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A positivity-preserving numerical method for nonlinear Black-Scholes models is developed in this
paper. The numerical method is based on a nonstandard approximation of the second partial
derivative. The scheme is not only unconditionally stable and positive, but also allows us to
solve the discrete equation explicitly. Monotone properties are studied in order to avoid unwanted
oscillations of the numerical solution. The numerical results for European put option and European
butterfly spread are compared to the standard finite difference scheme. It turns out that the
proposed scheme is efficient and reliable.

1. Introduction

It is widely recognized that the value of a European option can be obtained by solving the
linear Black-Scholes equation under quite restrictive assumptions (such as liquid, frictionless,
and complete markets) [1, 2]. However, these restrictive assumptions are never fulfiled in
reality. In order to conform the actual situation, many modified Black-Scholes models have
been proposed in recent years, such as transaction costs (Leland [3], Palmer [4], Hoggard
et al. [5], Barles and Soner [6], and Jandačka and Ševčovič [7]), illiquid market (Frey and
Patie [8], Sircar and Papanicolaou [9], Liu and Yong [10], etc.), and volatility uncertainty
(Avellaneda et al. [11]). These models result in quasilinear or fully nonlinear Black-Scholes
equations.

In this paper, we are interested in the option pricing model with transaction costs
proposed by Barles and Soner [6] that are motivated by Hodges and Neuberger [12]. In their
model, the value V (S, t) of the option satisfies the following partial differential equation:

∂V

∂t
+
1
2
σ(VSS)2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.1)
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with the nonlinear volatility σ(VSS) that reads

σ(VSS)2 = σ2
0

(
1 + Ψ

(
er(T−t)a2S2 ∂

2V

∂S2

))
(1.2)

and the terminal condition

V (S, T) = f(S), (1.3)

where S is the price of the underlying asset, T is the maturity date, r is the risk-free interest
rate, σ0 is the asset volatility, and a = μ

√
γN, with the proportional transaction cost μ, the

risk aversion factor γ , and the number N of options to be sold. Ψ(x) is the solution of the
following ordinary differential equation:

Ψ′(x) =
Ψ(x) + 1

2
√
xΨ(x) − x

, x /= 0, Ψ(0) = 0. (1.4)

The existence and uniqueness of the solution of (1.1)–(1.3) have been shown by the
theory of stochastic optimal control in [6]. However, analytical solutions cannot be found
because of fully nonlinear properties of (1.1); thus, we need to compute the option values
numerically.

There have been rich achievements for the numerical method of linear Black-Scholes
equations (e.g., see [13–17]). As for the nonlinear situation, only a few results can be found.
There is a stable numerical scheme developed in [7] (see also [18] for application to a general
class of nonlinear Black-Scholes equations) for the so-called gamma equation (a quasilinear
parabolic equation for the SVSS). Recently Kútik and Mikula [19] did some progress in
showing its stability and accuracy for nonlinear Black-Scholes equation. Company et al. [20–
22] construct explicit finite difference schemes for (1.1)–(1.3), and consistency and stability
are studied. However, they have the disadvantage that strictly restrictive conditions on
the discretization parameters are needed to guarantee stability and positivity. The implicit
schemes do not have this disadvantage, but they are quite time-consuming. Yousuf et al. [23]
develop a new second-order exponential time differencing (ETD) scheme to avoid unwanted
oscillations near the non-smooth nodes for the Hoggard-Whalley-Wilmott (HWW) model
[5] based on the Cox and Matthews approach [24] and partial fraction version of the matrix
exponential, but the theoretical analysis of stability and convergence are not studied. Some
authors (for instance, Düring et al. [25] for European options, Dremkova and Ehrhardt [26]
for American options) construct high-order compact difference schemes with frozen values
of the nonlinear coefficient of the nonlinear Black-Scholes equation to make the scheme linear
and show that the resulted linearized problem is stable.

On the other hand, since the value of option is nonnegative, it is very important to
make numerical schemes preserve the positivity of solution. Several authors have developed
some schemes that guarantee the positivity of solutions for ordinary differential equations
[27, 28] and parabolic equations [29]. In [30], Chen-Charpentier and Kojouharov propose
an unconditionally positivity-preserving scheme for linear advection-diffusion reaction
equations. They construct a nontraditional discretization of the advection and diffusion
terms by the approximation of the spatial derivatives using values at different time levels.
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Motivated by this work, we will develop the method to a nonlinear Black-Scholes equation,
and some properties (such as stability, monotonicity, and consistency,) of numerical scheme
are studied in this paper. The new numerical method unconditionally preserves the positivity
of the solutions, the stability, and monotonicity of the scheme. In addition, the designed
numerical approximations allow us to solve the discrete equation explicitly, which reduces
the time of calculation and increases the efficiency of the methods.

The rest of the paper is organized as follows. In the next section the original problem
(1.1)–(1.3) is transformed into a nonlinear diffusion problem by an appropriate change of
variables and some properties of the function Ψ(x) are given. In Section 3, the discretization
method is constructed. In Section 4, we prove the boundedness of coefficients, positivity, and
monotonicity of the numerical scheme. Stability and consistency are studied in Section 5. In
Section 6, numerical experiments for European put option and a European butterfly spread
are presented to support these theoretical results. Finally, some conclusions are drawn in
Section 7.

2. The Transformed Problem

For the convenience in the numerical processing and the study of the numerical analysis, we
are going to transform the problem (1.1)–(1.3) into a nonlinear diffusion equation. Taking the
variable transformation

x = exp(r(T − t))S, τ = T − t, u = exp(r(T − t))V. (2.1)

the original problem (1.1)–(1.3) is transformed into

L(u) =
∂u

∂τ
− 1
2
σ2
0

(
1 + Ψ

(
a2x2 ∂

2u

∂x2

))
x2 ∂

2u

∂x2
= 0, x ∈ [0,+∞), τ ∈ [0, T], (2.2)

with the initial condition

u(x, 0) = f(x) (2.3)

and the boundary condition

Call option : u(0, t) = 0, lim
x→∞

u(x, τ)
x

= 1,

Put option : u(0, t) = K, lim
x→∞

u(x, τ) = 0.
(2.4)

The following two lemmas give the properties of the function Ψ appearing in (1.2),
which will play an important role in the numerical analysis and numerical calculation.

Lemma 2.1 (see [20]). The solution Ψ of ordinary differential equation (1.4) exists and is unique,
and it satisfies,

(i) Ψ is an increasing function mapping the real line onto the interval (−1,+∞).
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(ii) Ψ = Ψ(A) is implicitly defined by

A =

(
− arc sinh

√
Ψ√

Ψ + 1
+
√
Ψ

)2

if Ψ > 0,

A = −
(

arc sin
√
−Ψ√

Ψ + 1
−
√
−Ψ
)2

if − 1 < Ψ < 0,

(2.5)

(iii) if A > 0, then the function Ψ(A) is bounded and satisfies

0 < Ψ(A) < Ψ′(A2)A + d2, (2.6)

where

A2 =

⎛
⎜⎝sinh 2 − 2√

(sinh 2)2 + 1

⎞
⎟⎠

2

� 9.58, Ψ(A2) = (sinh 2)2,

Ψ′(A2) =

(
e8 + 2e4 + 1

)2
e16 − 66e8 + 1

� 1.10, d2 = Ψ(A2) −Ψ′(A2)A2 � 2.62.

(2.7)

Lemma 2.2 (see [20]). Let g(A) = AΨ(A), then g(A) is continuously differentiable at A = 0 and
satisfies

∣∣g ′(A)
∣∣ ≤ max

{
G, 2|A|Ψ′(A2) + d2

}
, A ∈ R, (2.8)

where A2 and d2 are given by (2.7), and

A1 = −

(
4π − 3

√
3
)2

36
, G = max

{∣∣g ′(A)
∣∣; A1 ≤ A ≤ A2

}
.

(2.9)

3. The Unconditionally Positivity-Preserving Scheme

Since the value of an option is nonnegative, it is important that numerical scheme is positivity
preserving.

We see that the problem (2.2) is described in an infinite domain R
+ × [0, T], which

makes it difficult to construct scheme effectively. Let us consider the truncated numerical
domain Ω = [0, B] × [0, T] and discretize it in the following form. We introduce a grid of
mesh points (x, τ) = (xi, τn), where xi = ih, τn = nk, i = 0, 1, . . . ,N, n = 0, 1, . . . , L, and the
spatial step size given by h = B/N, and the time step size is k = T/L. Let us denote the
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approximation of u(xi, τn) by un
i and define the following finite difference approximations of

derivatives:

∂u

∂τ
(xi, τn) ≈

un+1
i − un

i

k
,

∂2u

∂x2 (xi, τn) ≈
un
i+1 − 2un+1

i + un
i−1

h2
= δn

i .

(3.1)

Clearly, the approximation used to calculate the second partial derivative of u with
respect to x is nonstandard. From (2.2), we can obtain the positivity-preserving finite-
difference numerical scheme as follows:

un+1
i − un

i

k
− 1
2
σ2
0

(
1 + Ψ

(
a2x2

i δ
n
i

))
x2
i

un
i+1 − 2un+1

i + un
i−1

h2
= 0. (3.2)

Scheme (3.2) is equivalent to

un+1
i =

ραn
i

(
un
i+1 + un

i−1
)
+ un

i

1 + 2ραn
i

, (3.3)

where

ρ =
k

h2
, αn

i =
1
2
σ2
0

(
1 + Ψ

(
a2x2

i δ
n
i

))
x2
i . (3.4)

Remark 3.1. From property (i) of Lemma 2.1, Ψ takes values in the interval (−1,+∞), so the
coefficients are nonnegative, that is, αn

i ≥ 0 for any i, n.
Obviously, numerical scheme (3.3) is unconditionally positive for a nonnegative

payoff u0
i . However, we cannot obtain the numerical solution explicitly since the nonlinear

term αn
i involves the value u at the time level n+ 1, which makes it quite difficult to prove the

stability of the scheme presented previously. In fact, the numerical scheme (3.3) can only be
solved by a nonlinear iteration in each time step which is quite time-consuming.

In order to obtain an efficient scheme, we correct the approximation of the nonlinear
coefficients in (2.2) by using the standard second-order central difference. Thus the corrected
numerical scheme is as follows:

un+1
i =

ρβni
(
un
i+1 + un

i−1
)
+ un

i

1 + 2ρβni
, (3.5)

where

βni =
1
2
σ2
0

(
1 + Ψ

(
a2x2

iΔ
n
i

))
x2
i , Δn

i =
un
i+1 − 2un

i + un
i−1

h2
. (3.6)
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Since the calculation of (3.5) for i = 0 and i = N requires us to know the fictitious
values un

−1 and un
N+1, we obtain them using the linear extrapolation as follows:

un
−1 = 2un

0 − un
1 , uN+1 = 2un

N − un
N−1. (3.7)

Thus the values of boundary points turn out

un+1
0 = un

0 = · · · = u0
0 = f(0), un+1

N = un
N = · · · = u0

N = f(B). (3.8)

The left boundary condition is not needed and in fact must not be prescribed in the
case of a parabolic equation with degenerating diffusion term at x = 0. This is known in the
literature as the Fichera condition [31] (see [18] for application in Black-Scholes equations,
Chapter 8, (8.25)). The Fichera condition is just a comparison of the speed of degeneration
versus. speed of advection at the boundary x = 0. Fortunately, the left boundary condition in
(3.8) is a consequence of (3.5) with x0 = 0, i = 0, u0

0 = f(0). The only boundary condition
that can be prescribed is the right boundary condition at x = B. For the convenience in the
numerical calculation, let us denote the vectors un = [un

0 , u
n
1 , . . . , u

n
N]T, then numerical scheme

(3.5), (3.8) can be written in matrix form

un+1 = C(n)un,

u0 =
[
f(0), f(x1), . . . , f(B)

]T
,

(3.9)

where

C(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
a1 b1 c1 0 · · · 0
0 a2 b2 c2 · · · 0

. . . . . . . . .
0 · · · 0 aN−1 bN−1 cN−1
0 · · · 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.10)

ai = ci =
ρβni

1 + 2ρβni
, bi =

1
1 + 2ρβni

, i = 1, 2, . . . ,N − 1. (3.11)

In order to study the related properties of numerical scheme (such as monotonicity
and stability), we need to know the behaviour of Δn

i appearing in the nonlinear team βni .

Lemma 3.2. With the previous notation, Δn
i appearing in the nonlinear team βni satisfies the scheme

Δn+1
i =

ρβni+1
1 + 2ρβni+1

Δn
i+1 +

ρβni−1
1 + 2ρβni−1

Δn
i−1 +

1
1 + 2ρβni

Δn
i , 1 ≤ i ≤ N − 1,

Δn
0 = Δn

N = 0, n = 0, 1, 2, . . . , L.

(3.12)
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Proof. From (3.6) and (3.7)we can know for i = 0 and i = N that

Δn
0 = Δn

N = 0, n = 0, 1, 2, . . . , L. (3.13)

Putting (3.5) into the expression (3.6) of Δn
i , and after a simple calculation we can

obtain (3.12).
On the other hand, the most common option price sensitivities are the first and

second derivatives with respect to the price of the underlying asset, that is, “delta” and
“gamma”, respectively. These are important features in risk management and are challenging
to compute numerically. From the transformation (2.1) we can obtain the approximations of
Greeks of the option as follows:

Gamma =
∂2V

∂S2 (Si, tn) = exp(r(T − t))Δn
i (u),

Delta =
∂V

∂S
(Si, tn) = exp(r(T − t))

un
i+1 − un

i−1
2h

.

(3.14)

4. Properties of the Numerical Scheme

4.1. Boundedness of the Coefficients

For the sake of convenience, we introduce the following definition.

Definition 4.1 (see [32]). If x = [x1, x2, . . . , xN] is a vector in R
N , then its 1-norm is denoted by

‖x‖1 =
∑N

i=1 |xi|, and maximum-norm is denoted by ‖x‖∞ = max1≤i≤N |xi|.
The following theorem shows that the nonlinear team βni appearing in (3.5) is

bounded.

Theorem 4.2. Let Δn = [Δn
0 ,Δ

n
1 , . . . ,Δ

n
N]T , then the following properties hold true.

(i) ‖Δn‖1 is nonincreasing.
(ii) The nonlinear team βni appearing in (3.5) satisfies

0 ≤ βni ≤ L(h), i = 0, 1, . . . ,N, n = 0, 1, . . . , L, (4.1)

where

L(h) =
B2σ2

0

2

(
1 + d2 + a2B2

∥∥∥Δ0
∥∥∥
1
Ψ′(A2)

)
, (4.2)

with A2, d2, and Ψ′(A2) given by (2.7).
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Proof. Property (i) is proved using the induction principle over index n.
For n = 0, from Lemma 3.2 and βni ≥ 0 by Remark 4.7, it follows that∣∣∣Δ1

i

∣∣∣ ≤ ρβ0i+1
1 + 2ρβ0i+1

∣∣∣Δ0
i+1

∣∣∣ + ρβ0i−1
1 + 2ρβ0i−1

∣∣∣Δ0
i−1
∣∣∣ + 1

1 + 2ρβ0i

∣∣∣Δ0
i

∣∣∣, 1 ≤ i ≤ N − 1. (4.3)

Taking into account (3.13) and (4.3), we have∥∥∥Δ1
∥∥∥
1
≤

N−1∑
i=1

∣∣∣Δ0
i

∣∣∣ − ρβ01
1 + 2ρβ01

∣∣∣Δ0
1

∣∣∣ − ρβ0N−1
1 + 2ρβ0N−1

∣∣∣Δ0
N−1
∣∣∣ ≤ ∥∥∥Δ0

∥∥∥
1
. (4.4)

Thus property (i) is proved for n = 0.
Now, let us assume that property (i) holds true up n, that is,

‖Δn‖1 ≤
∥∥∥Δn−1

∥∥∥
1
≤
∥∥∥Δn−2

∥∥∥
1
≤ · · · ≤

∥∥∥Δ0
∥∥∥
1
. (4.5)

For 1 ≤ i ≤ N − 1, from Lemma 3.2, it follows that

∣∣∣Δn+1
i

∣∣∣ ≤ ρβni+1
1 + 2ρβni+1

∣∣Δn
i+1

∣∣ + ρβni−1
1 + 2ρβni−1

∣∣Δn
i−1
∣∣ +
(
1 − 2ρβni

1 + 2ρβni

)∣∣Δn
i

∣∣. (4.6)

Taking into account Δn+1
0 = Δn+1

N = 0, we have

∥∥∥Δn+1
∥∥∥
1
≤

N∑
i=2

ρβni
1 + 2ρβni

∣∣Δn
i

∣∣ + N−2∑
i=0

ρβni
1 + 2ρβni

∣∣Δn
i

∣∣ + N−1∑
i=1

(
1 − 2ρβni

1 + 2ρβni

)∣∣Δn
i

∣∣

=
N−1∑
i=1

∣∣Δn
i

∣∣ − ρβn1
1 + 2ρβn1

∣∣Δn
1

∣∣ − ρβnN−1
1 + 2ρβnN−1

∣∣Δn
N−1
∣∣ ≤ ‖Δn‖1.

(4.7)

Hence property (i) is proved completely.
On the other hand, from (3.6) and the monotonic increasing property of Ψ (see

Lemma 2.1), it follows that

βni =
1
2
σ2
0

(
1 + Ψ

(
a2x2

iΔ
n
i

))
x2
i

≤ 1
2
σ2
0

(
1 + Ψ

(
a2x2

i ‖Δn‖1
))

x2
i

≤ 1
2
σ2
0

(
1 + Ψ

(
a2x2

i

∥∥∥Δ0
∥∥∥
1

))
x2
i .

(4.8)

Since xi ∈ [0, B] and from the property (iii) and property (i) of Lemma 2.2, we have

0 ≤ βni ≤ L(h), i = 0, 1, . . . ,N, n = 0, 1, . . . , L. (4.9)

Thus the proof of theorem is complete.
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4.2. Positivity

Since the value of option is nonnegative, a nice property of the numerical scheme for the
pricing equation is positivity-preserving.

Clearly, all the coefficients of the numerical scheme (3.5) are nonnegative (see
Theorem 4.2). Hence, for a nonnegative payoff u0

i , the following result has been established.

Proposition 4.3. The numerical scheme (3.5), (3.8) is unconditionally positive.

Remark 4.4. Δn
i is also unconditionally positive, that is, ifΔ0

i ≥ 0 for 0 ≤ i ≤ N, then Δn
i ≥ 0 for

0 ≤ i ≤ N, 0 ≤ n ≤ L.

4.3. Monotonicity

For the sake of convenience in the presentation, we introduce the following definition of a
monotonicity preserving numerical scheme.

Definition 4.5 (see [31]). In numerical scheme F(un
i ) = 0, we say that it is monotonicity-

preserving. If each time that un
i ≤ un

i+1 or un
i ≥ un

i+1 for all i, then it occurs that un+1
i ≤ un+1

i+1
or un+1

i ≥ un+1
i+1 for all i.

The next result shows the monotonicity of the numerical scheme.

Theorem 4.6. The numerical scheme (3.5), (3.8) is unconditionally monotonicity-preserving with
0 ≤ i ≤ N, 0 ≤ n ≤ L.

Proof. Let us write

un+1
i+1 − un+1

i =
(
un+1
i+1 − un

i+1

)
+
(
un
i+1 − un

i

) − (un+1
i − un

i

)
. (4.10)

Assuming that un
i+1 ≥ un

i for 0 ≤ i ≤ N − 1, 0 ≤ n ≤ L − 1, then from (3.5), it follows that

un+1
i − un

i =
ρβni

(
un
i+1 + un

i−1 − 2un
i

)
1 + 2ρβni

≤ ρβni
(
un
i+1 − un

i

)
1 + 2ρβni

, 1 ≤ i ≤ N − 1,

(4.11)

un+1
i − un

i ≥ −ρβni
(
un
i − un

i−1
)

1 + 2ρβni
, 1 ≤ i ≤ N − 1, (4.12)

that substituting i by i + 1 one gets

un+1
i+1 − un

i+1 ≥
−ρβni+1

(
un
i+1 − un

i

)
1 + 2ρβni+1

, 0 ≤ i ≤ N − 2. (4.13)
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From (4.10), (4.11), and (4.13), it follows that

un+1
i+1 − un+1

i ≥ −ρβni+1
(
un
i+1 − un

i

)
1 + 2ρβni+1

+
(
un
i+1 − un

i

) − ρβni
(
un
i+1 − un

i

)
1 + 2ρβni

=

(
1 − ρβni

1 + 2ρβni
− ρβni+1
1 + 2ρβni+1

)(
un
i+1 − un

i

)
.

(4.14)

Taking into account (4.1) and (4.14) for i and i + 1, we have

un+1
i+1 − un+1

i ≥
(
1 − 2ρL(h)

1 + 2ρL(h)

)(
un
i+1 − un

i

) ≥ 0, 1 ≤ i ≤ N − 2. (4.15)

The monotonicity of the scheme in the internal mesh points has been proved.
In an analogous way, we can verify that

un+1
1 ≥ un+1

0 , un+1
N ≥ un+1

N−1. (4.16)

Similarly, we can prove that if un
i ≥ un

i+1, then un+1
i ≥ un+1

i+1 for 0 ≤ i ≤ N−1, 0 ≤ n ≤ L−1.
Thus the proof of theorem is complete.

Remark 4.7. If the payoff f(x) is nondecreasing with f(0) = 0 (e.g., f(x) = max{x − K, 0}),
then 0 = un

0 ≤ un
1 ≤ · · · ≤ un

i ≤ un
i+1 ≤ · · · ≤ un

N for a fixed n with 0 ≤ n ≤ L.

5. Stability and Consistency

5.1. Stability

Theorem 5.1. The difference scheme (3.5), (3.8) is unconditionally ‖ · ‖∞-stable.

Proof. From (3.5), let us write

un+1
i =

ρβni
1 + 2ρβni

(
un
i+1 + un

i−1
)
+

(
1 − 2ρβni

1 + 2ρβni

)
un
i . (5.1)

Since all the coefficients of (5.1) are nonnegative, then using triangle inequality, it follows that

∣∣∣un+1
i

∣∣∣ ≤ ρβni
1 + 2ρβni

(∣∣un
i+1

∣∣ + ∣∣un
i−1
∣∣) +

(
1 − 2ρβni

1 + 2ρβni

)∣∣un
i

∣∣ ≤ sup
0≤i≤N

∣∣un
i

∣∣, (5.2)

so that

sup
0≤i≤N

∣∣∣un+1
i

∣∣∣ ≤ sup
0≤i≤N

∣∣un
i

∣∣. (5.3)
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According to the definition of the maximum norm, it follows that

∥∥∥un+1
∥∥∥
∞
≤ ‖un‖∞. (5.4)

Thus the result is established.

5.2. Consistency

The proposed new difference scheme (3.5) is explicit, unconditionally positive, and
unconditionally stable; however, it is not unconditionally consistent. There are extra
truncation error terms since the approximations to second derivatives with respect to x are at
different time levels.

The following theorem gives the consistency condition of the difference scheme (3.5).

Theorem 5.2. With the previous notation, suppose that the exact solution u of (1.1)–(1.3) satisfies
u ∈ C4,2(Ω). Then the local truncation error is given by

Th,k
(
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i

)
= O
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h2
)
+O(k) +O

(
k

h2

)
. (5.5)

Proof. Let us write the scheme (3.5) in the form

Fh,k

(
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i

)
=

un+1
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i

k
− βni δ

n
i = 0. (5.6)

Using Taylor’s expansion about (xi, τn) and u ∈ C4,2(Ω), it follows that
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(5.7)
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where

xi − h < η < xi + h, τn < ξ < τn + k,
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From (5.5)–(5.8), it follows that the local truncation error takes the form
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Let us introduce the notation

An
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Using function g(A) introduced in Lemma 2.2, it follows that

(
1 + Ψ

(
a2x2

iΔ
n
i

))
δn
i −

(
1 + Ψ

(
a2x2

i

∂2u

∂x2 (xi, τn)

))
∂2u

∂x2 (xi, τn)

= a−2x−2
i

{
g
(
An

i + δ1A
n
i

) − g
(
An

i

)
+ δ1A

n
i +
(
1 + Ψ

(
An

i + δ1A
n
i

))
δ2A

n
i

}
= g ′(An

i + θδ1A
n
i

)
h2Mn

i (1) + h2Mn
i (1) −

k

h2
βni , 0 < θ < 1.

(5.13)

From Lemma 2.2, (5.11), and βni ≤ L(h), it is easy to know that

∣∣Th,k(un
i

)∣∣ ≤ O
(
h2
)
+O(k) +O

(
k

h2

)
. (5.14)

Thus the result has been proved.
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From Theorem 5.2, we can see that the meshes should satisfy k/h2 → 0 as k and h go
to zero in order to ensure the consistency. Therefore, the key to the convergence of the scheme
is the consistency rather than the stability. In actual calculation, we can choose the time step
depending on the spatial size so that inconsistent terms go to zero.

6. Numerical Experiments

In this section, we implement the positivity-preserving scheme (3.5), (3.8) on European
put option and European butterfly spread. We analyse the effectiveness of the method and
compare it with the numerical scheme (SFD1) given in [20] and a standard forward Euler
finite difference scheme (SFD2)

un+1
i − un

i

k
− βni

un
i+1 − 2un

i + un
i−1

h2
= 0, (6.1)

which is analysed in [21]. The function Ψ is calculated with (2.5) using the “fsolve” function
in Matlab. Both the experiments are performed for large values of σ0 to visualize the
sensitivity of the methods towards high volatility.

6.1. European Put Option

A European put option is a contract where the owner of the option has the right to sell an
underlying asset S(t) for a fixed amount, known as the strike price K, at the expiry date T .
The payoff function f(S) is given by

f(S) = max{K − S, 0}. (6.2)

We choose the parameters as

K = 2, T = 0.5, σ0 = 0.5, B = 10, r = 0.04. (6.3)

Equations (1.1)–(1.3) give analytical solution for only a = 0 (see [6]). Figure 1 (the left
one: a = 0, the right one: a = 0.02) gives the option value using scheme (3.5) and schemes
(SFD1 and SFD2) in [20, 21], which shows that our scheme stable, monotonous, and is able
to produce solution that is close to the exact solution, but numerical solution of scheme (6.1)
appears as spurious oscillation for k = 0.0005 and h = 0.1.

Moreover, Figure 2 presents the related hedging parameters of European put option
using the two schemes. We can see that our proposed scheme produces smoother solutions
than standard scheme for the delta and gamma. In addition, the gamma is positivity
preserving and is maximal as it closes the strike price K = 2.

Next we consider the influence of transaction costs (parameter a) on the value of
European put option (Figure 3). The left one shows the change of the option value with the
parameter a, and the right one presents an evolution profile of the difference Vnonlinear(S, t) −
Vlinear(S, t) between our proposed scheme with transaction costs and without transaction
costs. We can see that the difference is not symmetric, but decreases towards the expiry date,
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Figure 1: The values of European put option under different schemes with the computational parameters
h = 0.1 and k = 0.0005.
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Figure 2: Time evolution profiles of the Greeks of European put option with the computational parameters
h = 0.1, k = 0.0005, and a = 0.02.
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Figure 3: Influence of the transaction costs (parameter a) on the value of European put option with the
computational parameters h = 0.1 and k = 0.0005.

and is maximal close to the strike price K = 2, where the nonlinear value is significantly
higher than the linear value.

6.2. European Butterfly Spread

A butterfly spread is a combination of three-call options with three-strike prices, in which one
contract is purchased with two outside strike prices and two contracts are sold at the middle
strike price. The payoff function f(S) is given by

f(S) = max{S −K1, 0} − 2max{S −K2, 0} +max{S −K3, 0}, (6.4)



16 Journal of Applied Mathematics

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

Stock price

O
pt

io
n 

va
lu

e

SFD1
SFD2
Nonstandard

Figure 4: The value of European butterfly spread under different schemes with the computational
parameters h = 0.1, k = 0.000455, and a = 0.02.

0 2 4 6 8 10

Time

D
el

ta
 v

al
ue

−0.2

−0.1

0

0.1

0.2

0.2
0.15

0.1
0.05

0 Stock price

(a) Standard scheme for delta

0 2 4 6 8
10

Time
Stock price

D
el

ta
 v

al
ue

−0.2

−0.1

0

0.1

0.2

0.2
0.15

0.1
0.05

0

(b) New scheme for delta

3
2
1
0

−1
−2
−3
−4

0 2 4 6 8 10

0
0.05

0.15
0.2

0.1
Time

G
am

m
a 

va
lu

e

Stock price

(c) Standard scheme for gamma

1

0.5

0

−0.5

−1

0 2 4 6 8 10

0
0.05

0.15
0.2

0.1
Time

G
am

m
a 

va
lu

e

Stock price

(d) New scheme for gamma

Figure 5: Time evolution profiles of the Greeks of European butterfly spread with the computational
parameters h = 0.1, k = 0.000455, and a = 0.02.



Journal of Applied Mathematics 17

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

O
pt

io
n 

va
lu

e

0.04

0.042

0.044

0.046

Stock price

0.8 1 1.2

a = 0
a = 0.05
a = 0. 1

(a) Linear and nonlinear cases

3

2

1

0

0.4
0.3

0.2
0.1

0 0
2

4
6

8
10

Time
Stock price

N
on

-l
in

ea
r-

lin
ea

r

×10−4

(b) Nonlinear-linear (a = 0.02)

Figure 6: Influence of the transaction costs (parameter a) on the value of European butterfly spread with
the computational parameters h = 0.1 and k = 0.000455.

where K1, K2, and K3 are the strike prices that satisfy K1 < K2 < K3 and K2 = (K1 +K3)/2.
We choose the following parameters:

r = 0.04, K1 = 0.8, K2 = 1, K3 = 1.2, T = 0.5,

σ0 = 0.5, B = 10,
(6.5)

the time step k = 0.000455, and the spatial step h = 0.1.
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Figure 4 shows the different solutions of two schemes at t = 0 for a = 0.02. We
can see that our proposed scheme is smooth and stable at the same step sizes. Moreover,
Figure 5 shows the Greeks of the numerical solution calculated with scheme (3.14), which is
different from the vanilla option. The standard scheme (the left one) is unstable and produces
unwanted oscillations which are not present while using our proposed scheme (the right
one).

The last two figures show the value of European butterfly spread with different
transaction costs (parameter a). It is evident from Figure 6 that butterfly spread becomes
more expensive in the presence of transaction cost and the difference is maximal as it closes
the strike price K2 = 1, which is similar with the vanilla option.

7. Discussions and Conclusions

In this paper, we have extended the numerical method in [30] to nonlinear situation and
presented the numerical scheme for a nonlinear Black-Scholes equation in the presence of
transaction costs. The numerical method is based on a nonstandard approximation of the
second partial derivative ∂2u(xi, τn)/∂x2 by (un

i+1 − 2un+1
i + un

i−1)/h
2, and the nonlinear team

is treated explicitly, which guarantees to solve the original problem without iteration. The
scheme is unconditionally positive and stable, but it is conditionally consistent. In fact, as
un+1
i ≈ un

i + k(∂u/∂τ)(xi, τn), the scheme effectively solves the nonlinear parabolic equation

(
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k

h2
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)
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− 1
2
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∂x2
= 0, (7.1)

where

β(x) = σ2
0

(
1 + Ψ

(
a2x2 ∂

2u

∂x2

))
x2. (7.2)

It means that the new scheme converges to a solution of (2.2) if k/h2 → 0. Otherwise, (if k/h2

is fixed) it converges to a solution of (2.2) in a different time scale. In fact, it can be seen from
Theorem 5.2, where the truncation error really depends on the ratio k/h2, which is also the
reason that we consider the smaller ratio k/h2 in the experiment. The numerical results show
that our method produces better numerical solutions than the schemes in [20, 21] with the
same step sizes. In the future work, we will extend the method to the problem of American
option pricing.
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