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We investigate the existence of multiple solutions for a class of nonhomogeneous Neumann
problem with a perturbed term. By using variational methods and three critical point theorems
of B. Ricceri, we establish some new sufficient conditions under which such a problem possesses
three solutions in an appropriate Orlicz-Sobolev space.

1. Introduction

Consider the following nonhomogeneous Neumann problem with a perturbed term:

−div(α(|∇u|)∇u) + α(|u|)u = λf(x, u) + μg(x, u), in Ω,

∂u

∂ν
= 0, on ∂Ω,

(
Pλ,μ

)

whereΩ is a bounded domain in R
N(N ≥ 3)with smooth boundary ∂Ω, ν is the outer normal

to ∂Ω, f, g : Ω×R → R are two Carathéodory functions, λ > 0, μ ≥ 0 are two parameters, and
the function α : (0,∞) → R is such that ϕ(t) : R → R defined by

ϕ(t) =

{
α(|t|)t, t /= 0,
0, t = 0,

(1.1)

is an odd, strictly increasing homeomorphism from R to R.
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It is well known that these kinds of problems are important in applications in many
fields, such as elasticity, fluid dynamics, and image processing (see [1–4]). Since the operator
in the divergence form is nonhomogeneous, we introduce Orlicz-Sobolev space which is
an appropriate setting for these problems. Such space originated with Nakano [5] and
was developed by Musielak and Orlicz [6]. Many properties of Sobolev spaces have been
extended to Orlicz-Sobolev space (see [7–10]). Several authors have widely studied the
existence of solutions for the relevant problem by means of variational techniques, monotone
operator methods, fixed point, and degree theory (see [11–15]). To the best of our knowledge,
for the perturbed nonhomogeneous Neumann problem, there has so far been few papers
concerning its multiple solutions. Motivated by the above facts, in this paper, we establish
some new sufficient conditions under which such a problem possesses three weak solutions
in Orlicz-Sobolev space.

This paper is organized as follows. In Section 2, some preliminaries are presented. In
Section 3, we discuss the existence of three weak solutions for problem

(
Pλ,μ

)
.

2. Preliminaries

We start by recalling some basic facts about Orlicz-Sobolev space. Let ϕ be as in
Introduction and Φ(t) : R → R,

Φ(t) =
∫ t

0
ϕ(s)ds. (2.1)

We observe that Φ is, a Young function, that is Φ(0) = 0, Φ is convex and limt→∞Φ(t) = +∞.
Furthermore, since Φ(t) = 0 if and only if t = 0, limt→ 0(Φ(t)/t) = 0, and limt→∞(Φ(t)/t) =
+∞, then Φ is called anN-function. The function Φ∗ is called the complementary function of
Φ and it satisfies

Φ∗(t) = sup{st −Φ(s); s ≥ 0}, ∀t ≥ 0. (2.2)

Assume that Φ satisfies the following structural hypotheses

(Φ1) 1 < lim inft→∞(tϕ(t)/Φ(t)) ≤ p0 := supt>0(tϕ(t)/Φ(t)) < ∞;

(Φ2)N < p0 := inft>0(tϕ(t)/Φ(t)) < lim inft→∞(log(Φ(t))/ log(t)).

Further, we also assume that the function

(Φ3) [0,∞) 	 t → Φ(
√
t) is convex.

The Orlicz space LΦ(Ω) defined by Φ is the space of measurable functions u : Ω → R

such that

‖u‖LΦ
:= sup

{∫

Ω
u(x)v(x)dx;

∫

Ω
Φ∗(|v(x)|)dx ≤ 1

}
< ∞. (2.3)

Then (LΦ(Ω), ‖ · ‖LΦ) is a Banach space whose norm is equivalent to the Luxemburg norm

‖u‖Φ := inf
{
k > 0;

∫

Ω
Φ
( |u(x)|

k

)
dx ≤ 1

}
. (2.4)
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We denote byW1LΦ(Ω) the Orlicz-Sobolev space, defined by

W1LΦ(Ω) =
{
u ∈ LΦ;

∂u

∂xi
∈ LΦ, i = 1, 2, . . . ,N

}
. (2.5)

This is a Banach space with respect to the norm

‖u‖1,Φ = ‖|∇u|‖Φ + ‖u‖Φ. (2.6)

Lemma 2.1 (see [13]). OnW1LΦ(Ω) the norms

‖u‖1,Φ = ‖|∇u|‖Φ + ‖u‖Φ,
‖u‖2,Φ = max{‖|∇u|‖Φ, ‖u‖Φ},

‖u‖ := inf
{
μ > 0;

∫

Ω

[
Φ
( |u(x)|

μ

)
+ Φ

( |∇u(x)|
μ

)]
dx ≤ 1

}
,

(2.7)

are equivalent. Moreover, for every u ∈ W1LΦ(Ω), one has

‖u‖ ≤ 2‖u‖2,Φ ≤ 2‖u‖1,Φ ≤ 4‖u‖. (2.8)

Lemma 2.2. Let u ∈ W1LΦ(Ω), then

‖u‖p0 ≤
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx ≤ ‖u‖p0 , if ‖u‖ > 1,

‖u‖p0 ≤
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx ≤ ‖u‖p0 , if ‖u‖ < 1.

(2.9)

Proof. For the proof of

‖u‖p0 ≤
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx, if ‖u‖ > 1,

‖u‖p0 ≤
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx, if ‖u‖ < 1,

(2.10)

we can see Lemma 2.2 of the paper [13]. Since p0 ≥ (tϕ(t))/Φ(t) for all t ≥ 0, it follows that
letting σ > 1, we have

log(Φ(σt)) − log(Φ(t)) =
∫σt

t

ϕ(s)
Φ(s)

ds ≤
∫σt

t

p0

s
ds = log

(
σp0

)
. (2.11)

Thus, one has

Φ(σt) ≤ σp0Φ(t), t > 0, σ > 1. (2.12)
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Moreover, by the definition of the norm, we remark that

∫

Ω

[
Φ
( |u(x)|

‖u‖
)
+ Φ

( |∇u(x)|
‖u‖

)]
dx ≤ 1. (2.13)

Therefore, we have

∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx =

∫

Ω

[
Φ
(
‖u‖ |u(x)|‖u‖

)
+ Φ

(
‖u‖ |∇u(x)|

‖u‖
)]

dx

≤ ‖u‖p0
∫

Ω

[
Φ
( |u(x)|

‖u‖
)
+ Φ

( |∇u(x)|
‖u‖

)]
dx

≤ ‖u‖p0 ,

(2.14)

for all ‖u‖ > 1.
Similar techniques as those used in the proof of (2.12), we have

Φ(t) ≤ τp0Φ
(
t

τ

)
, t > 0, 0 < τ < 1. (2.15)

Therefore, we can obtain

∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx ≤ ‖u‖p0

∫

Ω

[
Φ
( |u(x)|

‖u‖
)
+ Φ

( |∇u(x)|
‖u‖

)]
dx

≤ ‖u‖p0 ,
(2.16)

for all ‖u‖ < 1.

Lemma 2.3 (see [13]). Let u ∈ W1LΦ(Ω) and assume that

∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx ≤ r (2.17)

for some 0 < r < 1, then one has ‖u‖ < 1.

Lemma 2.4 (see [13]). If p0 > N, thenW1LΦ(Ω) is compactly embedded in C0(Ω) and there exists
a constant c > 0 such that

‖u‖∞ ≤ c‖u‖1,Φ, ∀u ∈ W1LΦ(Ω), (2.18)

where ‖u‖∞ := supx∈Ω|u(x)|.

Now, one recall, a three critical theorem of B. Ricceri. If X is a real Banach space, denote
by WX (see [16]) the class of all functionals Φ : X → R possessing the following property:
if {un} is a sequence in X converging weakly to u and lim infn→∞Φ(un) ≤ Φ(u), then {un}



Abstract and Applied Analysis 5

has a subsequence converging strongly to u. For example, if X is uniformly convex and g :
[0,+∞) → R is a continuous, strictly increasing function, then, by a classical results, the
functional u → g(‖u‖) belongs to the class WX .

Lemma 2.5 (see [16]). Let X be a separable and reflexive real Banach space; let I : X → R be
a coercive, sequentially weakly lower semicontinuous C1 functional, belonging to WX , bounded on
each bounded subset of X and whose derivative admits a continuous inverse on X∗; J : X → R a
C1 functional with compact derivative. Assume that I has a strict local minimum u0 with I(u0) =
J(u0) = 0. Finally, setting

α′ = max

{

0, lim sup
‖u‖→+∞

J(u)
I(u)

, lim sup
u→u0

J(u)
I(u)

}

,

β′ = sup
u∈I−1(0,+∞)

J(u)
I(u)

,

(2.19)

assume that α′ < β′. Then for each compact interval [a, b] ⊂ (1/β′, 1/α′) (with the conventions
(1/0) = +∞, (1/ + ∞) = 0), there exists B > 0 with the following property: for every λ ∈ [a, b]
and every C1 functional Ψ : X → R with compact derivative, there exists δ > 0 such that, for each
μ ∈ [0, δ], the equation

I ′(x) = λJ ′(x) + μΨ′(x) (2.20)

has at least three solutions in X whose norms are less than B.

Lemma 2.6 (see [17]). Let X be a reflexive real Banach space; S ⊂ R an interval, let I : X → R

be a sequentially weakly lower semicontinuous C1 functional, bounded on each bounded subset of X
and whose derivative admits a continuous inverse on X∗; J : X → R a C1 functional with compact
derivative. Assume that

lim
‖u‖→∞

[I(u) − λJ(u)] = +∞ (2.21)

for all λ ∈ S, and that there exists ρ ∈ R such that

sup
λ∈S

inf
u∈X

[
I(u) + λ

(
ρ − J(u)

)]
< inf

u∈X
sup
λ∈S

[
I(u) + λ

(
ρ − J(u)

)]
. (2.22)

Then there exist a nonempty open setA ⊂ S and a positive number B, with the following property: for
every λ ∈ A and every C1 functional Ψ : X → R with compact derivative, there exists δ > 0 such
that, for each μ ∈ [0, δ], the equation

I ′(x) = λJ ′(x) + μΨ′(x) (2.23)

has at least three solutions in X whose norms are less than B.
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Lemma 2.7 (see [18]). Let X be a nonempty set and I, J two real functions on X. Assume that there
are r > 0 and x0, x1 ∈ X such that

I(x0) = J(x0) = 0, I(x1) > r, sup
x∈I−1(]−∞,r])

J(x) < r
J(x1)
I(x1)

. (2.24)

Then for each ρ satisfying

sup
x∈I−1(]−∞,r])

J(x) < ρ < r
J(x1)
I(x1)

, (2.25)

one has

sup
λ≥0

inf
u∈X

[
I(u) + λ

(
ρ − J(u)

)]
< inf

u∈X
sup
λ≥0

[
I(u) + λ

(
ρ − J(u)

)]
. (2.26)

3. Proof of the Main Results

Set γ = inf{(∫Ω(Φ(|∇u(x)|)+Φ(|u(x)|))dx/∫Ω F(x, u(x))dx) :u ∈ X,
∫
Ω F(x, u(x))dx>0}.

Theorem 3.1. Let Φ be a function satisfying the structural hypotheses (Φ1–Φ3) and the following
conditions hold

(H1) max{lim supξ→ 0(supx∈ΩF(x, ξ)/|ξ|p
0
), lim sup|ξ|→∞(supx∈ΩF(x, ξ)/|ξ|p0)} ≤0,

(H2) supu∈X
∫
Ω F(x, u(x))dx > 0.

Then, for each compact interval [a, b] ⊂ (γ,∞), there exists B > 0 with the following property: for
every λ ∈ [a, b] and g, there exists δ > 0 such that, for each μ ∈ [0, δ], the problem

(
Pλ,μ

)
has at least

three weak solutions whose norms in X are less than B.

Proof of Theorem 3.1. In order to apply Lemma 2.5, we let

I(u) =
∫

Ω
[Φ(|∇u(x)|) + Φ(|u(x)|)]dx,

J(u) =
∫

Ω
F(x, u(x))dx, Ψ(u) =

∫

Ω
G(x, u(x))dx.

(3.1)

We divide our proof into two steps as follows.
Step 1. We show that some fundamental assumptions are satisfied.

X := W1LΦ(Ω). Obviously, X is a separable and reflexive real Banach space (see [13]).
By Lemma 2.2, it is easy to see that I(u) is a coercive, bounded on each bounded subset of X.
On the other hand, I, J,Ψ ∈ C1(X,R) with the derivatives given by

〈
I ′(u), v

〉
=
∫

Ω
[α(|∇u(x)|)∇u(x) · ∇v(x) + α(|u(x)|)u(x)v(x)]dx,

〈
J ′(u), v

〉
=
∫

Ω
f(x, u(x))v(x)dx,

〈
Ψ′(u), v

〉
=
∫

Ω
g(x, u(x))v(x)dx,

(3.2)
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for any u, v ∈ X. Hence, the critical points of the functional I − λJ − μΨ are exactly the weak
solutions for problem

(
Pλ,μ

)
. Moreover, owing that Φ is convex, it follows that I is convex.

Hence, one has that I is sequentially weakly lower semicontinuous. The fact X is compactly
embedded into C0(Ω) implies that operators J ′,Ψ′ is compact. As the proof of Lemma 3.2 in
[15], we know that I ′ has a continuous inverse.

Moreover, if {un} is a sequence in X converging weakly to u and lim infn→∞ I(un) ≤
I(u), remark that I is sequentially weakly lower semicontinuous, one has

I(u) ≤ lim inf
n→∞

I(un) ≤ I(u). (3.3)

Then, up to a subsequence, we deduce that I(un) → I(u) = d. Taking into account that
{(un + u)/2} converges weakly to u and I is sequentially weakly lower semicontinuous, we
have

d = I(u) ≤ lim inf
n→∞

I
(un + u

2

)
. (3.4)

We assume by contradiction that un does not converge to u inX. Hence, there exist ε0 > 0 and
a subsequence {unm} of (un) such that

∥∥∥∥
unm − u

2

∥∥∥∥ > ε0, ∀m. (3.5)

Then there exists ε1 > 0 such that

I

(
unm − u

2

)
> ε1, ∀m. (3.6)

On the other hand,

1
2
I(u) +

1
2
I(unm) − I

(
unm + u

2

)
≥ I

(
unm − u

2

)
> ε1, (3.7)

(see [19]). Letting m → ∞ in the above inequality we obtain

d − ε1 ≥ lim sup
m→∞

I

(
unm + u

2

)
(3.8)

and that is a contradiction with (3.4). It follows that un converges strongly to u and I ∈ WX .
In addition, I(0) = J(0) = 0.
Step 2. We show that α′ = 0, β′ > 0.

In view of (H1), for all ε > 0, there exists τ1 > 0 such that

F(x, ξ) ≤ ε|ξ|p0 , (3.9)
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for any |ξ| ∈ [0, τ1]. For ‖u‖ < min{1, (τ1/2c)}, we have

|u(x)| ≤ ‖u‖∞ ≤ c‖u‖1,Φ ≤ 2c‖u‖ ≤ τ1,

lim sup
u→ 0

J(u)
I(u)

≤ lim sup
u→ 0

ε
∫
Ω |u|p0dx
‖u‖p0

≤ lim sup
u→ 0

ε|Ω|(2c‖u‖)p0

‖u‖p0
≤ 0.

(3.10)

By (H1), for all ε > 0, there exists 0 < τ1 < τ2 such that

F(x, ξ) ≤ ε|ξ|p0 , (3.11)

for any |ξ| > τ2. Further, for each ‖u‖ > 1, we have

J(u)
I(u)

≤
∫
Ω(|u|≤τ2) F(x, u(x))dx

‖u‖p0 +

∫
Ω(|u|>τ2) F(x, u(x))dx

‖u‖p0

≤
∫
Ω(|u|≤τ2) F(x, u(x))dx

‖u‖p0 +
ε|Ω|(2c‖u‖)p0

‖u‖p0 .

(3.12)

So we get

lim sup
‖u‖→∞

J(u)
I(u)

≤ 0. (3.13)

Then, with the notation of Lemma 2.5, we have α′ = 0. By assumption (H2), we have β′ > 0.
Thus, all the hypotheses of Lemma 2.5 are satisfied. Clearly, γ = 1/β′. Finally, by Lemma 2.5,
we can obtain the Theorem 3.1.

Example 3.2. Let p > N + 1. Define

ϕ(t) =
|t|p−2t

log(1 + |t|) , t /= 0, (3.14)

and ϕ(0) = 0. By [13], one has

p0 = p − 1 < p0 = p. (3.15)

Let F(x, t) = |t|p+1 − |t|p+2. Since F ≤ 0 if |t| is large enough and F > 0 if |t| is small enough,
moreover, it is easy to see lim supξ→ 0(supx∈ΩF(x, ξ)/|ξ|p

0
) = 0, the conditions of Theorem 3.1

can be satisfied.

Remark 3.3. Since F in [13] is p0-sublinear, the results of [13] do not fit to the problem treated
in the previous Example 3.2 even if μ = 0, that is, there is no perturbed nonlinear term. In
addition, for nonhomogeneous Neumann problem with a perturbed term, we can have the
following result when F is p0-sublinear, which extends the results of [13].
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Theorem 3.4. Let Φ be a function satisfying the structural hypotheses (Φ1–Φ3) and the following
conditions.

(H3) There exist two constants γ, δ with γ < 2c such that Φ(δ) > (γp
0
/(2c)p

0 |Ω|) and

∫
Ω max|ξ|≤γF(x, ξ)dx

γp
0 <

∫
Ω F(x, δ)dx

(2c)p
0 |Ω|Φ(δ)

, (3.16)

where |Ω| denotes the Lebesgue measure of the set Ω.
(H4) There exist h(x), k(x) ∈ L1(Ω;R+) and 0 < s < p0 such that |F(x, t)| ≤ h(x) + k(x)|t|s

for every (x, t) ∈ Ω × R.
Then, there exist a nonempty open set A ⊂ [0,∞) and a positive number B, for each λ ∈ A

and for every g, there exists δ > 0 such that, for each μ ∈ [0, δ], the problem
(
Pλ,μ

)
has at least three

weak solutions whose norms in X are less than B.

Proof of Theorem 3.4. Let us consider I, J,Ψ as the proof of Theorem 3.1. For any λ > 0, u ∈ X,
by (H4) we have

I(u) − λJ(u) ≥
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx − λ‖u‖s∞

∫

Ω
k(x)dx − λ

∫

Ω
h(x)dx

≥ ‖u‖p0 − λ(2c)s‖u‖s
∫

Ω
k(x)dx − λ

∫

Ω
h(x)dx,

(3.17)

for ‖u‖ > 1. Since 0 < s < p0, one has lim‖u‖→∞[I(u) − λJ(u)] = +∞ for all λ ≥ 0.
Let r := (γp

0
/(2c)p

0
), x1 = δ. For r > 0, I(u) ≤ r, we have

|u(x)| ≤ ‖u‖∞ ≤ c‖u‖1,Φ ≤ 2c‖u‖ ≤ γ, ∀x ∈ Ω. (3.18)

Hence, one has

supu∈I−1(]−∞,r]) J(u)
r

≤ (2c)p
0 ∫

Ω max|ξ|≤γ F(x, ξ)dx

γp
0 . (3.19)

From (H3), it follows that

supI(u)≤rJ(u)

r
<

J(δ)
I(δ)

. (3.20)

Since all the assumptions of Lemmas 2.7 and 2.6 are satisfied, then, there is a nonempty open
setA ⊂ [0,∞) and a positive number B, for each λ ∈ A and for every g there exists δ > 0 such
that, for each μ ∈ [0, δ], the problem has at least three weak solutions whose norms in X are
less than B.
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[13] G. Bonanno, G. M. Bisci, and V. Rădulescu, “Existence of three solutions for a non-homogeneous
Neumann problem through Orlicz-Sobolev spaces,”Nonlinear Analysis: Theory, Methods & Applications
A, vol. 74, no. 14, pp. 4785–4795, 2011.

[14] N. Halidias and V. K. Le, “Multiple solutions for quasilinear elliptic Neumann problems in Orlicz-
Sobolev spaces,” Boundary Value Problems, vol. 3, pp. 299–306, 2005.
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