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This paper deals with the split feasibility problem that requires to find a point closest to a closed
convex set in one space such that its image under a linear transformation will be closest to another
closed convex set in the image space. By combining perturbed strategy with inertial technique, we
construct an inertial perturbed projection algorithm for solving the split feasibility problem. Under
some suitable conditions, we show the asymptotic convergence. The results improve and extend
the algorithms presented in Byrne (2002) and in Zhao and Yang (2005) and the related convergence
theorem.

1. Introduction

Let C ⊂ Rn and Q ⊂ Rm be nonempty closed convex sets, and let A be an m × n real matrix.
The split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q. (1.1)

This problem was first presented and analyzed by Censor and Elfving [1] and ap-
peared in signal processing, image reconstruction [2], and so on. Many well-known iterative
algorithms for solving (1.1) were established, see the papers [3–5]. Denoted by PS, the
orthogonal projection operator onto convex set S, that is

PS(x) = argmin‖c − x‖, c ∈ S, (1.2)
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where ‖·‖ indicates the 2-norm. The CQ algorithm proposed by Byrne in [6] has the following
iterative process:

xk+1 = PC

(
xk + γAT(PQ − I

)
Axk

)
, k ≥ 0, (1.3)

where γ ∈ (0, 2/L), L denotes the largest eigenvalue of the matrix ATA, and I is the identity
operator.

In some cases, it is difficult or even impossible to compute orthogonal projection; to
avoid computing projection, Zhao and Yang in [7] proposed the perturbed projections al-
gorithm for the SFP. This development was based on results of Santos and Scheimberg [8]
who suggested replacing each nonempty closed convex set of the convex feasibility problem
by a convergent sequence of supersets. If such supersets can be constructed with reasonable
efforts and projecting onto them is simpler than projecting onto the original convex sets, then
a perturbed algorithm is favorable. The concrete iterative process of perturbed CQ algorithm
[7] is as follows:

xk+1 = (1 − αk)xk + αkPCk

(
xk + γAT(PQk − I

)(
Axk

))
, (1.4)

where αk ∈ [0, 1], γ ∈ (0, 2/L), L, I defined as in algorithm (1.3), and Ck
M→ C and Qk

M→ Q
(see the definitions in the Section 2), while the perturbed projections algorithm sometime
converges slowly by reason of using only the current point to get the next iterative point.

Many papers have studied the inertial-type extrapolation recently, see [9–12], which
uses the term θk and the two previous iterative points xk−1, xk to get the next iterative point
xk+1. As an acceleration process, it can considerably improve the speed of convergence for the
following causes: one is that the vector xk − xk−1 acts as an impulsion term, the other is that
the parameter θk acts as a speed regulator.

To the best of our knowledge, no publications deal with perturbed projection algo-
rithm and inertial process simultaneously. In this paper, we apply the inertial technique to
the perturbed projection algorithm to get a perturbed inertial projection algorithm for the
split feasibility problem. The results improve and extend the algorithms presented in [6] and
in [7] and the related convergence theorem.

The paper is organized as follows. In Section 2, some preliminaries are given.
The inertial perturbed algorithm and the corresponding convergence theorem for the
split feasibility problem are presented in Section 3.

2. Preliminaries

Throughout the rest of the paper, I denotes the identity operator, Fix(T) denotes the fixed
points of an operator T , that is, Fix(T) := {x | x = T(x)}.

An operator T is said to be nonexpansive (ne) if

∥∥T(x) − T
(
y
)∥∥ ≤ ∥∥x − y

∥∥. (2.1)

It is well known that the projection operator is nonexpansive.
Recall the following notions of the convergence and ρ-distance.
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Definition 2.1. Let N be an operator on a Hilbert space H; let Nk, k = 0, 1, 2, . . . be a family of
operators on a Hilbert space. {Nk} is said to be convergent to N if ‖Nk(x) −N(x)‖ → 0 as
k → +∞ for all x ∈ H.

Definition 2.2. The ρ-distance (ρ ≥ 0) for operators N1 and N2 on H is given by

Dρ(N1,N2) = sup
‖x‖≤ρ

‖N1(x) −N2(x)‖. (2.2)

Now we introduce the Mosco-convergence for sequences of sets in a reflexive Banach
space.

Definition 2.3 (see [13]). Let X be a reflexive Banach space and C and {Ck}k∈N (N is a set of
natural numbers) a sequence of subsets of X. The sequence {Ck}k∈N is Mosco-convergent to

C, denoted by Ck
M→ C, if

(1) ∀x ∈ C, ∃
{
xk

}
k∈N

with xk ∈ Ck(k ∈ N) such that xk Xs−→ x,

(2) ∀{kj
}
j∈N, ∀

{
xj
}
j∈N

, xj ∈ Ckj

(
j ∈ N

)
, xj Xw−→ x =⇒ x ∈ C,

(2.3)

where Xs and Xw denote the strong and weak topologies, respectively. In particular, if {Ck}
and C are in Rn, then Ck

M→ C is equivalent to

(1) ∀x ∈ C, ∃
{
xk

}
k∈N

, xk ∈ Ck(k ∈ N) such that xk −→ x,

(2) ∀{kj
}
j∈N, ∀

{
xj
}
j∈N

, xj ∈ Ckj

(
j ∈ N

)
, xj −→ x =⇒ x ∈ C.

(2.4)

Using the notation NCCS(Rn) for the family of nonempty closed convex subsets of Rn,
let C and Ck be sets in NCCS(Rn), for k = 0, 1, . . . . It is easy to verify that if the sequence {Ck}
converges to C in the Mosco sense, then the operator sequence {PCk} converges to PC.

Definition 2.4. Let C1 and C2 be elements in NCCS(Rn). The ρ-distance is defined by

dρ(C1, C2) = sup
‖x‖2≤ρ

‖PC1(x) − PC2(x)‖2. (2.5)

Let C and Ck be sets in NCCS(Rn), then Ck
M→ C if and only if dρ(Ck,C) → 0 for all

ρ ≥ 0.

The following lemmas will be used in convergence analysis later on.

Lemma 2.5 (see [14]). Let {δk} and {γk} be nonnegative sequences satisfying
∑

k δk < +∞ and
γk+1 ≤ γk + δk, k = 0, 1, . . . . Then, {γk} is a convergent sequence.
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Lemma 2.6 (see [10]). Let φk ∈ [0,∞), k = 1, 2, . . . , and δk ∈ [0,∞), k = 1, 2, . . . satisfying

(1) φk+1 − φk ≤ θk(φk − φk−1) + δk,

(2)
∑

k δk < ∞,

(3) θk ∈ [0, θ], k = 1, 2, . . . , where θ ∈ [0, 1).

Then, {φk} is a converging sequence and
∑

k (φk+1 − φk)+ < ∞, where (t)+ := max{t, 0} for any
t ∈ R.

Lemma 2.7 (Opial [15]). Let H be a Hilbert space, and let {xk} be a sequence in H such that there
exists a nonempty set S ⊂ H satisfying:

(1) for every x∗ ∈ S, limk‖xk − x∗‖ exists,
(2) any weak cluster point of {xk} belongs to S.

Then, there exists x∗ ∈ S such that {xk} weakly converges to x∗.

Lemma 2.8 (see [15]). Let H be a Hilbert space, T : H → H a nonexpansive operator, and y a
weak cluster point of a sequence {xk}, and let ‖T(xk) − xk‖ → 0. Then y ∈ Fix(T).

3. The Inertial Perturbed Algorithm and the Asymptotic Convergence
for the SPF

Let C and Ck be sets in NCCS(Rn), and let Q and Qk be sets in NCCS(Rm), for k = 0, 1, . . . ,
with Ck

M→ C andQk
M→ Q. Then dρ(Ck,C) → 0 and dρ(Qk,Q) → 0 for all ρ > 0. We denote

N = PCU, U = I − γAT(I − PQ

)
A,

Nk = PCkUk, Uk = I − γAT(I − PQk

)
A.

(3.1)

From Lemma 3.1 in [5], we know that x∗ solves the SFP (1.1) if and only if x∗ ∈ Fix(N).
It is well known that the operator AT (I − PQ)A is λ-Lipschitz continuous with λ =

ρ(ATA). The same is true for the operators AT (I − PQk)A for k = 0, 1, . . . ; it is easy to obtain
the following conclusion.

Lemma 3.1 (see [7]). Let C and Ck be sets inNCCS(Rn), and let Q and Qk be sets inNCCS(Rm),
for k = 0, 1, . . . , with Ck

M→ C and Qk
M→ Q. Then, the operators N and Nk defined in (3.1) are

nonexpansive operators for γ ∈ (0, 2/λ). Moreover, the operator sequence {Nk} converges toN.

Now we give the perturbed inertial KM-type algorithm for SFP.

Algorithm 3.2. Given arbitrary elements in Rn for k = 0, 1, . . . , let

xk+1 = [(1 − αk)I + αkNk]
(
yk

)
,

yk = xk + θk
(
xk − xk−1

)
,

(3.2)
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whereNk = PCk[(I − γAT (I − PQk)A), αk ∈ (0, 1), for any k and γ ∈ (0, 2/λ)with λ = ρ(ATA),
{θk} ⊂ [0, θ], θ ∈ [0.1).

The following theorem is necessary for the convergence analysis of Algorithm 3.2.

Theorem 3.3. LetN andNk for k = 0, 1, 2, . . . be nonexpansive (ne) operators in finite-dimensional
Hilbert space, withNk → N, and let {αk} be a sequence in (0, 1) satisfying

+∞∑
k=0

αk(1 − αk) = +∞, (3.3)

+∞∑
k=0

αkDρ(Nk,N) < +∞ (3.4)

for all ρ > 0. Then, the sequence {xk} defined by the iterative step

xk+1 = (1 − αk)yk + αkNk

(
yk

)
, (3.5)

yk = xk + θk
(
xk − xk−1

)
(3.6)

converges to a fixed point of N provided that we choose parameter θk satisfying

{θk} ⊂
[
0, θk

]
, with θk := min

⎧
⎨
⎩θ,

1

max
{
k2
∥∥xk − xk−1∥∥2

, k2
∥∥xk − xk−1∥∥}

⎫
⎬
⎭, θ ∈ [0, 1),

(3.7)

whenever such fixed points exist.

Proof. We first prove that the sequence {xk} is bounded and {‖xk − z‖} is convergent for
all z ∈ Fix(N), where Fix(N) denotes the set of the fixed points of the operator N, that is,
N(z) = z. Since N and Nk are ne operators, we have

∥∥∥xk+1 − z
∥∥∥ =

∥∥∥(1 − αk)yk + αkNk

(
yk

)
− (1 − αk)z − αkN(z)

∥∥∥

≤ (1 − αk)
∥∥∥yk − z

∥∥∥ + αk

∥∥∥Nk

(
yk

)
−N(z)

∥∥∥

≤ (1 − αk)
∥∥∥yk − z

∥∥∥ + αk

∥∥∥Nk

(
yk

)
−Nk(z)

∥∥∥ + αk‖Nk(z) −N(z)‖

≤
∥∥∥yk − z

∥∥∥ + αkDρ(Nk,N)

=
∥∥∥xk + θk

(
xk − xk−1

)
− z

∥∥∥ + αkDρ(Nk,N)

≤
∥∥∥xk − z

∥∥∥ + θk
∥∥∥xk − xk−1

∥∥∥ + αkDρ(Nk,N),

(3.8)
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where ρ ≥ ‖z‖. From the selection of parameter θk, we have

θk
∥∥∥xk − xk−1

∥∥∥ ≤
∥∥xk − xk−1∥∥

max
{
k2
∥∥xk − xk−1∥∥2

, k2
∥∥xk − xk−1∥∥} ≤ 1

k2
. (3.9)

It is easy to get

∑
k≥0

∥∥∥xk − xk−1
∥∥∥ < ∞. (3.10)

By (3.4), (3.8)-(3.10), we obtain from Lemma 2.5 that the sequence {‖xk − z‖} is convergent
and hence the sequence {xk} is bounded.

We next prove that lim infk→∞‖yk −N(yk)‖ = 0. Let ek = Nk(yk) −N(yk) and notice
the fact that

∥∥λx + (1 − λ)y
∥∥2 = λ‖x‖2 + (1 − λ)

∥∥y∥∥2 − λ(1 − λ)
∥∥x − y

∥∥2
. (3.11)

Then, we have

∥∥∥xk+1 − z
∥∥∥
2
=
∥∥∥(1 − αk)

(
yk − z

)
+ αk

(
Nk

(
yk

)
−N

(
yk

))
+ αk

(
N
(
yk

)
−N(z)

)∥∥∥
2

=
∥∥∥(1 − αk)

(
yk − z + αke

k
)
+ αk

(
N
(
yk

)
−N(z) + αke

k
)∥∥∥

2

= (1 − αk)
∥∥∥yk − z + αke

k
∥∥∥
2
+ αk

∥∥∥N
(
yk

)
−N(z) + αke

k
∥∥∥
2

− αk(1 − αk)
∥∥∥yk −N

(
yk

)∥∥∥
2

≤ (1 − αk)
[∥∥∥yk − z

∥∥∥
2
+ 2αk

∥∥∥yk − z
∥∥∥
∥∥∥ek

∥∥∥ + αk
2
∥∥∥ek

∥∥∥
2
]

+ αk

[∥∥∥N
(
yk

)
−N(z)

∥∥∥
2
+ 2αk

∥∥∥N
(
yk

)
−N(z)

∥∥∥
∥∥∥ek

∥∥∥ + αk
2
∥∥∥ek

∥∥∥
2
]

− αk(1 − αk)
∥∥∥yk −N

(
yk

)∥∥∥
2

≤
∥∥∥yk − z

∥∥∥
2
+ 2αk

∥∥∥yk − z
∥∥∥
∥∥∥ek

∥∥∥ + αk
2
∥∥∥ek

∥∥∥
2 − αk(1 − αk)

∥∥∥yk −N
(
yk

)∥∥∥
2
.

(3.12)

From (3.6), we obtain

∥∥∥yk − z
∥∥∥
2
=
∥∥∥
(
xk − z

)
− θk

(
xk−1 − xk

)∥∥∥
2

=
∥∥∥xk − z

∥∥∥
2 − 2θk

〈
xk − z, xk−1 − xk

〉
+ θ2

k

∥∥∥xk−1 − xk
∥∥∥
2
.

(3.13)
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By (3.12) and observing that θ2
k ≤ θk (since θk ∈ [0, 1]), we have

∥∥∥xk+1 − z
∥∥∥
2 ≤

∥∥∥xk − z
∥∥∥
2 − 2θk

〈
xk − z, xk−1 − xk

〉
+ θk

∥∥∥xk−1 − xk
∥∥∥
2

+ 2αk

∥∥∥yk − z
∥∥∥
∥∥∥ek

∥∥∥ + α2
k

∥∥∥ek
∥∥∥
2 − αk(1 − αk)

∥∥∥yk −N
(
yk

)∥∥∥
2
.

(3.14)

Combining 〈a, b〉 = −(1/2)‖a − b‖2 + (1/2)‖a‖2 + (1/2)‖b‖2 with (3.14), we get

∥∥∥xk+1 − z
∥∥∥
2 −

∥∥∥xk − z
∥∥∥
2 ≤ θk

(∥∥∥xk − z
∥∥∥
2 −

∥∥∥xk−1 − z
∥∥∥
2
)
+ 2θk

∥∥∥xk−1 − xk
∥∥∥
2

+ 2αk

∥∥∥yk − z
∥∥∥
∥∥∥ek

∥∥∥ + α2
k

∥∥∥ek
∥∥∥
2 − αk(1 − αk)

∥∥∥yk −N
(
yk

)∥∥∥
2

≤ θk

(∥∥∥xk − z
∥∥∥
2 −

∥∥∥xk−1 − z
∥∥∥
2
)
+ 2θk

∥∥∥xk−1 − xk
∥∥∥
2

+ 2αk

(∥∥∥xk − z
∥∥∥ + θk

∥∥∥xk−1 − xk
∥∥∥
)∥∥∥ek

∥∥∥ + α2
k

∥∥∥ek
∥∥∥
2

− αk(1 − αk)
∥∥∥yk −N

(
yk

)∥∥∥
2
.

(3.15)

We have known that the sequence {xk} is bounded and {‖xk −z‖} is convergent; hence, there
exist ρ ≥ ρ > 0 and G > 0 such that ‖xk‖ ≤ ρ and ‖xk − z‖ ≤ G for all k.

Thus

∥∥∥ek
∥∥∥ =

∥∥∥Nk

(
yk

)
−N

(
yk

)∥∥∥ ≤ Dρ(Nk,N). (3.16)

Moreover, one has that

∥∥∥xk+1 − z
∥∥∥
2 −

∥∥∥xk − z
∥∥∥
2 ≤ θk

(∥∥∥xk − z
∥∥∥
2 −

∥∥∥xk−1 − z
∥∥∥
2
)
+ 2θk

∥∥∥xk−1 − xk
∥∥∥
2

+ 2αkGDρ(Nk,N) + 2αkθk
∥∥∥xk−1 − xk

∥∥∥Dρ(Nk,N)

+ α2
kDρ(Nk,N)2 − αk(1 − αk)

∥∥∥yk −N
(
yk

)∥∥∥
2
.

(3.17)

Denoting

σk = 2θk
∥∥∥xk−1 − xk

∥∥∥
2
+ 2αkGDρ(Nk,N) + 2αkθk

∥∥∥xk−1 − xk
∥∥∥Dρ(Nk,N) + α2

kDρ(Nk,N)2,

(3.18)

we get

∥∥∥xk+1 − z
∥∥∥
2 −

∥∥∥xk − z
∥∥∥
2 ≤ θk

(∥∥∥xk − z
∥∥∥
2 −

∥∥∥xk−1 − z
∥∥∥
2
)
+ σk. (3.19)
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Similarly, from the selection of parameter θk, we have

θk
∥∥∥xk − xk−1

∥∥∥
2 ≤

∥∥xk − xk−1∥∥2

max
{
k2
∥∥xk − xk−1∥∥2

, k2
∥∥xk − xk−1∥∥} ≤ 1

k2
. (3.20)

It is easy to get

∑
k≥0

∥∥∥xk − xk−1
∥∥∥
2
< ∞. (3.21)

Both (3.10) and (3.21)manifest

∑
k≥0

αkθk
∥∥∥xk−1 − xk

∥∥∥Dρ(Nk,N) < ∞. (3.22)

Then, from (3.4), (3.21), and (3.22), we get

+∞∑
k=0

σk < +∞. (3.23)

According to Lemma 2.6, we obtain
∑

k≥0 [‖xk − z‖2 − ‖xk−1 − z‖2]+ < ∞.
From (3.17), it follows that

+∞∑
k=0

αk(1 − αk)
∥∥∥yk −N

(
yk

)∥∥∥
2
< +∞. (3.24)

Because of (3.3)
∑+∞

k=0 αk(1 − αk) = +∞, we conclude that lim infk→∞‖yk −N(yk)‖ = 0.
Finally, we prove that {xk} converges to a fixed point of N. From the above

computation, we know that the sequence {yk} is also bounded; hence there exist x∗ and a
subsequence of {yk} (denoted {ykl}) such that

lim
l→∞

∥∥∥ykl − x∗
∥∥∥ = 0,

lim
l→∞

∥∥∥ykl −N
(
ykl

)∥∥∥ = lim inf
k→∞

∥∥∥yk −N
(
yk

)∥∥∥ = 0.
(3.25)

From Lemmas 2.7 and 2.8, we have x∗ ∈ Fix(N). It is easy to obtain that liml→∞‖xkl −x∗‖ = 0,
because ‖yk − xk‖ = θk‖xk − xk−1‖ → 0 by (3.10). Since {‖xk − x∗‖} is convergent, it follows
that limk→∞‖xk − x∗‖ = liml→∞‖xkl − x∗‖ = 0. The proof is completed.

Remark 1. Since the current value of ‖xk − xk−1‖ is known when choosing the parameter θk,
then θk is well defined in Theorem 3.3. In fact, from the process of proof for the Theorem 3.3,
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we can get the following assert: the convergence result of Theorem 3.3 always holds provided
that we select θk ∈ [0, θ], θ ∈ [0, 1), for all k ≥ 0 with

∑
k≥0

∥∥∥xk − xk−1
∥∥∥ < ∞,

∑
k≥0

∥∥∥xk − xk−1
∥∥∥
2
< ∞.

(3.26)

Now let us return to the convergence analysis of Algorithm 3.2.

Theorem 3.4. Let the hypotheses in Lemma 3.1 be satisfied. Then the sequence {xk} generated by
(3.2) converges to a fixed point of N if

+∞∑
k=0

αk(1 − αk) = +∞,
+∞∑
k=0

αk

(
dρ(Ck,C) + 2λ−1/2dρ(Qk,Q)

)
< +∞, ρ > 0, (3.27)

where parameter θk is satisfying (3.10) and (3.21).

Proof. For any y ∈ Rn, ‖y‖ ≤ ρ, by reason of the nonexpansive properties of projection, we
have

∥∥Nk

(
y
) −N

(
y
)∥∥ =

∥∥∥PCk

(
y − γAT(I − PQk

)
Ay

)
− PC

(
y − γAT(I − PQ

)
Ay

)∥∥∥

≤
∥∥∥PCk

(
y − γAT(I − PQk

)
Ay

)
− PCk

(
y − γAT(I − PQ

)
Ay

)∥∥∥

+
∥∥∥PCk

(
y − γAT(I − PQ

)
Ay

)
− PC

(
y − γAT(I − PQ

)
Ay

)∥∥∥

≤ γ
∥∥∥AT(I − PQk

)
Ay −AT(I − PQ

)
Ay

∥∥∥

+
∥∥∥PCk

(
y − γAT(I − PQ

)
Ay

)
− PC

(
y − γAT(I − PQ

)
Ay

)∥∥∥
≤ γλ1/2

∥∥PQk

(
Ay

) − PQ

(
Ay

)∥∥

+
∥∥∥PCk

(
y − γAT(I − PQ

)
Ay

)
− PC

(
y − γAT(I − PQ

)
Ay

)∥∥∥
≤ 2λ−1/2

∥∥PQk

(
Ay

) − PQ

(
Ay

)∥∥

+
∥∥∥PCk

(
y − γAT(I − PQ

)
Ay

)
− PC

(
y − γAT(I − PQ

)
Ay

)∥∥∥.

(3.28)

Obviously,

Dρ(Nk,N) ≤ dρ(Ck,C) + 2λ−1/2dρ(Qk,Q), (3.29)

where ρ ≥ max{‖Ay‖, ‖y − γAT (I − PQ)Ay‖}.
Since

∑+∞
k=0 αk(dρ(Ck,C) + 2λ−1/2dρ(Qk,Q)) < +∞ for any given ρ > 0, the result of this

theorem can be obtained using Theorem 3.3.
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