〉)
,

fG
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)
= fG

w,ω

(〈
εβ̃(1), β̃1

〉
,
〈
εβ̃(2), β̃2

〉
, . . . ,
〈
εβ̃(n), β̃n

〉)
,

(3.9)

where (α̃1, α̃2, . . . , α̃n) is any permutation of the arguments (β̃1, β̃2, . . . , β̃n).

Proof. Since (α̃1, α̃2, . . . , α̃n) is a permutation of (β̃1, β̃2, . . . , β̃n), then we have ˙̃αj = nωα̃(j)α̃j =
˙̃βj = nωβ̃(j)β̃j and ˙̃αj = α̃j

nωα̃(j) = ˙̃βj = β̃j
nωβ̃(j) for all j. Meanwhile, (εα̃(1), εα̃(2), . . . , εα̃(n)) is equal

to (εβ̃(1), εβ̃(2), . . . , εβ̃(n)) which is associated with the decision maker’s preference, so

wα̃(1) ˙̃α1 ⊕wα̃(2) ˙̃α2 ⊕ · · · ⊕wα̃(n) ˙̃αn = wβ̃(1)
˙̃β1 ⊕wβ̃(2)

˙̃β2 ⊕ · · · ⊕wβ̃(n)
˙̃βn,

˙̃α1
wα̃(1) ⊗ ˙̃α2

wα̃(2) ⊗ · · · ⊗ ˙̃αn
wα̃(n) = ˙̃β1

wβ̃(1) ⊗ ˙̃β2
wβ̃(2) ⊗ · · · ⊗ ˙̃βn

wβ̃(n) .

(3.10)

We get

fA
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)
= fA

w,ω

(〈
εβ̃(1), β̃1

〉
,
〈
εβ̃(2), β̃2

〉
, . . . ,
〈
εβ̃(n), β̃n

〉)
,

fG
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)
= fG

w,ω

(〈
εβ̃(1), β̃1

〉
,
〈
εβ̃(2), β̃2

〉
, . . . ,
〈
εβ̃(n), β̃n

〉)
.

(3.11)
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Theorem 3.7 (idempotency). The I-IIFHA and I-IIFHG operators are idempotent. If α̃j = α̃ for all
j, then

fA
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)
= α̃,

fG
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)
= α̃.

(3.12)

Proof. Since α̃j = α̃ for all j, we have (ω1, ω2, . . . , ωn) = (1/n, 1/n, . . . , 1/n), which is associated
with the input arguments (α̃1, α̃2, . . . , α̃n); then

fA
w,ω

(〈
εα̃(1), nω1α̃1

〉
,
〈
εα̃(2), nω2α̃2

〉
, . . . ,
〈
εα̃(n), nωnα̃n

〉)

= fA
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)
= w1α̃π(1) ⊕w2α̃π(2) ⊕ · · · ⊕wnα̃π(n)

= (w1 +w2 + · · · +wn)α̃ = α̃, fG
w,ω

(〈
εα̃(1), α̃1

nω1
〉
,
〈
εα̃(2), α̃2

nω2
〉
, . . . ,
〈
εα̃(n), α̃n

nωn
〉)

= fG
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉)
= α̃π(1)

w1 ⊗ α̃π(2)
w2 ⊗ · · · ⊗ α̃π(n)

wn

= α̃(w1+w2+···+wn) = α̃.

(3.13)

Theorem 3.8 (bounded). The I-IIFHA and I-IIFHG operators are bounded. That is, for any
weighting vector ω and w:

min(α̃1, α̃2, . . . , α̃n) ≤ fA
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉) ≤ max(α̃1, α̃2, . . . , α̃n),

min(α̃1, α̃2, . . . , α̃n) ≤ fG
w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉) ≤ max(α̃1, α̃2, . . . , α̃n).
(3.14)

Proof. By definitions of I-IIFHA and I-IIFHG operators and operations of IVIFNs, we can
obtain that

min{α̃i} ≤ min
{
α̃π(i)
} ≤ fA

w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉) ≤ max
{
α̃π(i)
} ≤ max{α̃i},

min{α̃i} ≤ min
{
α̃π(i)
} ≤ fG

w,ω

(〈
εα̃(1), α̃1

〉
,
〈
εα̃(2), α̃2

〉
, . . . ,
〈
εα̃(n), α̃n

〉) ≤ max
{
α̃π(i)
} ≤ max{α̃i}.

(3.15)

Theorem 3.9. If ω = (1/n, 1/n, . . . , 1/n), I-IIFHA and I-IIFHG operators reduce to I-IIFOWA and
I-IIFOWG operators. If w = (1/n, 1/n, . . . , 1/n), they reduce to IIFWA and IIFWG operators. If
there was no any positive or negative preference, (εα̃(1), εα̃(2), . . . , εα̃(n)) = (εβ̃(1), εβ̃(2), . . . , εβ̃(n)), the
IIFHA and IIFHG operators are the special cases of I-IIFHA and I-IIFHG operators.

Proof. Let ω = (1/n, 1/n, . . . , 1/n); then

I-IIFHA
(〈
εα̃(1), nω1α̃1

〉
,
〈
εα̃(2), nω2α̃2

〉
, . . . ,
〈
εα̃(n), nωnα̃n

〉)

= w1α̃π(1) ⊕w2α̃π(2) · · · ⊕wnα̃π(n) = I − IIFOWAw(α̃1, α̃2, . . . , α̃n),

I-IIFHG
(〈
εα̃(1), α̃1

nω1
〉
,
〈
εα̃(2), α̃2

nω2
〉
, . . . ,
〈
εα̃(n), α̃n

nωn
〉)

= α̃π(1)
w1 ⊗ α̃π(2)

w2 ⊗ · · · ⊗ α̃π(n)
wn = I − IIFOWGw(α̃1, α̃2, . . . , α̃n).

(3.16)
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Let w = (1/n, 1/n, . . . , 1/n); then

I-IIFHA
(〈
εα̃(1), nω1α̃1

〉
,
〈
εα̃(2), nω2α̃2

〉
, . . . ,
〈
εα̃(n), nωnα̃n

〉)

= ω1α̃1 ⊕ω2α̃2 ⊕ · · · ⊕ωnα̃n = IIFWAω(α̃1, α̃2, . . . , α̃n),

I-IIFHG
(〈
εα̃(1), α̃1

nω1
〉
,
〈
εα̃(2), α̃2

nω2
〉
, . . . ,
〈
εα̃(n), α̃n

nωn
〉)

= α̃1
ω1 ⊗ α̃2

ω2 ⊗ · · · ⊗ α̃n
ωn = IIFWGω(α̃1, α̃2, . . . , α̃n).

(3.17)

Theorem 3.10. In the situation of νLj = 0 or νLj = 0, interval-valued intuitionistic fuzzy geometric

operators are better than interval-valued intuitionistic fuzzy averaging operators, while in μL
j = 0

or μU
j = 0, interval-valued intuitionistic fuzzy averaging operators are better than interval-valued

intuitionistic fuzzy geometric operators.

Proof. Take the IIFWA and IIFWG operators, for example.
If νLj = 0 and νLj = 0,

IIFWAω(α̃1, α̃2, . . . , α̃n) = ω1α̃1 ⊕ω2α̃2 ⊕ · · · ⊕ωnα̃n

=

⎛

⎝

⎡

⎣1 −
n∏

j=1

(
1 − μL

j

)ωj

, 1 −
n∏

j=1

(
1 − μU

j

)ωj

⎤

⎦,

⎡

⎣
n∏

j=1

(
νLj

)ωj

,
n∏

j=1

(
νUj

)ωj

⎤

⎦

⎞

⎠

=

⎛

⎝

⎡

⎣1 −
n∏

j=1

(
1 − μL

j

)ωj

, 1 −
n∏

j=1

(
1 − μU

j

)ωj

⎤

⎦, [0, 0]

⎞

⎠.

(3.18)

If μL
j = 0 and μU

j = 0,

IIFWGω(α̃1, α̃2, . . . , α̃n) = α̃1
ω1 ⊗ α̃2

ω2 ⊗ · · · ⊗ α̃n
ωn

=

⎛

⎝

⎡

⎣
n∏

j=1

(
μL
j

)ωj

,
n∏

j=1

(
μU
j

)ωj

⎤

⎦,

⎡

⎣1 −
n∏

j=1

(
1 − νLj

)ωj

, 1 −
n∏

j=1

(
1 − νUj

)ωj

⎤

⎦

⎞

⎠

=

⎛

⎝[0, 0],

⎡

⎣1 −
n∏

j=1

(
1 − νLj

)ωj

, 1 −
n∏

j=1

(
1 − νUj

)ωj

⎤

⎦

⎞

⎠.

(3.19)

Similarly, this rule is also suitable for IIFOWA, IIFOWG, IIFHA, IIFHG, I-IIFOWA, I-IIFOWG,
I-IIFHA, I-IIFHG operators, and so forth.

4. Application in Interval-Valued Intuitionistic Fuzzy
Multiple-Attribute Group Decision-Making

For a multiple-attribute group decision-making problem, let X = {x1, x2, . . . , xn} be a set of
alternatives, and let G = {g1, g2, . . . , gm} be a set of criteria. Let D = {d1, d2, . . . , dt} be a
set of decision makers, and let λ = (λ(1), λ(2), . . . , λ(t))

T
be the weighting vector of decision

makers. In the following, we apply the I-IIFHA and I-IIFHG operators (whose position-
weighting vector is w = (w1, w2, . . . , wm)

T tomultiple-attribute group decision-making based
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on interval-valued intuitionistic fuzzy information. The approach involves the following
steps.

Step 1. Construct the interval-valued intuitionistic fuzzy evaluation matrix.

R̃ = (r̃ij)n×m = (μ̃ij , ν̃ij)n×m = ([μL
ij , μ

U
ij ], [ν

L
ij , ν

U
ij ])n×m, where [μL

ij , μ
U
ij ] indicates the

degree at wich the alternative xi satisfies the attribute gj given by the decision maker, and
[νLij , ν

U
ij ] indicates the degree at which the alternative xi (i = 1, 2, . . . , n) does not satisfy the

attribute gj (j = 1, 2, . . . , m).

Step 2. Obtain the interval-valued intuitionistic fuzzy positive-ideal vector and negative-ideal
vector corresponding to each alternative’s attribute by every decision maker.

Let the kth decision maker provide the interval-valued intuitionistic fuzzy positive-
ideal vector R̃(k)+ and the interval-valued intuitionistic fuzzy negative-ideal vector R̃(k)−

R̃(k)+ =
(
r̃
(k)+
1 , r̃

(k)+
2 , . . . , r̃

(k)+
j , . . . , r̃

(k)+
m

)
, R̃(k)− =

(
r̃
(k)−
1 , r̃

(k)−
2 , . . . , r̃

(k)−
j , . . . , r̃

(k)−
m

)
, (4.1)

where

r̃
(k)+
j =

(
r̃
(k)+
j1 , r̃

(k)+
j2 , . . . , r̃

(k)+
jl , . . . , r̃

(k)+
jp

)
, r̃

(k)−
j =

(
r̃
(k)−
j1 , r̃

(k)−
j2 , . . . , r̃

(k)−
jl , . . . , r̃

(k)−
jq

)
. (4.2)

Step 3. Calculate the argument-weighting vector ω = (ω1, ω2, . . . , ωn)
T associated with the

interval-valued intuitionistic fuzzy value r̃ij by normal distribution method.

Step 4. Construct aggregated weighted interval-valued intuitionistic fuzzy decision matrix
˙̃R = ( ˙̃rij)n×m:

˙̃R =

⎡

⎢⎢⎢⎢⎢⎢
⎣

g1 g2 · · · gm
x1 ˙̃r11 ˙̃r12 · · · ˙̃r1m
x2 ˙̃r21 ˙̃r22 · · · ˙̃r2m
...

...
...

...
...

xn
˙̃rn1 ˙̃rn2 · · · ˙̃rnm

⎤

⎥⎥⎥⎥⎥⎥
⎦

=
( ˙̃rij
)
n×m, (4.3)

where ˙̃rij = nωjr̃ij or ˙̃rij = r̃ij
nωj , and ω = (ω1, ω2, . . . , ωn)

T is the weighting vector associated
with interval-valued intuitionistic fuzzy value r̃ij itself.

Step 5. Ensure the TOPSIS order-inducing variables ε by using of positive-ideal and negative-
ideal information provided by each decision maker in Step 2.

First, we calculate the distance between the evaluation information r̃ij and kth decision
maker’s preference information.

d
(k)+
ij = max

l=1,2,...,p
d
(
r̃ij , r̃

(k)+
jl

)
, d

(k)−
ij = min

l=1,2,...,q
d
(
r̃ij , r̃

(k)−
jl

)
(4.4)
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where d(r̃ij , r̃
(k)+
j ) and d(r̃ij , r̃

(k)−
j ) can be calculated by the normalized Euclidean distance

measure in Definition 2.3.
We can calculate the coefficients of each alternative’s attribute:

c
(k)
ij =

d
(k)−
ij

d
(k)−
ij + d

(k)+
ij

, i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . . , t, (4.5)

and we can get coefficients matrix C(k) = (c(k)ij )
n×m. By ascending order of c(k)ij , we get the

ordering induced variables matrix ε(k) = (ε(k)ij )
n×m.

Step 6. Utilize the aggregated weighted interval-valued intuitionistic fuzzy decision matrix
˙̃R = ( ˙̃rij)n×m and I-IIFHA or I-IIFHG operator to derive the kth decision maker overall

interval-valued intuitionistic fuzzy arguments R̃(k) = (r̃(k)1 , r̃
(k)
2 , . . . , r̃

(k)
n ) corresponding to

each alternative xi:

r̃
(k)
i =
([

μ
(k)L
i , μ

(k)U
i

]
,
[
ν
(k)L
i , ν

(k)U
i

])
= I-IIFHAω,w

(〈
ε
(k)
i1 , r̃

(k)
i1

〉
,
〈
ε
(k)
i2 , r̃

(k)
i2

〉
, . . . ,
〈
ε
(k)
im , r̃

(k)
im

〉)
or

r̃
(k)
i =
([
μ
(k)L
i , μ

(k)U
i

]
,
[
ν
(k)L
i , ν

(k)U
i

])
= I-IIFHGω,w

(〈
ε
(k)
i1 , r̃

(k)
i1

〉
,
〈
ε
(k)
i2 , r̃

(k)
i2

〉
, . . . ,
〈
ε
(k)
im , r̃

(k)
im

〉)
.

(4.6)

Step 7. Utilize the individual overall interval-valued intuitionistic fuzzy arguments vector
r̃
(k)
i and IIFWA or IIFWG operator to derive the group overall interval-valued intuitionistic
fuzzy argument vector r̃i:

r̃i =
([

μL
i , μ

U
i

]
,
[
νLi , ν

U
i

])
= IIFWA

(
r̃
(1)
i , r̃

(2)
i , . . . , r̃

(t)
i

)
or

r̃i =
([

μL
i , μ

U
i

]
,
[
νLi , ν

U
i

])
= IIFWG

(
r̃
(1)
i , r̃

(2)
i , . . . , r̃

(t)
i

)
.

(4.7)

Step 8. Calculate the scores s(r̃i) (i = 1, 2, . . . , n) and the accuracy values h(r̃i) (i = 1, 2, . . . , n)
of the alternative xi (i = 1, 2, . . . , n), respectively.

Step 9. Utilize the scores s(r̃i) (i = 1, 2, . . . , n) and the accuracy values h(r̃i) (i = 1, 2, . . . , n) to
rank all the alternatives xi (i = 1, 2, . . . , n) and then to select the optimal one(s).

5. Applied Example

Here we take the real estate purchase for applied example. There are five candidate houses
denoted by xi (i = 1, 2, 3, 4, 5) that can be evaluated by the IVIFNs r̃ij with respect to
the five attributes: (1) g1: size; (2) g2: price; (3) g3: structure; (4) g4: position; and (5) g5:
environment, as listed in Table 1. In the real situation, the DMs may have his/her preference
to each attribute. For example, someone may prefer the house close to suburb, while someone
may prefer the position of urban area. DMs give their interval-valued intuitionistic fuzzy
ideal values and negative ideal values corresponding to five attributes shown in Tables 2, 3,
and 4. Suppose that the expert-weighting vector is λ = (0.3, 0.3, 0.4)T .
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Table 1: Decision matrix R̃with IVIFNs.

g1 g2 g3 g4 g5

x1
([0.4, 0.6],
[0.3, 0.4])

([0.5, 0.7],
[0.0, 0.2])

([0.5, 0.6],
[0.2, 0.4])

([0.6, 0.8],
[0.1, 0.2])

([0.4, 0.7],
[0.2, 0.3])

x2
([0.5, 0.8],
[0.1, 0.2])

([0.3, 0.5],
[0.2, 0.3])

([0.3, 0.6],
[0.2, 0.4])

([0.4, 0.5],
[0.2, 0.4])

([0.3, 0.6],
[0.2, 0.3])

x3
([0.5, 0.6],
[0.0, 0.1])

([0.5, 0.8],
[0.1, 0.2])

([0.4, 0.7],
[0.2, 0.3])

([0.2, 0.4],
[0.2, 0.3])

([0.5, 0.8],
[0.0, 0.2])

x4
([0.5, 0.7],
[0.1, 0.3])

([0.4, 0.6],
[0.0, 0.1])

([0.3, 0.5],
[0.2, 0.4])

([0.7, 0.9],
[0.0, 0.1])

([0.3, 0.5],
[0.2, 0.2])

x5
([0.7, 0.8],
[0.0, 0.1])

([0.4, 0.6],
[0.0, 0.2])

([0.4, 0.7],
[0.2, 0.3])

([0.3, 0.5],
[0.1, 0.3])

([0.6, 0.7],
[0.1, 0.2])

Table 2: Preference decision matrix R̃(1) provided by d1.

d1 g1 g2 g3 g4 g5

R̃(1)+ ([0.5, 0.5], [0.5, 0.5]) ([1, 1], [0, 0]) ([0.5, 0.5], [0.5, 0.5]) ([1, 1], [0, 0]) ([1, 1], [0, 0])
R̃(1)− ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1])

Table 3: Preference decision matrix R̃(2) provided by d2.

d2 g1 g2 g3 g4 g5

R̃(2)+ ([1, 1], [0, 0]) ([1, 1], [ 0, 0]) ([0.3, 0.4], [0.6, 0.7]) ([0.5, 0.5], [0.5, 0.5]) ([1, 1], [0, 0])
R̃(2)− ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([1, 1], [0, 0]) ([0, 0], [1, 1]) ([0, 0], [1, 1])

Table 4: Preference decision matrix R̃(3) provided by d3.

d3 g1 g2 g3 g4 g5

R̃(3)+ ([1, 1], [ 0, 0]) ([1, 1], [0, 0]) ([0.8, 0.9], [0.1, 0.2]) ([0.5, 0.5], [0.5, 0.5]) ([1, 1], [0, 0])
R̃(3)− ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1]) ([0, 0], [1, 1])

Table 5: Alternative’s attribute coefficient matrix C(1).

d1 g1 g2 g3 g4 g5

x1 0.7513 0.6701 0.7446 0.7321 0.6182
x2 0.6910 0.5519 0.6734 0.5594 0.5708
x3 0.6558 0.6910 0.7049 0.5149 0.6865
x4 0.7011 0.6275 0.6667 0.8000 0.5652
x5 0.6855 0.6202 0.7049 0.5619 0.7101

Then we can get the alternative’s attribute coefficients matrix C(1), C(2), and C(3) as
shown in Tables 5, 6, and 7 according to (4.4) and (4.5).

By the normal distribution method, we can determine argument-weighting vector
associated with their own values:

ω = (0.2225, 0.1911, 0.2421, 0.1516, 0.1927)T . (5.1)
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Table 6: Alternative’s attribute coefficient matrix C(2).

d2 g1 g2 g3 g4 g5

x1 0.5658 0.6701 0.5758 0.7061 0.6182

x2 0.6910 0.5519 0.6073 0.7037 0.5708

x3 0.6558 0.6910 0.5440 0.6180 0.6865

x4 0.6569 0.6275 0.6176 0.6813 0.5652

x5 0.7807 0.6202 0.5440 0.6410 0.7101

Table 7: Alternative’s attribute coefficient matrix C(3).

d3 g1 g2 g3 g4 g5

x1 0.5658 0.6701 0.7113 0.7061 0.6182

x2 0.6910 0.5519 0.6353 0.7037 0.5708

x3 0.6558 0.6910 0.7112 0.6180 0.6865

x4 0.6569 0.6275 0.6089 0.6813 0.5652

x5 0.7807 0.6202 0.7112 0.6410 0.7101

Table 8: Aggregate results ˙̃R.

g1 g2 g3 g4 g5

x1
([0.3608, 0.5665],
[0.3275, 0.4335])

([0.5157, 0.7112],
[0.0, 0.1920])

([0.4321, 0.5388],
[0.2367, 0.4612])

([0.6790, 0.8444],
[0.0768, 0.1556])

([0.4136, 0.7092],
[0.1935, 0.2908])

x2
([0.4625, 0.7802],
[0.1106, 0.2198])

([0.3165, 0.5157],
[0.1920, 0.2888])

([0.2328, 0.5388],
[0.2367, 0.4612])

([0.4993, 0.5913],
[0.1556, 0.3210])

([0.3135, 0.6113],
[0.1935, 0.2908])

x3
([0.4625, 0.5665],

[0.0, 0.1106])
([0.5157, 0.8080],
[0.0958, 0.1920])

([0.3298, 0.6494],
[0.2367, 0.3506])

([0.2952, 0.4993],
[0.1556, 0.2369])

([0.5128, 0.8065],
[0.0, 0.1935])

x4
([0.4625, 0.6725],
[0.1106, 0.3275])

([0.4166, 0.6138],
[0.0, 0.0958])

([0.2328, 0.4321],
[0.2367, 0.4612])

([0.7631, 0.9232],
[0.0, 0.0768])

([0.3135, 0.5128],
[0.1935, 0.1935])

x5
([0.6725, 0.7802],

[0.0, 0.1106])
([0.4166, 0.6138],

[0.0, 0.1920])
([0.3298, 0.6494],
[0.2367, 0.3506])

([0.4015, 0.5913],
[0.0768, 0.2369])

([0.6113, 0.7092],
[0.0965, 0.1935])

There exist νLxij
= 0 and νUxij

= 0 in interval-valued intuitionistic fuzzy decision matrix

R̃; we choose I-IIFHG and IIFWG operators to aggregate each decision information according
to Theorem 3.10.

We first get the weighted interval-valued intuitionistic fuzzy decision matrix ˙̃R =
( ˙̃rij)n×m as shown in Table 8.

Step 6. Suppose the position-weighting vector w = (0.4472, 0.1853, 0.1421, 0.1198, 0.1056)T

generalized by RIM quantifier. Utilize the aggregated weighted interval-valued intuitionistic
fuzzy decision matrix ˙̃R = ( ˙̃rij)n×m and I-IIFHG operator to derive the kth decision maker
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overall interval-valued intuitionistic fuzzy arguments R̃(k) = (r̃(k)1 , r̃
(k)
2 , . . . , r̃

(k)
n ) correspond-

ing to each alternative xi (i = 1, 2, . . . , 5).

r̃
(1)
1 = ([0.5041, 0.6482], [0.1449, 0.2952]), r̃

(1)
2 = ([0.3410, 0.5936], [0.1862, 0.3348]),

r̃
(1)
3 = ([0.4483, 0.6866], [0.0704, 0.1991]), r̃

(1)
4 = ([0.3709, 0.5783], [0.1253, 0.2871]),

r̃
(1)
5 = ([0.4741, 0.6772], [0.0806, 0.2151]);

r̃
(2)
1 = ([0.4583, 0.6614], [0.1668, 0.3184]), r̃

(2)
2 = ([0.3311, 0.6091], [0.1840, 0.3358]),

r̃
(2)
3 = ([0.4246, 0.6685], [0.1071, 0.2202]), r̃

(2)
4 = ([0.4439, 0.6469], [0.0898, 0.1914]),

r̃
(2)
5 = ([0.4741, 0.6772], [0.0806, 0.2151]);

r̃
(3)
1 = ([0.4920, 0.6994], [0.1344, 0.2729]), r̃

(3)
2 = ([0.3311, 0.6091], [0.1840, 0.3358]),

r̃
(3)
3 = ([0.4483, 0.6866], [0.0704, 0.1991]), r̃

(3)
4 = ([0.3858, 0.5923], [0.1091, 0.2616]),

r̃
(3)
5 = ([0.4633, 0.6618], [0.1073, 0.2351]).

(5.2)

Step 7. Use the individual overall interval-valued intuitionistic fuzzy arguments vector r̃(k)i

and IIFWG operator to derive the group overall interval-valued intuitionistic fuzzy argu-
ments vector r̃i (i = 1, 2, . . . , 5):

r̃1 = ([0.4829, 0.6635], [0.1517, 0.3002]), r̃2 = ([0.3350, 0.6029], [0.1849, 0.3354]),

r̃3 = ([0.4387, 0.6793], [0.0853, 0.2076]), r̃4 = ([0.4017, 0.6077], [0.1080, 0.2450]),

r̃5 = ([0.4719, 0.6741], [0.0860, 0.2191]).

(5.3)

Step 8. Calculate the scores s(r̃i) (i = 1, 2, . . . , 5) of the collective overall intuitionistic fuzzy
values by Definition 2.6.

s(r̃1) = 0.6945, s(r̃2) = 0.4176, s(r̃3) = 0.8251, s(r̃4) = 0.6564, s(r̃5) = 0.8409.
(5.4)

Step 9. Rank all the alternatives xi (i = 1, 2, . . . , 5) in accordance with the scores s(r̃i) (i =
1, 2, . . . , 5) of the collective overall intuitionistic fuzzy values: x2 ≺ x4 ≺ x1 ≺ x3 ≺ x5, and thus
the most desirable alternative is x5.

In the previous analysis, the computation of illustrative example is conducted
according to the proposed hybrid induced I-IIFHG operator. And we have also conducted
computation according to other representative operators: two induced operators of I-
IIFOWA and I-IIFOWG, which can consider the attitudinal characteristics of experts and
the argument-independent preference information; two hybrid operators of IIFHA and
IIFHG, which can consider the argument-dependent and argument-independent preference
information; and the other proposed induced hybrid I-IIFHA operator. Comparative
aggregated results and orderings are listed in Tables 9 and 10.
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Table 10: Ordering of the candidate houses.

Different operators Ordering

I-IIFOWA 2 ≺ 1 ≺ 3 ≺ 5 ≺ 4
I-IIFOWG 2 ≺ 1 ≺ 3 ≺ 5 ≺ 4
IIFHA 2 ≺ 1 ≺ 3 ≺ 4 ≺ 5
IIFHG 2 ≺ 1 ≺ 3 ≺ 4 ≺ 5
I-IIFHA 2 ≺ 1 ≺ 4 ≺ 3 ≺ 5
I-IIFHG 2 ≺ 4 ≺ 1 ≺ 3 ≺ 5

As can be seen from the comparative results in Table 10, because the last four hybrid
operators (IIFHA, IIFHG, I-IIFHA, and I-IIFHG) manage to give more consideration to the
argument-dependent preference information than the first two induced operators (I-IIFOWA
and I-IIFOWG), the 5th candidate alternative is emphasized to be the optimal one. And
among the last four hybrid operators, because the last two induced hybrid operators (I-IIFHA
and I-IIFHG) manage to give more consideration to the additional attitudinal characteristics
of experts than the two hybrid operators (IIFHA and IIFHG), the 3rd alternative happens to
meet the experts’ interests and is emphasized to be better than 1st, 2nd, and 4th alternatives.
Also it is can be seen from Table 10, the optimal alternative is consistent with all the last four
operators and the worst alternative is consistent with all the six comparative operators.

Generally different aggregation operators for different decision environments may
obtain different orderings of candidate solutions. The I-IIFHA and I-IIFHG operators can
hybridly aggregate the argument-dependent preference information, argument-independent
preference information, and the additional attitudinal characteristics of experts, and can
be reduced to different ordinary operators under different decision environments. So the
main advantage of the proposed I-IIFHA and I-IIFHG operator with TOPSIS order-inducing
variables is that they can include a wide range of particular cases and so can consider a lot
of possibilities with a more complete view of the different scenarios when solving multiple-
attribute multi-interest group decision-making problems under interval-valued intuitionistic
fuzzy decision environment.

6. Conclusion

We have presented a decision-making approach based on the proposed I-IIFHA and I-IIFHG
operators. I-IIFHA and I-IIFHG operators are extensions of the IIFHA and IIFHG operators
by using the TOPSIS order-inducing variables in the reordering process. The prominent main
advantage of these operators is that they are able to consider more complex attitudinal
characteristics in the decision process than other ordinary operators. We have studied
some desirable properties of the I-IIFHA and I-IIFHG operators, such as commutativity,
monotonicity, idempotency, and bounded. Theoretical analysis has shown that I-IIFHA and
I-IIFHG can include a wide range of aggregation operators as special cases, such as IIFHA,
IIFOWA, IIFWA, IIFHG, IIFOWG, and IIFWG operators. Furthermore, we have applied
these operators to form an approach for the multiple attribute multi-interest group decision-
making problems with interval-valued intuitionistic fuzzy information. In the future, we
will computerize the proposed methods to facilitate the usage and continue working on the
extension and application of developed operators to different environments and domains.
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