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The global error bound estimation for the generalized nonlinear complementarity problem over a
closed convex cone (GNCP) is considered. To obtain a global error bound for the GNCP, we first
develop an equivalent reformulation of the problem. Based on this, a global error bound for the
GNCP is established. The results obtained in this paper can be taken as an extension of previously
known results.

1. Introduction

Let mappings F,G : Rn → Rm,H : Rn → Rl, and the generalized nonlinear complementarity
problem, abbreviated as GNCP, is to find vector x∗ ∈ Rn such that

F(x∗) ∈ K, G(x∗) ∈ K0, F(x∗)TG(x∗) = 0, H(x∗) = 0, (1.1)

where K is a nonempty closed convex cone in Rm and K◦ is its dual cone, that is, K◦ = {u ∈
Rm | uTv ≥ 0, for all v ∈ K}. We denote the solution set of the GNCP by X∗, and assume that
it is nonempty throughout this paper.

The GNCP is a direct generalization of the classical nonlinear complementarity
problem which finds applications in engineering, economics, finance, and robust opti-
mization operations research [1–3]. For example, the balance of supply and demand is
central to all economic systems; mathematically, this fundamental equation in economics
is often described by a complementarity relation between two sets of decision variables.
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Furthermore, the classical Walrasian law of competitive equilibria of exchange economies
can be formulated as a generalized nonlinear complementarity problem in the price and
excess demand variables [2]. Up to now, the issues of numerical methods and existence of
the solution for the problem were discussed in the literature [4].

Among all the useful tools for theoretical and numerical treatment to variational
inequalities, nonlinear complementarity problems, and other related optimization problems,
the global error bound, that is, an upper bound estimation of the distance from a given point
in Rn to the solution set of the problem in terms of some residual functions, is an important
one [5, 6]. The error bound estimation for the generalized linear complementarity problems
over a polyhedral cone was analyzed by Sun et al. [7]. Using the natural residual function,
Pang [8] obtained a global error bound for the strongly monotone and Lipschitz continuous
classical nonlinear complementarity problem with a linear constraint set. Xiu and Zhang [9]
also presented a global error bound for general variational inequalities with the mapping
being strongly monotone and Lipschitz continuous in terms of the natural residual function.
If F(x) = x, G(x) is γ-strongly monotone and Hölder continuous, the local error bound for
classical variational inequality problems was given by Solodov [6].

To our knowledge, the global error bound for the problem (1.1) with the mapping
being γ-strongly monotone and Hölder-continuous hasn’t been investigated. Motivated by
this fact, Themain contribution of this paper is to establish a global error bound for the GNCP
via the natural residual function under milder conditions than those needed in [6, 8, 9]. The
results obtained in this paper can be taken as an extension of the previously known results in
[6, 8, 9].

We give some notations used in this paper. Vectors considered in this paper are all
taken in Euclidean space equipped with the standard inner product. The Euclidean norm of
vector in the space is denoted by ‖ · ‖. The inner product of vector in the space is denoted by
〈·, ·〉.

2. The Global Error Bound for GNCP

In this section, we would give error bound for GNCP, which can be viewed as extensions
of previously known results. To this end, we will in the following establish an equivalent
reformulation of the GNCP and state some well-known properties of the projection operator
which is crucial to our results.

In the following, we first give the equivalent reformulation of the GNCP.

Theorem 2.1. A point x∗ is a solution of (1.1) if and only if x∗ is a solution of the following problem:

G(x∗)T(F(x) − F(x∗)) ≥ 0, ∀F(x) ∈ K,

H(x∗) = 0.
(2.1)

Proof. Suppose that x∗ is a solution of (2.1). Since vector 0 ∈ K, by substituting F(x) = 0
into (2.1), we have G(x∗)TF(x∗) ≤ 0. On the other hand, since F(x∗) ∈ K, then 2F(x∗) ∈
K. By substituting F(x) = 2F(x∗) into (2.1), we obtain G(x∗)TF(x∗) ≥ 0. Consequently,
G(x∗)TF(x∗) = 0. For any F(x) ∈ K, we have G(x∗)TF(x) = G(x∗)T[F(x) − F(x∗)] ≥ 0,
that is, G(x∗) ∈ K◦. Combining H(x∗) = 0, thus, x∗ is a solution of (1.1).
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On the contrary, suppose that x∗ is a solution of (1.1), sinceG(x∗) ∈ K◦, for any F(x) ∈
K, we have G(x∗)TF(x) ≥ 0, and from G(x∗)TF(x∗) = 0, we have G(x∗)T[F(x) − F(x∗)] ≥ 0,
combining H(x∗) = 0. Therefor, x∗ is a solution of (2.1).

Now, we give the definition of projection operator and some related properties [10].
For nonempty closed convex setK ⊂ Rm and any vector x ∈ Rm, the orthogonal projection of
x onto K, that is, argmin{‖y − x‖ | y ∈ K}, is denoted by PK(x).

Lemma 2.2. For any u ∈ Rm, v ∈ K, then

(i) 〈PK(u) − u, v − PK(u)〉 ≥ 0,

(ii) ‖PK(u) − PK(v)‖ ≤ ‖u − v‖.

For (2.1), β > 0 is a constant, e(x) := F(x) − PK[F(x) − βG(x)] is called projection-type
residual function, and let r(x) := ‖e(x)‖. The following conclusion provides the relationship
between the solution set of (2.1) and that of projection-type residual function [11], which is
due to Noor [11].

Lemma 2.3. x is a solution of (2.1) if and only if e(x) = 0, H(x) = 0.

To establish the global error bound of GNCP, we also need the following definition.

Definition 2.4. The mapping F : Rn → Rm is said to be

(1) γ-stronglymonotonewith respect toG : Rn → Rm if there are constants μ > 0, γ > 1
such that

〈
F(x) − F

(
y
)
, G(x) −G

(
y
)〉 ≥ μ

∥∥x − y
∥∥1+γ , ∀x, y ∈ Rn; (2.2)

(2) Hölder-continuous if there are constants L > 0, v ∈ (0, 1] such that

∥∥F(x) − F
(
y
)∥∥ ≤ L

∥∥x − y
∥∥v, ∀x, y ∈ Rn. (2.3)

In this following, based on Lemmas 2.2 and 2.3, we establish error bound for GNCP in
the set Ω := {x ∈ Rn | H(x) = 0}.

Theorem 2.5. Suppose that F is γ-strongly monotone with respect to G and with positive constants
μ, γ , both F and G are Hölder continuous with positive constants L1 > 0, L2 > 0, v1, v2 ∈ (0, 1],
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respectively, and βμ ≤ (L1 + L2β)(2L1 + L2β) holds. Then for any x ∈ Ω := {x ∈ Rn | H(x) = 0},
there exists a solution x∗ of (1.1) such that

(
r(x)

2L1 + L2β

)1/min{v1,v2}
≤ ‖x − x∗‖ ≤

(
L1 + L2β

βμ
r(x)

)1/(1+γ−min{v1,v2})
,

if r(x) ≤ βμ

L1 + L2β
.

(2.4)

(
r(x)

2L1 + L2β

)1/max{v1,v2}
≤ ‖x − x∗‖ ≤

(
L1 + L2β

βμ
r(x)

)1/(1+γ−max{v1,v2})
,

if r(x) ≥ 2L1 + L2β.

(2.5)

(
r(x)

2L1 + L2β

)1/min{v1,v2}
≤ ‖x − x∗‖ ≤

(
L1 + L2β

βμ
r(x)

)1/(1+γ−max{v1,v2})
,

if
βμ

L1 + L2β
< r(x) < 2L1 + L2β.

(2.6)

Proof. Since

F(x) − e(x) = PK
[
F(x) − βG(x)

] ∈ K, (2.7)

by the first inequality of (2.1),

(F(x) − e(x) − F(x∗))TβG(x∗) ≥ 0. (2.8)

Combining F(x∗) ∈ Kwith Lemma 2.2(i), we have

〈
F(x∗) − PK

[
F(x) − βG(x)

]
, PK
[
F(x) − βG(x)

] − [F(x) − βG(x)
]〉 ≥ 0. (2.9)

Substituting PK[F(x) − βG(x)] in (2.9) by F(x) − e(x) leads to that

(F(x) − F(x∗) − e(x))T
[
e(x) − βG(x)

] ≥ 0. (2.10)

Using (2.8) and (2.10), we obtain

[(F(x) − F(x∗)) − e(x)]T
[
e(x) + β(G(x∗) −G(x))

] ≥ 0, (2.11)
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that is,

β[F(x) − F(x∗)]T[G(x∗) −G(x)] + e(x)T
[
(F(x) − F(x∗)) − β(G(x∗) −G(x))

] − e(x)Te(x) ≥ 0.
(2.12)

Base on Definition 2.4, a direct computation yields that

‖x − x∗‖1+γ ≤ 1
μ

[
(F(x) − F(x∗))T(G(x) −G(x∗))

]

≤ 1
βμ

{
e(x)T

[
(F(x) − F(x∗)) + β(G(x) −G(x∗))

] − e(x)Te(x)
}

≤ 1
βμ

{‖e(x)‖(‖F(x) − F(x∗)‖ + β‖(G(x) −G(x∗))‖)}

≤ 1
βμ

{
r(x)

[
L1‖x − x∗‖v1 + βL2‖x − x∗‖v2

]}
.

(2.13)

Combining this, we have

‖x − x∗‖ ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
L1 + L2β

βμ
r(x)

)1/(1+γ−min{v1,v2})
, if ‖x − x∗‖ ≤ 1,

(
L1 + L2β

βμ
r(x)

)1/(1+γ−max{v1,v2})
, if ‖x − x∗‖ ≥ 1.

(2.14)

On the other hand, for the first inequality of (2.1), by Lemmas 2.3 and 2.2(ii), we have

r(x) = ‖e(x) − e(x∗)‖
=
∥∥F(x) − PK

[
F(x) − βG(x)

] − F(x∗) + PK
[
F(x∗) − βG(x∗)

]∥∥

= ‖F(x) − F(x∗)‖ + ∥∥PK
[
F(x) − βG(x)

] − PK
[
F(x∗) − βG(x∗)

]∥∥

≤ ‖F(x) − F(x∗)‖ + ∥∥[F(x) − βG(x)
] − [F(x∗) − βG(x∗)

]∥∥

= 2‖F(x) − F(x∗)‖ + β‖G(x) −G(x∗)‖
≤ 2L1‖x − x∗‖v1 + L2β‖x − x∗‖v2 .

(2.15)

Thus,

‖x − x∗‖ ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
r(x)

2L1 + L2β

)1/min{v1,v2}
, if ‖x − x∗‖ ≤ 1,

(
r(x)

2L1 + L2β

)1/max{v1,v2}
, if ‖x − x∗‖ ≥ 1.

(2.16)
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Combining (2.14) with (2.16) for any x ∈ Rn, if ‖x − x∗‖ ≤ 1, then

(
r(x)

2L1 + L2β

)1/min{v1,v2}
≤ ‖x − x∗‖ ≤ min

{(
L1 + L2β

βμ
r(x)

)1/(1+γ−min{v1,v2})
, 1

}

. (2.17)

For any x ∈ Rn, if ‖x − x∗‖ ≥ 1, then

max

{(
r(x)

2L1 + L2β

)1/max{v1,v2}
, 1

}

≤ ‖x − x∗‖ ≤
(
L1 + L2β

βμ
r(x)

)1/(1+γ−max{v1,v2})
. (2.18)

If r(x) ≤ βμ/(L1 + L2β), then ((L1 + L2β)/βμ)r(x) ≤ 1, by (2.17), we have ‖x − x∗‖ ≤ 1,
and using (2.17) again, we obtain that (2.4) holds.

If r(x) ≥ L2β + 2L1, then r(x)/(2L1 + L2β) ≥ 1, combining this with (2.18), we have
‖x − x∗‖ ≥ 1, and using (2.18) again, we conclude that (2.5) holds.

If βμ/(L1 + L2β) < r(x) < 2L1 + L2β, then

L1 + L2β

βμ
r(x) > 1,

r(x)
L2β + 2L1

< 1. (2.19)

Combining (2.17) with (2.18), we conclude that (2.6) holds.

Definition 2.6. The mappingH involved in the GNCP is said to be α-strongly monotone in Rn

if there are positive constants σ > 0, α > 1 such that

〈
x − y,H(x) −H

(
y
)〉 ≥ σ

∥∥x − y
∥∥1+α, ∀x, y ∈ Rn. (2.20)

Base on Theorem 2.5, we are at the position to state our main results in the following.

Theorem 2.7. Suppose that the hypotheses of Theorem 2.5 hold, H is α-strongly monotone, and the
set Ω := {x ∈ Rn | H(x) = 0} is convex. Then, there exists a constant ρ > 0, such that, for any
x ∈ Rn, there exists x∗ ∈ X∗ such that

‖x − x∗‖ ≤ ρ
{
‖H(x)‖1/α + R(x)

}
, ∀x ∈ Rn, (2.21)
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where

ρ = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ
,

(

max

{
L1 + L2β

βμ
,

(
2L1 + βL2

)(
L1 + L2β

)

βμ
σ−min{v1,v2}

})1/(1+γ−min{v1,v2})
,

(

max

{
L1 + L2β

βμ
,

(
2L1 + βL2

)(
L1 + L2β

)

βμ
σ−max{v1,v2}

})1/(1+γ−min{v1,v2})
,

(

max

{
L1 + L2β

βμ
,

(
2L1 + βL2

)(
L1 + L2β

)

βμ
σ−min{v1,v2}

})1/(1+γ−max{v1,v2})
,

(

max

{
L1 + L2β

βμ
,

(
2L1 + βL2

)(
L1 + L2β

)

βμ
σ−max{v1,v2}

})1/(1+γ−max{v1,v2})
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(2.22)

R(x) = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
r(x) + ‖H(x)‖min{v1,v2}/α

)1/(1+γ−min{v1,v2})

(
r(x) + ‖H(x)‖max{v1,v2}/α

)1/(1+γ−min{v1,v2})

(
r(x) + ‖H(x)‖min{v1,v2}/α

)1/(1+γ−max{v1,v2})

(
r(x) + ‖H(x)‖max{v1,v2}/α

)1/(1+γ−max{v1,v2})

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (2.23)

Proof. For given x ∈ Rn, we only need to first project x to Ω := {x ∈ Rn | H(x) = 0}, that
is, there exists a vector x ∈ Ω such that ‖x − x‖ = dist(x,Ω). By Definition 2.6, there exist
constants σ > 0, α > 0 such that

‖x − x‖1+α ≤ 1
σ
〈x − x,H(x) −H(x)〉

≤ 1
σ
‖x − x‖‖H(x) −H(x)‖

=
1
σ
‖x − x‖‖H(x)‖,

(2.24)

that is, dist(x,Ω) = ‖x − x‖ ≤ (1/σ)‖H(x)‖1/α.
Since

r(x) − r(x) ≤ ‖e(x) − e(x)‖
=
∥∥{F(x) − PK

[
F(x) − βG(x)

]} − {F(x) − PK
[
F(x) − βG(x)

]}∥∥

≤ ‖F(x) − F(x)‖ + ∥∥PK
(
F(x) − βG(x)

) − PK
(
F(x) − βG(x)

)∥∥

≤ ‖F(x) − F(x)‖ + ∥∥(F(x) − βG(x)
) − (F(x) − βG(x)

)∥∥

≤ 2‖F(x) − F(x)‖ + β‖G(x) −G(x)‖
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≤ 2L1‖x − x‖ν1 + βL2‖x − x‖ν2

≤
{(

2L1 + βL2
)‖x − x‖min{v1,v2}, if ‖x − x‖ < 1

(
2L1 + βL2

)‖x − x‖max{v1,v2}, if ‖x − x‖ ≥ 1

=

{(
2L1 + βL2

)
dist(x,Ω)min{v1,v2}, if ‖x − x‖ ≤ 1

(
2L1 + βL2

)
dist(x,Ω)max{v1,v2}, if ‖x − x‖ ≥ 1,

(2.25)

Combining this, we have

r(x) ≤ r(x) +

{(
2L1 + βL2

)
dist(x,Ω)min{v1,v2}, if ‖x − x‖ < 1

(
2L1 + βL2

)
dist(x,Ω)max{v1,v2}, if ‖x − x‖ ≥ 1.

(2.26)

Combining (2.26) with Theorem 2.5, we have the following results.
Case 1 (if r(x) ≤ βμ/(L1 + L2β) and ‖x − x‖ ≤ 1). Combining (2.4) with the first inequality in
(2.26), we can obtain that

‖x − x∗‖ ≤ dist(x,Ω) + ‖x − x∗‖

≤ dist(x,Ω) +
(
L1 + L2β

βμ
r(x)

)1/(1+γ−min{v1,v2})

≤ dist(x,Ω)

+

(
L1 + L2β

βμ
r(x) +

(
2L1 + βL2

)(
L1 + L2β

)

βμ
dist(x,Ω)min{v1,v2}

)1/(1+γ−min{v1,v2})

≤ 1
σ
‖H(x)‖1/α + η1

(
r(x) + ‖H(x)‖min{v1,v2}/α

)1/(1+γ−min{v1,v2})

≤ ρ1

{
‖H(x)‖1/α +

(
r(x) + ‖H(x)‖min{v1,v2}/α

)1/(1+γ−min{v1,v2})
}
,

(2.27)

where η1 = (max{(L1 + L2β)/βμ, ((2L1 + βL2)(L1 + L2β)/βμ)σ−min{v1,v2}})1/(1+γ−min{v1,v2}),
ρ1 = max{1/σ, η1}.
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Case 2 (If r(x) ≤ βμ/(L1 + L2β) and ‖x − x‖ ≥ 1). Combining (2.4) with the second inequality
in (2.26), we can also obtain that

‖x − x∗‖ ≤ dist(x,Ω) + ‖x − x∗‖

≤ dist(x,Ω) +
(
L1 + L2β

βμ
r(x)

)1/(1+γ−min{v1,v2})

≤ dist(x,Ω)

+

(
L1 + L2β

βμ
r(x) +

(
2L1 + βL2

)(
L1 + L2β

)

βμ
dist(x,Ω)max{v1,v2}

)1/(1+γ−min{v1,v2})

≤ 1
σ
‖H(x)‖1/α + η2

(
r(x) + ‖H(x)‖max{v1,v2}/α

)1/(1+γ−min{v1,v2})

≤ ρ2

{
‖H(x)‖1/α +

(
r(x) + ‖H(x)‖max{v1,v2}/α

)1/(1+γ−min{v1,v2})
}
,

(2.28)

where η2 = (max{(L1 + L2β)/βμ, ((2L1 + βL2)(L1 + L2β)/βμ)σ−max{v1,v2}})1/(1+γ−min{v1,v2}),
ρ2 = max{1/σ, η2}.
Case 3 (if r(x) > βμ/(L1+L2β) and ‖x−x‖ ≤ 1). Combining (2.5)-(2.6)with the first inequality
in (2.26), we can obtain that

‖x − x∗‖ ≤ dist(x,Ω) + ‖x − x∗‖

≤ dist(x,Ω) +
(
L1 + L2β

βμ
r(x)

)1/(1+γ−max{v1,v2})

≤ dist(x,Ω)

+

(
L1 + L2β

βμ
r(x) +

(
2L1 + βL2

)(
L1 + L2β

)

βμ
dist(x,Ω)min{v1,v2}

)1/(1+γ−max{v1,v2})

≤ 1
σ
‖H(x)‖1/α + η3

(
r(x) + ‖H(x)‖min{v1,v2}/α

)1/(1+γ−max{v1,v2})

≤ ρ1

{
‖H(x)‖1/α +

(
r(x) + ‖H(x)‖min{v1,v2}/α

)1/(1+γ−max{v1,v2})
}
,

(2.29)

where η3 = (max{(L1 + L2β)/βμ, ((2L1 + βL2)(L1 + L2β)/βμ)σ−min{v1,v2}})1/(1+γ−max{v1,v2}),
ρ3 = max{1/σ, η3}.
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Case 4 (If r(x) > βμ/(L1 + L2β) and ‖x − x‖ ≥ 1). Combining (2.5)-(2.6) with the second
inequality in (2.26), we can also obtain that

‖x − x∗‖ ≤ dist(x,Ω) + ‖x − x∗‖

≤ dist(x,Ω) +
(
L1 + L2β

βμ
r(x)

)1/(1+γ−max{v1,v2})

≤ dist(x,Ω)

+

(
L1 + L2β

βμ
r(x) +

(
2L1 + βL2

)(
L1 + L2β

)

βμ
dist(x,Ω)max{v1,v2}

)1/(1+γ−max{v1,v2})

≤ 1
σ
‖H(x)‖1/α + η4

(
r(x) + ‖H(x)‖max{v1,v2}/α

)1/(1+γ−max{v1,v2})

≤ ρ4

{
‖H(x)‖1/α +

(
r(x) + ‖H(x)‖max{v1,v2}/α

)1/(1+γ−max{v1,v2})
}
,

(2.30)

where η4 = (max{(L1 + L2β)/βμ, ((2L1 + βL2)(L1 + L2β)/βμ)σ−max{v1,v2}})1/(1+γ−max{v1,v2}),
ρ4 = max{1/σ, η4}.

By (2.27)–(2.30), we can deduce that (2.21) holds.

Based on Theorem 2.7, we can further establish a global error bound for the GNCP.
First, we give that the needed result from [12] mainly discusses the error bound for a
polyhedral cone to reach our claims.

Lemma 2.8. For polyhedral cone P = {x ∈ Rn | D1x = d1, D2x ≤ d2} with D1 ∈ Rl×n, D2 ∈
Rm×n, d1 ∈ Rl, and d2 ∈ Rm, there exists a constant c1 > 0 such that

dist(x, P) ≤ c1[‖D1x − d1‖ + ‖(D2x − d2)+‖] ∀x ∈ Rn. (2.31)

Theorem 2.9. Suppose that the hypotheses of Theorem 2.5 hold, andH is linear mapping. Then, there
exists a constant μ > 0, such that, for any x ∈ Rn, there exists x∗ ∈ X∗ such that

‖x − x∗‖ ≤ μ{‖H(x)‖ + R(x)}, ∀x ∈ Rn, (2.32)

where

R(x) = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
r(x) + ‖H(x)‖min{v1,v2}

)1/(1+γ−min{v1,v2})

(
r(x) + ‖H(x)‖max{v1,v2}

)1/(1+γ−min{v1,v2})

(
r(x) + ‖H(x)‖min{v1,v2}

)1/(1+γ−max{v1,v2})

(
r(x) + ‖H(x)‖max{v1,v2}

)1/(1+γ−max{v1,v2})

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (2.33)



Journal of Applied Mathematics 11

Proof. For given x ∈ Rn, we only need to first project x to Ω, that is, there exists a vector
x ∈ Ω such that ‖x − x‖ = dist(x,Ω). By Lemma 2.8, there exists a constant τ > 0 such that
dist(x,Ω) = ‖x − x‖ ≤ τ‖H(x)‖. In the following, the proof is similar to that of Theorem 2.7,
and we can deduce that (2.32) holds.

Remark 2.10. If the constraint conditionH(x) = 0 is removed in (1.1), F is strongly monotone
with respect to G (i.e., γ = 1), and both F and G are Lipschitz continuous (i.e., v1 = v2 = 1),
the error bound in Theorems 2.5, 2.7, and 2.9 reduces to result of Theorem 3.1 in [9].

If the constraint conditionH(x) = 0 is removed in (1.1) and F(x) = x, G(x) is strongly
monotone (i.e., γ = 1) and Lipschitz continuous (i.e., v1 = v2 = 1), the error bound in
Theorems 2.5, 2.7, and 2.9 reduces to result of Theorem 3.1 in [8].

If the constraint condition H(x) = 0 is removed in (1.1) and F(x) = x, G(x) is γ-
strongly monotone in set {x ∈ Rn | ‖x − x∗‖ ≤ 1} and Hölder continuous, the error bound in
Theorems 2.5, 2.7, and 2.9 reduces to result of Theorem 2 in [6].
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