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The main aim of this paper is to give an axiomatic characterization of the interval Baker-Thompson
rule.

1. Introduction

Airport situations have been paid much attention in the literature [1, 2]. In this context we
focus on the appealing rule introduced by the economists Baker [3] and Thompson [4]. This
rule, called the Baker-Thompson rule, provides a fair and easy share for the costs of the
landings.

On the other hand, uncertainty is a daily presence in real life. It affects our decision
making and may have influence on cooperation. Recently, various economic and operations
research situations under uncertainty are studied. We refer here to Alparslan Gök et al.
[5] who present and identify the interval Baker-Thompson rule for solving the aircraft fee
problem of an airport with one runway when there is uncertainty regarding the costs of the
pieces of the runway; Moretti et al. [6] for cost allocation problems arising from connection
situations where edge costs are closed intervals of real numbers; Alparslan Gök et al. [7]
for sequencing situations with interval data; Branzei and Alparslan Gök [8] for bankruptcy
situations under uncertainty.

In this paper we give an axiomatic characterization of the interval Baker-Thompson
rule. Our intuition is from Fragnelli andMarina [9]who study the axiomatic characterization
of the classical Baker-Thompson rule.

In the sequel we first recall the classical airport situations. We consider the aircraft
fee problem of an airport with one runway and suppose that the planes which are to land are
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classified intom types. For each 1 ≤ j ≤ m, denote the set of landings of planes of type j byNj

and its cardinality by nj . Then N = ∪m
j=1Nj represents the set of all landings. Let cj represent

the cost of a runway adequate for planes of type j. We assume that the types are ordered such
that 0 = c0 < c1 < · · · < cm. We consider the runway divided into m consecutive pieces Pj , 1 ≤
j ≤ m, where P1 is adequate for landings of planes of type 1; P1 and P2 together for landings
of planes of type 2, and so on. The cost of piece Pj , 1 ≤ j ≤ m, is the marginal cost cj − cj−1.
According to this the Baker-Thompson rule is given by BTi =

∑j

k=1[
∑m

r=k nr]
−1(ck − ck−1)

whenever i ∈ Nj . That is, every landing of planes of type j contributes to the cost of the pieces
Pk, 1 ≤ k ≤ j, equally allocated among its users ∪m

r=kNr .
Next, we recall some properties regarding an allocation problem of a classical airport

situation [9]. Formally, an allocation rule for an allocation problem is a map F associating
each allocation problem (N, (ck)k=1,...,m), a unique point F(N, (ck)k=1,...,m) ∈ R

N with
∑

i∈N Fi(N, (ck)k=1,...,m) = cm.
An allocation rule F satisfies individual equal sharing (IES) property if for every situa-

tion (N, (ck)k=1,...,m), Fi(N, (ck)k=1,...,m) ≥ cr/m for each i ∈ Nr and r = 1, . . . , m.
An allocation rule F satisfies collective usage right (CUR) property if for every

situation (N, (ck)k=1,...,m), Fi(N, (ck)k=1,...,m) ≤ cr(
∑

l=1,...,r nl)
−1 for each i ∈ Nr and r = 1, . . . , m.

An allocation rule F satisfies consistency on last group (CLAST) property if for every
situation (N, (ck)k=1,...,m) and for each h ∈ Nm,

Fi

(
N, (ck)k=1,...,m

)
= Fi

(
N̂, (ĉk)k=1,...,m

)
, i ∈ N \ {h}, (1.1)

where N̂l = Nl, l = 1, . . . , m − 1, N̂m = Nm \ {h} and ĉl = cl − Fh(N, (ck)k=1,...,m), l = 1, . . . , m.
Fragnelli and Marina [9] show that the Baker-Thompson rule satisfies the properties

above and do characterization by using them. Our aim is to extend these results to the interval
setting.

In this paper we take into account the airport situations where cost of pieces of the run-
way are intervals. Consider the aircraft fee problem of an airport with one runway. Assume
that the planes which are to land are classified intom types. For each 1 ≤ j ≤ m, denote the set
of landings of planes of type j byNj and its cardinality by nj . ThenN = ∪m

j=1Nj represents the
set of all landings. Consider the runway is divided into m consecutive pieces Pj , 1 ≤ j ≤ m,
where P1 is sufficient for landings of planes of type 1; P1 and P2 together for landings of
planes of type 2, and so on. Let the interval Tj with nonnegative finite bounds represent the
interval cost of piece Pj , 1 ≤ j ≤ m. For a given airport interval situation (N, (Tk)k=1,...,m) the
Baker-Thompson allocation for each player i ∈ Nj is given by:

βi =
j∑

k=1

(
m∑

r=k

nr

)−1
Tk. (1.2)

The interval cost allocation rule β presented above called the interval Baker-Thompson rule
[5].

Here for the piece Pk of the runway the users are ∪m
r=kNr meaning that there are

∑m
r=k nr

users. So, (
∑m

r=k nr)
−1Tk is the equal cost share of each user of the piece Pk. This means that a

player i ∈ Nj contributes to the cost of the pieces P1, . . . , Pj .
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Further, we denote by I(R) the set of all closed and bounded intervals in R, and by
I(R)N the set of all n-dimensional vectors with elements in I(R). Let I, J ∈ I(R) with I =
[I, I], J = [J, J]. Then I + J = [I + J, I + J] [10].

2. On the Interval Baker-Thompson Rule

Theorem 2.1. Let (N, (Tk)k=1,...,m) be an airport interval situation. Then the interval Baker-
Thompson rule β for each player i ∈ Nj is βi = [β

i
, βi].

Proof. By (1.2) we have for all i ∈ Nj

βi =
j∑

k=1

(
m∑

r=k

nr

)−1
Tk =

j∑

k=1

(
m∑

r=k

nr

)−1[
Tk, Tk

]
=

⎡

⎣

(
m∑

r=k

nr

)−1
Tk,

(
m∑

r=k

nr

)−1
Tk

⎤

⎦

=
[
β
i
, βi

]
.

(2.1)

Theorem 2.1 shows that one can calculate the lower bound of the interval Baker-
Thompson rule by using the lower bounds of the interval costs and the upper bound of
the interval Baker-Thompson rule by using the upper bounds of the interval costs. These
calculations can be done easily by using the classical Baker-Thompson rule. Similar approach
can be found for the calculation of the interval Shapley value introduced by Alparslan Gök
et al. [11] (Please see Proposition 4.7 of Alparslan Gök et al. [11]).

Next we give the following example to illustrate the calculation of the interval Baker-
Thompson rule by using Proposition 2.3.

Example 2.2. (i) Let (N = {1, 2, 3}, (Tk)k=1,2,3) be an airport interval situation with the interval
costs T1 = [30, 45], T2 = [20, 40], T3 = [100, 120]. Then, β = (10, 20, 120) and β = (15, 35, 155)
and by Theorem 2.1, β = ([10, 15], [20, 35], [120, 155]).

(ii) Let (N = {1, 2}, (Tk)k=1,2) be an airport interval situation with the interval costs
T1 = [4, 6], T2 = [1, 8]. Then, β = (2, 3) and β = (3, 11), and by Theorem 2.1, β = ([2, 3], [3, 11]).

2.1. Properties of the Interval Baker-Thompson Rule

We define an interval allocation rule for a given airport interval situation (N, (Tk)k=1,...,m)
as a map F associating each allocation situation (N, (Tk)k=1,...,m) to a unique rule
F(N, (Tk)k=1,...,m) = F(N, ([Tk, Tk])k=1,...,m) ∈ IR

N with

∑

i∈N
Fi

(
N, (Tk)k=1,...,m

)
=

m∑

i=1

[
Ti, T i

]
=

m∑

i=1

Ti. (2.2)

An interval allocation ruleF satisfies interval individual equal sharing (IIES) property
if for every interval situation (N, (Tk)k=1,...,m), (N, (Tk)k=1,...,m) and (N, (Tk)k=1,...,m) satisfies IES
for each i ∈ Nr and r = 1, . . . , m.
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An interval allocation ruleF satisfies interval collective usage right (ICUR) property if
for every interval situation (N, (Tk)k=1,...,m), (N, (Tk)k=1,...,m), and (N, (Tk)k=1,...,m) satisfy CUR
for each i ∈ Nr and r = 1, . . . , m.

An interval allocation rule F satisfies interval individual consistency on last group
(ICLAST) property if for every interval situation (N, (Tk)k=1,...,m), (N, (Tk)k=1,...,m), and
(N, (Tk)k=1,...,m) satisfy CLAST for each i ∈ Nr and r = 1, . . . , m.

Next we give some properties of the interval Baker-Thompson rule with the following
proposition.

Proposition 2.3. The interval Baker-Thompson rule β satisfies IIES, ICUR, and ICLAST .

Proof. The proof can be obtained by following the steps of Fragnelli and Marina [9] for β
i
and

βi for each i ∈ Nj and j = 1, . . . , m. Then, by using Theorem 2.1 we are done.

2.2. An Axiomatic Characterization of the Interval Baker-Thompson Rule

We give an axiomatic characterization of the interval Baker-Thompson rule with the follow-
ing theorem.

Theorem 2.4. The interval Baker-Thompson rule β is the unique rule satisfying IIES, ICUR, and
ICLAST.

Proof. From Proposition 2.3 we know that β satisfies the three properties. We only need to
show the uniqueness. For uniqueness, it is clear from Fragnelli and Marina [9] that β

i
and

βi for each i ∈ Nj and j = 1, . . . , m, are the unique allocations satisfying the three properties
IES, CUR and CLAST. Finally, by Theorem 2.1 we conclude that βi = [β

i
, βi] for each i ∈ Nj ,

j = 1, . . . , m is unique. Hence β is the unique interval allocation satisfying IIES, ICUR and
ICLAST.

3. Final Remarks

Interval uncertainty is the simplest and the most natural type of uncertainty which may
influence cooperation because lower and upper bounds for future outcomes or costs of
cooperation can always be estimated based on available economic data.

In this paper we consider airport situations where the costs of the pieces of the runway
are given by intervals. In this context we give an axiomatic characterization of the interval
Baker-Thompson rule which was introduced by Alparslan Gök et al. [5]. Further, we note
that the interval Baker-Thompson rule is interesting at an ex-ante stage to inform users about
what they can expect to pay for the construction of the runway. At an ex post stage when all
costs are known with certainty, the classical Baker-Thompson rule can be applied to pick up
effective costs xi ∈ βi for each i ∈ N.

We refer reader to Branzei et al. [12] on several procedures specifying how a certain
interval solution might be used to transform an interval allocation into a payoff vector
when uncertainty regarding the value of the grand coalition is resolved. In the sequel the
straightforward extension of the axiomatic characterization of the classical Baker-Thompson
rule to the interval setting is advantageous.
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