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We present an explicit formula for the mask of odd points n-ary, for any odd n � 3, interpolating
subdivision schemes. This formula provides the mask of lower and higher arity schemes. The
3-point and 5-point a-ary schemes introduced by Lian, 2008, and (2m + 1)-point a-ary schemes
introduced by, Lian, 2009, are special cases of our explicit formula. Moreover, other well-known
existing odd point n-ary schemes including the schemes introduced by Zheng et al., 2009, can easily
be generated by our formula. In addition, error bounds between subdivision curves and control
polygons of schemes are computed. It has been noticed that error bounds decrease when the com-
plexity of the scheme decreases and vice versa. Also, as we increase arity of the schemes the error
bounds decrease. Furthermore, we present brief comparison of total absolute curvature of sub-
division schemes having different arity with different complexity. Convexity preservation property
of scheme is also presented.

1. Introduction

Subdivision is an algorithmic technique to generate smooth curves and surfaces as a sequence
of successively refined control polygons. We can survey subdivision as a process of taking a
coarse shape and refining it to produce another shape that is more visually nice looking and
smooth. Subdivision schemes are performed such that we take initial control polygon and
make some iterations on it to make another shape. The resulting shape is then fed back into
the subdivision scheme again and again until we get a reasonable level of detail. Beauty of this
iterative process lies in elegant mathematical formulation and simple implementation.
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A general form of univariate n-ary subdivision scheme S which maps a polygon fk =
{fk

i }i∈Z
to a refined polygon fk+1 = {fk+1

i }i∈Z
is defined by

fk+1
ni+s =

∑

j∈Z

anj+sf
k
i−j , s = 0, 1, 2, . . . , n − 1, (1.1)

where the set a = {ai | i ∈ Z} of coefficients is called mask of the subdivision scheme and
n = 2, 3, . . ., stands for binary, ternary, and so on.

Higher arity schemes are taking more attention now a days because of their useful and
valuable properties. Higher arity schemes give a variety of different behaviors than lower
arity schemes. It is noticed that higher arity schemes have higher smoothness and appro-
ximation order while their support is smaller compared to lower arity schemes. It is also
observed that lower arity schemes have higher computational cost than higher arity schemes.
Similarly increasing the number of points (complexity of the scheme) has also valuable
upshots on smoothness of subdivision scheme.

There are many even-point n-ary subdivision schemes [1–5] in the literature for any
n � 2. Mustafa and Rehman [6] generalized and unified existing even-point n-ary subdivi-
sion schemes for any n � 2.

There are also odd-point n-ary interpolating subdivision schemes [3, 7–9] in the
literature for any odd n � 3. So it is natural to look for a general formula which not only
generalize and unify existing odd-point n-ary subdivision schemes but also provide the mask
of higher arity schemes in a simple and efficient way. In this paper, we introduce an explicit
formula which generalizes and unifies all existing odd-point n-ary interpolating subdivision
schemes.

Subdivision scheme offers a well-defined and competent way to represent smooth
curves but question arises: How well control polygon of subdivision scheme approximates
the limiting curve? To answer this question error bounds of subdivision schemes are to be
computed. In [10], Mustafa and Hashmi presented an algorithm to calculate error bounds of
n-ary subdivision schemes. By making use of this algorithm we present a brief comparison
of the error bounds of some of our schemes. The result shows that as we increase arity of
subdivision scheme the error bound decreases.

A very frequent criterion to assess the worth of a subdivision scheme is its shape
preserving properties. Convexity preservation is one of such properties. It is considered to be
a geometrical property of subdivision scheme. So keeping this inmind, we describe convexity
preserving property of one of the schemes. Moreover, some other important properties of
subdivision like total absolute curvature and measure of deviation from convexity are also
analyzed. Curvature is a geometrical criteria which truly describe the shape of objects. A
brief comparison of our proposed family of schemes with other existing schemes is given.
Some geometrical examples to show visual performance of scheme are also given.

The paper is organized as follows: in Section 2, some preliminary concepts are given,
which are useful in the next sections. In Section 3, mask of odd-point n-ary scheme and some
important results are given. In Section 4, comparison, application, error bounds, and total
curvature of proposed family of schemes are presented. In Section 5, convexity preserving
conditions of 5-point ternary scheme are derived. In the end of the paper, Section 6 which
illustrates results and findings of the paper.
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2. Preliminary Results

Here, we present some preliminary identities which play an important role in the construc-
tion of explicit formula for the mask of odd-points n-ary interpolating schemes for any odd
n � 3.

LetΠ2b be the space of all polynomials of degree �2b, where b is a nonnegative integer.
If {Lk(x)}bk=−b is fundamental Lagrange polynomial corresponding to the nodes {k}bk=−b is
defined by

Lk(x) =
b∏

j=−b,j /= k

x − j

k − j
, k = −b, . . . , b, (2.1)

for which

Lk

(
j
)
= δk,j , k, j = −b, . . . , b, (2.2)

b∑

k=−b
p(k)Lk(x) = p(x), p ∈ Π2b, (2.3)

where δk,j is Kronecker delta, defined as follows:

δk,j =

{
1, k = j,

0, k /= j.
(2.4)

Then one can easily derive the following identities for each j = −b, . . . , b,

Lj(b + 1) =
∏b

i=−b(b + 1 − i)
(
b + 1 − j

)(
b + j

)
!
(
b − j

)
!(−1)b+j

, (2.5)

Lj(−b − 1) =
∏b

i=−b(−b − 1 − i)
(−b − 1 − j

)(
b + j

)
!
(
b − j

)
!(−1)b+j

, (2.6)

Lj

(
s

3

)
=

∏b
i=−b(s − 3i)

(
s − 3j

)(
32b
)(
b + j

)
!
(
b − j

)
!(−1)b+j

, s = −1, 1, (2.7)

Lj

(
s

5

)
=

∏b
i=−b(s − 5i)

(
s − 5j

)(
52b
)(
b + j

)
!
(
b − j

)
!(−1)b+j

, s = −2,−1, 1, 2. (2.8)

3. Mask of (2b + 3)-Point n-Ary Interpolating Scheme

In this section, we first find the mask of (2b + 3)-point ternary and quinary interpolating
schemes then by induction, we formulate a general formula for the mask of (2b + 3)-point
n-ary interpolating symmetric subdivision scheme.
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Lemma 3.1. An explicit formula for the mask a = {aj}3b+4j=−3b−4 of (2b + 3)-point ternary interpolating
scheme is defined by

a3j = δj,0,

a3j+s = Lj

(
s

3

)
− a3b+3+sLj(b + 1) − a3b+3−sLj(−b − 1),

a3b+3+t = a−(3b+3+t),

(3.1)

where b � 0, s = {t} − {0}, t = −((3− 1)/2), . . . , ((3− 1)/2), Lj(b + 1), Lj(−b − 1), and Lj(s/3) are
defined by (2.5)–(2.7), respectively.

Proof. To find the mask of (2b + 3)-point ternary interpolating scheme, we consider the prob-
lem of finding a mask a = {aj}3b+4j=−3b−4 reproducing polynomial p of degree �2b that is

∑

k

aj+3kp(k) = p

(
j

3

)
, j ∈ Z, p ∈ Π2b. (3.2)

Now by evaluating polynomial p at j = 0, 1,−1 and then by using (2.2) and (2.3), we
get

b∑

k=−b
a3kLj(k) = δj,0, (3.3)

b+1∑

k=−b−1
a1+3kLj(k) = Lj

(
1
3

)
, (3.4)

b+1∑

k=−b−1
a−1+3kLj(k) = Lj

(
−1
3

)
, (3.5)

where j = −b, . . . , b.
By splitting left hand sides of (3.4)-(3.5) and then by (2.2), we get

b+1∑

k=−b−1
a1+3kLj(k) =

b∑

k=−b
a1+3kLj(k) + a3b+4Lj(b + 1) + a−(3b+2)Lj(−b − 1)

= a3j+1 + a3b+4Lj(b + 1) + a3b+2Lj(−b − 1),

b+1∑

k=−b−1
a−1+3kLj(k) =

b∑

k=−b
a−1+3kLj(k) + a3b+2Lj(b + 1) + a−(3b+4)Lj(−b − 1)

= a3j−1 + a3b+2Lj(b + 1) + a3b+4Lj(−b − 1).

(3.6)
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Now, by substituting right hand sides of above equations into (3.4)-(3.5) and by (3.3), we
get the general formula for the mask a = {aj}3b+4j=−3b−4 of (2b + 3)-point ternary interpolating
subdivision scheme

a3j = δj,0,

a3j+1 = Lj

(
1
3

)
− a3b+4Lj(b + 1) − a3b+2Lj(−b − 1),

a3j−1 = Lj

(
−1
3

)
− a3b+2Lj(b + 1) − a3b+4Lj(−b − 1),

(3.7)

where j = −b, . . . , b and aj = a−j (symmetric condition, for j = 1, . . . , 3b + 4), Lj(b + 1), Lj(−b −
1),Lj(1/3), Lj(−1/3) are defined by (2.5)–(2.7).

By reformulating the above symmetric condition and (3.7), we obtain (3.1). This com-
pletes the proof.

Lemma 3.2. An explicit formula for the mask a = {aj}5b+7j=−5b−7 of (2b+3)-point quinary interpolating
scheme is defined by

a5j = δj,0,

a5j+s = Lj

(
s

5

)
− a5b+5+sLj(b + 1) − a5b+5−sLj(−b − 1),

a5b+5+t = a−(5b+5+t),

(3.8)

where b � 0, s = {t} − {0}, t = −((5 − 1)/2), . . . , ((5 − 1)/2), Lj(b + 1), Lj(−b − 1), and Lj(s/5)
are defined by (2.5), (2.6) and (2.8), respectively.

Proof. Following the procedure of Lemma 3.1, one can easily derive the following explicit for-
mula for the mask a = {aj}5b+7j=−5b−7 of (2b + 3)-point quinary interpolating subdivision scheme

a5j = δj,0,

a5j+1 = Lj

(
1
5

)
− a5b+6Lj(b + 1) − a5b+4Lj(−b − 1),

a5j−1 = Lj

(
−1
5

)
− a5b+4Lj(b + 1) − a5b+6Lj(−b − 1),

a5j+2 = Lj

(
2
5

)
− a5b+7Lj(b + 1) − a5b+3Lj(−b − 1),

a5j−2 = Lj

(
−2
5

)
− a5b+3Lj(b + 1) − a5b+7Lj(−b − 1),

(3.9)

where j = −b, . . . , b and aj = a−j (symmetric condition, for j = 1, . . . , 5b+7), Lj(b+1), Lj(−b−1),
Lj(1/5), Lj(−1/5), Lj(2/5), Lj(−2/5) are defined by (2.5), (2.6) and (2.8), respectively.
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By reformulating the above symmetric condition and (3.9), we get (3.8). This com-
pletes the proof

By Lemmas 3.1 and 3.2 with change of notations and by induction, we get the fol-
lowing theorem.

Theorem 3.3. If n stands for n-ary subdivision scheme for any odd n � 3, b � 0, j = −b, . . . , b, t =
−((n − 1)/2), . . . , ((n − 1)/2) and s = {t} − {0}, an explicit formula for the mask of (2b + 3)-point
n-ary interpolating scheme is defined by

anj = δj,0, (3.10)

anj+s = A
(
b, j, n, s

) − anb+n+sB
(
b, j
) − anb+n−sC

(
b, j
)
, (3.11)

anb+n+t = a−(nb+n+t), (3.12)

where

A
(
b, j, n, s

)
=

∏b
i=−b(s − ni)

(
s − nj

)
n2b
(
b + j

)
!
(
b − j

)
!(−1)b+j

,

B
(
b, j
)
=

∏b
i=−b(b + 1 − i)

(
b + 1 − j

)(
b + j

)
!
(
b − j

)
!(−1)b+j

,

C
(
b, j
)
=

∏b
i=−b(−b − 1 − i)

(−b − 1 − j
)(
b + j

)
!
(
b − j

)
!(−1)b+j

,

(3.13)

and the free parameter anb+n+t can be explicitly defined as

anb+n+t =
∏2b+1

i=0 (bn − t − in)
n2b+2(2b + 2)!

. (3.14)

Remark 3.4. (i) It is to be noted that the scheme (3.10)–(3.12) has anb+n+t free parameters
for (2b + 3)-point n-ary interpolating scheme. By introducing free parameters we offer more
flexibility for curve designing.

(ii) It is also clear that the scheme (3.10)–(3.14) has no free parameters for (2b+3)-point
n-ary interpolating scheme.

(iii) We can see that the scheme generated by the mask (3.10)–(3.12) satisfies the
polynomial reproducing property up to degree 2b, because this property is the starting point
of the construction of the mask as formulated in (3.2).

Remark 3.5. Following are some lower and higher arity schemes generated by (3.10)–(3.14)
with and without free parameters.
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(i) If {n = 13, b = 0} then by (3.10)–(3.14), we get 3-point 13-ary interpolating scheme:

1
169

{57, 45, 34, 24, 15, 7, 0,−6,−11,−15,−18,−20,−21, 113, 144, 153,

160, 165, 168, 1, 168, 165, 160, 153, 144, 133,−21,−20,−18,−15,−11,−6,
0, 7, 15, 24, 34, 45, 57}.

(3.15)

(ii) If {n = 11, b = 0} then by (3.10)–(3.14), we get 3-point undenary (i.e., 11-ary)
interpolating scheme:

1
121

{40, 30, 21, 13, 6, 0,−5,−9,−12,−14,−15, 96, 105, 112, 117, 120,

121, 120, 117, 112, 105, 96,−15,−14,−12,−9,−5, 0, 6, 13, 21, 30, 40}.
(3.16)

(iii) If {n = 9, b = 0} then by (3.10)–(3.14), we get 3-point nonary (i.e., 9-ary)
interpolating scheme:

1
81

{26, 18, 11, 5, 0,−4,−7,−9,−10, 65, 72, 77, 80,

81, 80, 77, 72, 65,−10,−9,−7,−4, 0, 5, 11, 18, 26}.
(3.17)

(iv) If {n = 7, b = 0} then by (3.10)–(3.14), we get 3-point septenary (i.e., 7-ary)
interpolating scheme:

1
49

{15, 9, 4, 0,−3,−5,−6, 40, 45, 48, 49, 48, 45, 40,−6,−5,−3, 0, 4, 9, 15}. (3.18)

(v) By setting {n = 5, b = 0} and then by (3.10)–(3.14), we get the following mask of
new 3-point quinary (i.e., 5-ary) interpolating scheme:

1
25

{7, 3, 0,−2,−3, 21, 24, 25, 24, 21,−3,−2, 0, 3, 7}. (3.19)

(vi) For {n = 3, b = 1, a5 = w1, a6 = 0, a7 = w2}, in (3.10)–(3.14), we get the following
5-point ternary (i.e., 3-ary) interpolating schemes with two parameters:

{
w2, 0, w1,

2
9
−w1 − 3w2, 0,−19 − 3w1 −w2,

8
9
+ 3w1 + 3w2, 1,

8
9
+ 3w1 + 3w2,−19 − 3w1 −w2, 0,

2
9
−w1 − 3w2, w1, 0, w2

}
.

(3.20)
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(vii) For {n = 3, b = 0, a2 = v1, a3 = 0, a4 = v2}, in (3.10)–(3.12), we get the following
3-point ternary (i.e., 3-ary) interpolating schemes with two parameters

{v2, 0, v1, 1 − v1 − v2, 1, 1 − v1 − v2, v1, 0, v2}. (3.21)

Remark 3.6. Here, we see that existing schemes are either special cases of our scheme or can
be generated by our explicit formula.

(i) By setting {n = 3, b = 0} in (3.10)–(3.14), we get mask of Lian ([9], Equation (22))
3-point ternary interpolating scheme.

(ii) If {n = 3, b = 1} in (3.10)–(3.14), we get mask of Lian ([9], Equation (23)) 5-point
ternary interpolating scheme.

(iii) We can easily build mask of 3-point a-ary interpolating scheme ([9], Equations
(12)–(14)), by setting {n = a, b = 0} in (3.10)–(3.14).

(iv) Similarly, we can generate mask of 5-point a-ary interpolating scheme ([9],
Equations (15) – (17)), by taking {n = a, b = 1} in (3.10)–(3.14).

(v) If {n = 3, b = 2} then by (3.10)–(3.14), we can build 7-point ternary scheme of ([3],
Equations (42)–(44)).

(vi) The (2m+1)-point a-ary schemes ([3], Equations (11)-(12)) can easily be generated
from our scheme listed in (3.10)–(3.14) by setting {n = a, b = m − 1}.

(vii) By taking w1 = 4/81 + u, and w2 = u, in (3.20), we get mask of 5-point ternary
interpolating scheme of Zheng et al. ([8], Equation (7)).

(viii) If v1 = −1/3 + u, and v2 = u, in (3.21), we obtain mask of 3-point ternary
interpolating scheme of Zheng et al. ([8], Equation (5)). Similarly one can easily
derive the mask of (2n − 1)-point ternary interpolating scheme of [8] from (3.10)–
(3.12).

(ix) In case v2 = v1 + 1/3, in (3.21), we get Hassan and Dodgson’s 3-point ternary inter-
polating scheme [7].

4. Comparison, Applications, Error Bounds, and
Total Absolute Curvature

In this section, first we present comparison of our proposed explicit formula with the existing
explicit formula/algorithms for generating the masks of schemes. After that, we give visual
performance among lower and higher arity schemes. Then we give a brief overview of error
bounds of schemes. At the end, we give a comparison of total curvature of subdivision
schemes for different arity with different complexity.

4.1. Comparison

Here is the comparison of our proposed explicit formula with the existing explicit formula/
algorithms.

(i) All the well-known odd-points n-ary for any odd n � 3 interpolating existing
schemes are either special cases or can be easily generated by our proposed
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explicit formula while existing explicit formula/algorithms [3, 7–9] do not have
this characteristic.

(ii) Lian’s explicit formulae [3, 9] generate the masks of only nonparametric schemes
while our proposed explicit formula generate the masks of parametric as well as
nonparametric schemes.

(iii) Zheng et al. [8] introduced an algorithm to generate only (2n − 1)-point ternary
interpolating subdivision schemes while we suggested explicit formula for any
odd-points n-ary interpolating schemes for any odd n � 3.

(iv) Hassan and Dodgson [7] 3-point ternary interpolating scheme is special case of our
proposed explicit formula for mask of the schemes.

4.2. Applications

In Figure 1, we give comparison among different arity schemes generated in this paper to
show their performance. Refined polygons generated by different arity schemes after first
subdivision level are shown and compared in this figure. This figure indicates that higher
arity schemes converge to limit curve faster than lower arity schemes.

4.3. Error Bounds

Subdivision is considered to be a very important tool in geometric modeling and shape
designing. This approach is included in the control polygon paradigm. There arises an
important question in the application of this type of procedure. How to estimate the error
(distance) between limit curve and its control polygon? To respond this question, here we
present a collection of expressions, inequalities, and results described in [10].

Given a control polygon composed of a sequence of control points fk
i ∈ R

N , i ∈ Z,
N � 1. An n-ary subdivision curve (1.1) is re-defined by

fk+1
ni+α =

m∑

j=0

aα,jf
k
i+j , α = 0, 1, . . . , n − 1, (4.1)

where m > 0 and

m∑

j=0

aα,j = 1, α = 0, 1, . . . , n − 1. (4.2)

The set of coefficients {aα,j , α = 0, 1, . . . , n − 1}mj=0 is called subdivision mask. Given
initial values f0

i ∈ R
N , i ∈ Z. Then in the limit k → ∞, the process (4.1) defines an infinite

set of points in R
N . The sequence of control points {fk

i } is related, in a natural way, with the
diadic mesh points tki = i/nk, i ∈ Z. The process then defines a scheme whereby fk+1

ni and fk+1
ni+n

replace the values fk
i and fk

i+1 at the mesh points tk+1ni = tki and tk+1ni+n = tki+1, respectively, while
fk+1
ni+α is inserted at the new mesh points tk+1ni+α = (1/n)((n − α)tki + αtki+1) for α = 1, 2, . . . , n − 1.

Given initial control polygon f0
i = fi, i ∈ Z, let the values fk

i , k � 1 be defined
recursively by subdivision process (4.1) together with (4.2). Suppose Fk is the piecewise
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(a) 3-point 3-ary, 1st subdivision level (b) 3-point 5-ary, 1st subdivision level

(c) 3-point 7-ary, 1st subdivision level (d) 3-point 9-ary, 1st subdivision level

(e) 3-point 11-ary, 1st subdivision level (f) 3-point 13-ary, 1st subdivision level

Figure 1: Dotted lines indicate original control polygon while continuous curves are generated by 3-point
interpolating 3-ary, 5-ary, 7-ary, 9-ary, 11-ary, and 13-ary schemes (3.15)–(3.19) and (3.21). Small squares
indicate newly inserted points after first subdivision level.
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linear interpolant to the values fk
i and F∞ is the limit curve of the process (4.1). If δ < 1

then the error bound between limit curve and its control polygon after k-fold subdivision is

∥∥∥Fk − F∞
∥∥∥
∞

� γχ

(
(δ)k

1 − δ

)
, (4.3)

where

χ = max
i

∥∥∥f0
i+1 − f0

i

∥∥∥,

δ = max
β

⎧
⎨

⎩

∣∣∣∣∣∣

m∑

j=0

bβ,j

∣∣∣∣∣∣
, β = 0, 1, . . . , n − 1

⎫
⎬

⎭,

(4.4)

where

bβ,j =
j∑

t=0

(
aβ,t − aβ+1,t

)
, β = 0, 1, . . . , n − 2,

bn−1,j = a0,j −
n−2∑

β=0

bβ,j ,

(4.5)

also

γ = max
α

⎧
⎨

⎩

∣∣∣∣∣∣

m−1∑

j=0

ãα,j

∣∣∣∣∣∣
, α = 0, 1, . . . , n − 1

⎫
⎬

⎭, (4.6)

where

ãα,0 =
m∑

t=1

aα,t − α

n
,

α = 0, 1, . . . , n − 1,

ãα,j =
m∑

t=j+1

aα,t, j � 1.

(4.7)

Rest of the section is devoted to the computation of error bounds between limit curve
and their control polygon after k-fold subdivision of (2b + 3)-point n-ary interpolating
scheme for different values of b ≥ 0, k ≥ 1, and n ≥ 3, by using (4.3)with χ = 0.1.

Error bounds of proposed odd-point n-ary subdivision scheme at different subdivision
levels are shown in Figure 2. From this figure, we have the following conclusions: Error
bounds decrease with the increase of subdivision levels. Error bounds are directly propor-
tional to the number of points involved (complexity of the scheme) to insert a point at next
subdivision level. It is also observed that error bounds decrease with the increase of arity of
the schemes.
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Figure 2: (a) Presents a comparison among error bounds of 3-point n-ary interpolating scheme, i.e., for
n = 3, 5, 7, 9. (b) Presents a comparison among error bounds of 5-point n-ary interpolating scheme, i.e., for
n = 3, 5, 7, 9. (c) Presents a comparison among error bounds of 2b + 3-point ternary interpolating scheme,
i.e., for b = 0, 1, 2, 3. Here k presents subdivision level, E presents error bound and n presents arity of
subdivision scheme.

4.4. Total Absolute Curvature

Here is the brief comparison of total absolute curvature (TAC) of interpolating subdivision
schemes of different arity and complexity of the scheme. TAC of 3-point, 5-point, and 7-
point interpolating scheme is computed by keeping arity 3. Also TAC is calculated for
3-point, 5-point, and 7-point interpolating scheme by keeping arity 5. Figure 3 shows
graphical representation of TAC of subdivision schemes. Same initial polygon is taken for all
subdivision schemes to compute TAC. From Figure 3, it is clear that as we increase the arity
TAC is also increased and as we increase the complexity of the scheme TAC is decreased.
Figure 4 presents comparison of TAC among different values of parameter of 3-point ternary
interpolating scheme (3.21), here we set v2 = v1 − 1/3 and range of v2 is (0.2222, 0.3333).
From Figure 4, it is clear that as we increase value of parameter from left to right in the
parametric interval (0.2222, 0.3333), TAC of 3-point ternary interpolating scheme (3.21) is
decreased.

The total curvature and total absolute curvature are same for a closed convex
polygonal curve and both are equal to 2π . Hence for a nonconvex curve the measure of
deviation (referred as D) from the convex curve can be calculated by subtracting TAC of
nonconvex curve from TAC of convex curve that is 2π . In Table 1, we have calculatedmeasure
of deviation of convexity of 3-point and 5-point ternary interpolating scheme at different
subdivision level. Figure 5 presents graphical representation of measure of deviation of 3-
point and 5-point ternary interpolating scheme.
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Figure 3: Comparison of total absolute curvature of 3-point ternary and 3-point quinary, 5-point ternary
and 5-point quinary, and 7-point ternary and 7-point quinary interpolating schemes. Here L represents
total absolute curvature and k represents number of iterations.
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Figure 4: Presents comparison among total absolute curvature of 3-point ternary interpolating scheme
for different values of parameter. Here L represents total absolute curvature and k represents number of
iterations.

Table 1:Measure of deviation of convexity of 3-point and 5-point ternary scheme. Here k presents the level
of iteration and D is measure of deviation.

k Scheme D Scheme D

2 3-point 0.000000 5-point 0.000000
3 · · · −0.716814 · · · 0.000000
4 · · · −3.716814 · · · −0.000001
5 · · · −8.716814 · · · −0.000011

5. Convexity Preservation of Subdivision Scheme

In this section, we discuss condition which guarantee convexity preservation of interpolating
scheme. Herewe derive conditions for convexity preservation of 5-point ternary interpolating
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Figure 5: Presents measure of deviation of convexity of 3-point and 5-point ternary interpolating scheme.

scheme (3.20). Convexity of other schemes can be discussed analogously. We adopt the same
procedure as described by [11].

5.1. Convexity Preservation of 5-Point Ternary Scheme

Let us suppose that the initial control points are strictly convex, that is, dk
j > 0 (by [12]). For

v2 = u and v1 = u+4/81, the scheme (3.20) for second-order divided differences dk
j = 32k(fk

j−1−
2fk

j + fk
j+1) is given by

dk+1
3i =

(
4
9
+ 18u

)
dk
i +
(
1
9
− 36u

)
dk
i+1 +

(
4
9
+ 18u

)
dk
i+2,

dk+1
3i+1 = −

(
8
9
+ 18u

)
dk
i +
(
26
9

+ 45u
)
dk
i+1 −

(
13
9

+ 36u
)
dk
i+2 +

(
4
9
+ 9u

)
dk
i+3,

dk+1
3i+2 =

(
4
9
+ 9u

)
dk
i −
(
13
9

+ 36u
)
dk
i+1 +

(
26
9

+ 45u
)
dk
i+2 −

(
8
9
+ 18u

)
dk
i+3.

(5.1)

For simplicity, we put w = 4/9 + 18u, −7/18 < w < −1/3, in above three equations, we get

dk+1
3i = wdk

i + (1 − 2w)dk
i+1 +wdk

i+2, (5.2)

dk+1
3i+1 = −

(
4 + 9w

9

)
dk
i +
(
32 + 45w

18

)
dk
i+1 −

(
5 + 18w

9

)
dk
i+2 +

(
4 + 9w
18

)
dk
i+3, (5.3)

dk+1
3i+2 =

(
4 + 9w
18

)
dk
i −
(
5 + 18w

9

)
dk
i+1 +

(
32 + 45w

18

)
dk
i+2 −

(
4 + 9w

9

)
dk
i+3. (5.4)
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The conditions which guarantee the convexity preservation are as follows.

Theorem 5.1. Denote pki = dk
i+1/d

k
i , q

k
i = 1/pki = dk

i /d
k
i+1 and let

rk = min
{
pki , q

k
i

}
. (5.5)

If the initial control points are all strictly convex, −7/18 < w < −1/3 and

r0 > − 2w
1 +w

� λ, (5.6)

then the 5-point ternary scheme (3.20), for v2 = w and v1 = w + 4/81 preserves convexity.

Proof. For convexity preservation it is sufficient to show that dk
i > 0 and rk > λ. We will use

mathematical induction to prove dk
i > 0 and rk > λ. As we know that for k = 0, d0

i > 0 and
r0 > λ by (5.6). Let us suppose that dk

i > 0 and rk > λ. Now we will prove it for k + 1. To show
dk+1
i > 0, we have to show that dk+1

3i > 0, dk+1
3i+1 > 0 and dk+1

3i+2 > 0.
From (5.3), we have that

dk+1
3i = dk

i

(
w + (1 − 2w)pki +wpki p

k
i+1

)
. (5.7)

This implies for −7/18 < w < −1/3

dk+1
3i > dk

i

{
w + (1 − 2w)λ +wλ2

}
> 0. (5.8)

From (5.3), we have that

dk+1
3i+1 = dk

i

{
−
(
4 + 9w

9

)
+
(
32 + 45w

18

)
pki −

(
5 + 18w

9

)
pki p

k
i+1 +

(
4 + 9w
18

)
pki p

k
i+1p

k
i+2

}
.

(5.9)

This implies for −7/18 < w < −1/3

dk+1
3i+1 > dk

i

(
−4 + 9w

9
+
λ(32 + 45w)

18
− 5 + 18w

9λ2
+
λ3(4 + 9w)

18

)
> 0. (5.10)

Similarly from (5.4), for −7/18 < w < −1/3 we have that

dk+1
3i+2 > dk

i

(
4 + 9w
18

− 5 + 18w
9λ

+
λ2(32 + 45w)

18
− 4 + 9w

9λ3

)
> 0. (5.11)

By combining (5.8), (5.10), and (5.11), we have dk+1
i > 0.
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Now we prove rk+1 > λ.
For pk+13i = dk+1

3i+1/d
k+1
3i , we get

pk+13i =
−(4 + 9w)/9 + ((32 + 45w)/18)pki − ((5 + 18w)/9)pki p

k
i+1 + ((4 + 9w)/18)pki p

k
i+1p

k
i+2

w + (1 − 2w)pki +wpki p
k
i+1

.

(5.12)

Now

pk+13i − λ

>
−(4 + 9w)/9 + λ(32 + 45w)/18 − (5 + 18w)/9λ2+λ3(4 + 9w)/18 − λ

(
w + (1 − 2w)λ +wλ2

)

w + (1 − 2w)λ +wλ2
.

(5.13)

Since both the numerator and denominator of above expression are positive for −7/18 < w <
−1/3, therefore

pk+13i − λ > 0. (5.14)

This implies that for −7/18 < w < −1/3

pk+13i > λ. (5.15)

For qk+13i = 1/pk+13i = dk+1
3i /dk+1

3i+1, we get

qk+13i =
wqki q

k
i+1 + (1 − 2w)qki+1 +w

−((4 + 9w)/9)qki q
k
i+1 + ((32 + 45w)/18)qki+1 − (5 + 18w)/9 + ((4 + 9w)/18)pki+2

.

(5.16)

Now

qk+13i − λ

>
wλ2 + (1 − 2w)λ +w+(4 + 9w)/9λ−λ2(32 + 45w)/18+λ(5 + 18w)/9 − λ2(4 + 9w)/18

−(4 + 9w)/9λ2 + λ(32 + 45w)/18 − (5 + 18w)/9 + λ(4 + 9w)/18
.

(5.17)

Since both the numerator and denominator of above expression are positive for −7/18 < w <
−1/3, therefore

qk+13i − λ > 0. (5.18)
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This implies that for −7/18 < w < −1/3

qk+13i > λ. (5.19)

Similarly by taking pk+13i+1 = dk+1
3i+2/d

k+1
3i+1 and by using (5.3)–(5.6), we can easily show that for

−7/18 < w < −1/3

pk+13i+1 > λ. (5.20)

Through the same channel for −7/18 < w < −1/3, we have

qk+13i+1 > λ. (5.21)

Similarly for pk+13i+2 = dk+1
3i+3/d

k+1
3i+2 and by using (5.2), (5.4)–(5.6) for −7/18 < w < −1/3

pk+13i+2 > λ. (5.22)

Through the similar channel for −7/18 < w < −1/3, we have

qk+13i+2 > λ. (5.23)

By combining (5.15)–(5.23), we have pk+1i , qk+1i > λ. Thus rk+1 > λ. Since both conditions are
satisfied so we concluded that 5-point ternary interpolating scheme (3.20) preserves con-
vexity for v2 = u and v1 = u + 4/81.

Finally, we give an example to illustrate our result. Figure 6 shows the result after
two iteration with u = −11/250. In this figure, the initial control polygon is convex and
represented by dotted line and limit curve after two times iterations is represented by solid
line and is also convex.

6. Conclusion

In this paper, we offered an explicit general formula to generate the mask of odd-points n-
ary interpolating symmetric schemes for any odd n � 3. From this formula one can easily
generate the mask of odd-points, lower and higher arity interpolating schemes with and
without free parameters. Moreover, odd-point n-ary schemes of Hassan and Dodgson [7],
Zheng et al. [8], Lian [3, 9] are special cases of our proposed explicit formula. Moreover, we
have concluded that error bounds between limit curve and control polygon of subdivision
scheme at k-th level decreases with the increase of arity of the scheme. We also noticed that
error bound is directly proportional to the number of points involved to insert new point
in the control polygon (i.e., complexity of the scheme). We also calculated total absolute
curvature for subdivision schemes having different arity and different complexity. We have
concluded that total absolute curvature is directly proportional to arity and inversely pro-
portional to complexity of the scheme. Convexity preservation is an important geometrical
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5-point ternary

Figure 6: Limit curve after applying 5-point ternary subdivision scheme on initial convex data. Dotted line
shows initial convex data and solid line indicates limit curve after two iteration.

property of subdivision scheme. Therefore we discussed the convexity of some of our scheme.
Convexity of other schemes can be discussed analogously.
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