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We introduce a new regularization iterative algorithm for equilibrium and fixed point problems of
nonexpansive mapping. Then, we prove a strong convergence theorem for nonexpansive
mappings to solve a unique solution of the variational inequality and the unique sunny
nonexpansive retraction. Our results extend beyond the results of S. Takahashi and W. Takahashi
(2007), and many others.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. let C be a
nonempty closed convex subset ofH. Let φ be a bifunction of C ×C into R, where R is the set
of real numbers. The equilibrium problem for φ : C × C → R is to find x ∈ C such that

φ
(
x, y

) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP(φ). Given a mapping T : C → H, let φ(x, y) =
〈Tx, y − x〉 for all x, y ∈ C. Then, z ∈ EP(φ) if and only if 〈Tz, y − z〉 ≥ 0 for all y ∈ C, that
is, z is a solution of the variational inequality. Numerous problems in physics, optimization,
and economics reduce to find a solution of (1.1) . Some methods have been proposed to solve
the equilibrium problem; see, for instance, [1–6].

A mapping S of C intoH is said to be nonexpansive if

∥∥Sx − Sy
∥∥ ≤ ∥∥x − y

∥∥ ∀x, y ∈ C. (1.2)
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We denote by F(S) the set of fixed points of S. The fixed point equation Tx = x is ill-posed (it
may fail to have a solution, nor uniqueness of solution) in general. Regularization therefore is
needed. Contractions can be used to regularize nonexpansivemappings. In fact, the following
regularization has widely been implemented ([7–9]). Fixing a point u ∈ C and for each t ∈
(0, 1), one defines a contraction Tt : C → C by

Ttx = tu + (1 − t)Tx, x ∈ C. (1.3)

In this paper we provide an alternative regularization method. Our idea is to shrink x first
and then apply T to the convex combination of the shrunk x and the anchor u (this idea
appeared implicitly in [10] where iterative methods for finding zeros of maximal monotone
operators were investigated). In other words, we fix an anchor u ∈ C and t ∈ (0, 1) and define
a contraction Tt : C → C by

Ttx = T(tu + (1 − t)x), x ∈ C. (1.4)

Compared with (1.1), (1.4) looks slightly more compact in the sense that the mapping
T is more directly involved in the regularization and thus may be more convenient in
manipulations since the nonexpansivity of T is utilized first.

In 2000, Moudafi [11] proved the following strong convergence theorem.

Theorem 1.1 (Moudafi [11]). Let C be a nonempty closed convex subset of a Hilbert space H and
let S be a nonexpansive mapping of C into itself such that F(S) is nonempty. Let f be a contraction of
C into itself and let {xn} be a sequence defined as follows: x1 = x ∈ C and

xn+1 =
1

1 + εn
Sxn +

εn
1 + εn

f(xn) (1.5)

for all n ∈ N, where {εn} ⊂ (0, 1) satisfies

lim
n→∞

εn = 0,
∞∑

n=1

εn = ∞, lim
n→∞

∣∣∣∣
1

εn+1
− 1
εn

∣∣∣∣ = 0. (1.6)

Then, {xn} converges strongly to z ∈ F(S), where z = PF(S)f(z) and PF(S) is the metric projection of
H onto F(S).

Such a method for approximation of fixed points is called the viscosity approximation
method.

In 2007, S. Takahashi and W. Takahashi [5] introduced and considered the following
iterative algorithm by the viscosity approximation method in the Hilbert space:

x1 ∈ H,

φ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)Sun,

(1.7)

for all n ∈ N, where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy some appropriate conditions.
Furthermore, they proved that {xn} and {un} converge strongly to z ∈ F(S) ∩ EP(φ), where
z = PF(S)∩EP(φ)f(z).
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In this paper, motivated and inspired by the above results, we introduce an iterative
scheme by the general iterative method for finding a common element of the set of solutions
of (1.1) and the set of fixed points of a nonexpansive mapping in Hilbert space.

Let S : C → C be a nonexpansive mapping. Starting with an arbitrary x1, u ∈ H,
define sequences {xn} and {un} by

φ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = βnf(xn) +
(
1 − βn

)
T(αnu + (1 − αn)un), n ≥ 1.

(1.8)

We will prove in Section 3 that if the sequences {αn}, {βn}, and {γn} of parameters satisfy
appropriate conditions, then the sequence {xn} and {un} generated by (1.8) converges
strongly to the unique solution of the variational inequality

〈(
I − f

)
z, x − z

〉 ≥ 0, ∀x ∈ F(S) ∩ EP
(
φ
)
, (1.9)

which is the optimality condition for the minimization problem

min
x∈F(S)∩EP(φ)

1
2
〈x, x〉 − h(x), (1.10)

where h is a potential function for f and at the same time, the sequence {xn} and {un}
generated by (1.8) converges in norm to Q(u), where Q : C → Fix(T) is the sunny non-
expansive retraction.

2. Preliminaries

Throughout this paper, we considerH as the Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖, respectively, C is a nonempty closed convex subset of H. Consider a subset D of C and
a mapping Q : C → D. Then we say that

(i) Q is a retraction provided Qx = x for x ∈ D;

(ii) Q is a nonexpansive retraction providedQ is a retraction that is also nonexpansive;

(iii) Q is a sunny nonexpansive retraction providedQ is a nonexpansive retraction with
the additional property: Q(x + t(x −Qx)) = Qx whenever x + t(x −Qx) ∈ C, where
x ∈ C and t ≥ 0.

Let now T : C → C be a nonexpansive mapping. For a fixed anchor u ∈ C and each
t ∈ (0, 1) recall that zt ∈ C is the unique fixed point of the contraction C  x �→ T(tu+(1− t)x).
Namely, zt ∈ C is the unique solution in C to the fixed point equation

zt = T(tu + (1 − t)zt). (2.1)

In the Hilbert space (either uniformly smooth or reflexive with a weakly continuous duality
map), then zt is strongly convergent should it is bounded as t → 0+.
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We also know that for any sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ (2.2)

holds for every y ∈ H with x /=y, (we usually call it Opial’s condition); see [12, 13] for more
details.

For solving the equilibrium problem for a bifunction φ : C×C → R, let us assume that
φ satisfies the following conditions:

(A1) φ(x, x) = 0, for all x ∈ C;

(A2) φ is monotone, that is, φ(x, y) + φ(y, x) ≤ 0, for all x, y ∈ C;

(A3) For each x, y, z ∈ C, limt↓0φ(tz + (1 − t)x, y) ≤ φ(x, y);

(A4) For each x ∈ C, the function y �→ φ(x, y) is convex and lower semicontinuous.

The following lemma appeared implicitly in [14].

Lemma 2.1 (see [14]). Let C be a nonempty closed convex subset of H and let φ : C × C → R be a
bifunction satisfying (A1)–(A4). Let r > 0 and x ∈ H, then, there exists z ∈ C such that

φ
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (2.3)

Lemma 2.2 (see [6]). Assume that φ : C ×C → R satisfies (A1)–(A4). For r > 0 and x ∈ H, define
a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : φ

(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
, (2.4)

for all z ∈ H. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Trx − Try
∥
∥2 ≤ 〈

Trx − Try, x − y
〉
; (2.5)

(3) F(Tr) = EP(φ);

(4) EP(φ) is closed and convex.

Lemma 2.3 (see [15]). Let {an} ⊂ [0,∞), {bn} ⊂ [0,∞) and {cn} ⊂ [0, 1) be sequences of real
numbers such that

an+1 ≤ (1 − cn)an + bn, ∀n ∈ N,
∞∑

n=1

cn = ∞,
∞∑

n=1

bn < ∞
(
or lim sup

n→∞

bn
cn

≤ 0
)
,

(2.6)

then, limn→∞an = 0.
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Lemma 2.4 (see [9]). Suppose that X is a smooth Banach space. Then a retraction Q : C → D is
sunny nonexpansive if and only if

〈
x −Qx, J

(
y −Qx

)〉 ≤ 0, x ∈ C, y ∈ D. (2.7)

Lemma 2.5. Let X be a uniformly smooth Banach space, C a nonempty closed convex subset of X,
and T : C → C a nonexpansive mapping. Let zt be defined by (2.1). Then (zt) remains bounded as
t → 0 if and only if Fix(T)/= . Moreover, if Fix(T)/= , then (zt) converges in norm, as t → 0+, to a
fixed point of T; and if one sets

Q(u) := lim
t→ 0

zt, (2.8)

then Q defines the unique sunny nonexpansive retraction from C onto Fix(T).

Lemma 2.6. In the Hilbert space, the following inequalities always hold

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(ii) ‖tx + (1 − t)y‖2 ≤ t‖x‖2 + (1 − t)‖y‖2.

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of H, φ : C × C → ∞ be a bifunction
satisfying (A1)–(A4) and T : C → C be a nonexpansive mapping of C into H such that
F(T) ∩ EP(φ)/= ∅. Let f be a contraction of H into itself with α ∈ (0, 1), initially give an arbitrary
element x1 ∈ H and let {xn} and {un} be sequences generated by (1.8), where {αn} ⊂ [0, 1] and
{rn} ⊂ (0,∞) satisfy the following conditions:

(I) limn→∞αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 − αn| < ∞;

(II) lim infn rn > 0 and
∑∞

n=1 |rn+1 − rn| < ∞;

(III) limn→∞βn = 0,
∑∞

n=1 βn = ∞ and
∑∞

n=1 |βn+1 − βn| < ∞;

(IV) limn→∞(αn/βn) = 0.

Then, the sequences {xn} and {un} converge strongly to z ∈ F(T)∩EP(φ), where z = PF(T)∩EP(φ)f(z)
and converge in norm to Q(u), where Q : C → Fix(T) is the sunny nonexpansive retraction.

Proof. Let Q = PF(S)∩EP(φ). Then Qf is a contraction of H into itself. In fact, there exists a ∈
[0, 1) such that ‖f(x) − f(y)‖ ≤ a‖x − y‖ for all x, y ∈ H. So, we have that

∥∥Qf(x) −Qf
(
y
)∥∥ ≤ ∥∥f(x) − f

(
y
)∥∥ ≤ a

∥∥x − y
∥∥ (3.1)

for all x, y ∈ H. So, Qf is a contraction of H into itself. Since H is complete, there exists a
unique element z ∈ H such that z = Qf(z), such a z ∈ H is an element of C. We divide the
proof into serval steps.

Step 1. {xn} and {un} are all bounded. Let p ∈ F(T) ∩ EP(φ), Then from un = Trnxn, we have

∥∥un − p
∥∥ =

∥∥Trnxn − Trnp
∥∥ ≤ ∥∥xn − p

∥∥ (3.2)
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for all n ∈ N. Put yn = αnu + (1 − αn)un, so {xn+1} can be rewritten as

xn+1 = βnf(xn) +
(
1 − βn

)
Tyn,

∥
∥yn − p

∥
∥ =

∥
∥αnu + (1 − αn)un − p

∥
∥

=
∥
∥αn

(
u − p

)
+ (1 − αn)

(
un − p

)∥∥

≤ αn

∥
∥u − p

∥
∥ + (1 − αn)

∥
∥un − p

∥
∥.

(3.3)

Therefore, from (3.2) we get

∥
∥yn − p

∥
∥ ≤ αn

∥
∥u − p

∥
∥ + (1 − αn)

∥
∥xn − p

∥
∥ ≤ max

{∥∥u − p
∥
∥,

∥
∥xn − p

∥
∥}. (3.4)

If ‖xn − p‖ ≤ ‖u − p‖, then {xn} is bounded. So, we assume that ‖xn − p‖ ≥ ‖u − p‖.
Therefore ‖yn − p‖ ≤ ‖xn − p‖,

∥∥xn+1 − p
∥∥ =

∥∥βnf(xn) +
(
1 − βn

)
Tyn − p

∥∥

=
∥∥βn

(
f(xn) − p

)
+
(
1 − βn

)(
Tyn − p

)∥∥

≤ βn
∥∥f(xn) − p

∥∥ +
(
1 − βn

)∥∥yn − p
∥∥

≤ βnα
∥∥xn − p

∥∥ +
(
1 − βn

)∥∥xn − p
∥∥ + βn

∥∥f
(
p
) − p

∥∥

=
(
1 − (1 − α)βn

)∥∥xn − p
∥∥ + βn(1 − α)

∥∥f
(
p
) − p

∥∥

1 − α

≤ max

{
∥∥xn − p

∥∥,

∥∥∥∥∥

∥∥f
(
p
) − p

∥∥

1 − α

∥∥∥∥∥

}

.

(3.5)

So, by induction, we have

∥∥xn − p
∥∥ ≤ max

{
∥∥x1 − p

∥∥ ,

∥∥∥∥∥

∥∥f
(
p
) − p

∥∥

1 − α

∥∥∥∥∥

}

, (3.6)

hence {xn} is bounded. we also obtain that {un}, {Tun}, {Txn}, {f(xn)} and {yn} are bounded.

Step 2. ‖xn+1 − xn‖ → 0 as n → ∞,

‖xn+1 − xn‖ =
∥∥βnf(xn) +

(
1 − βn

)
Tyn − βn−1f(xn−1) −

(
1 − βn−1

)
Tyn−1

∥∥

=
∥∥βn

(
f(xn) − f(xn−1)

)
+
(
βn − βn−1

)
f(xn−1) + Tyn − Tyn−1

−βn
(
Tyn − Tyn−1

) − (
βn − βn−1

)
Tyn−1

∥∥

≤ βnα‖xn − xn−1‖ +
∣∣βn − βn−1

∣∣∥∥f(xn−1) − Tyn−1
∥∥

+
(
1 − βn

)∥∥yn − yn−1
∥∥,

(3.7)

∥∥yn − yn−1
∥∥ = ‖αnu + (1 − αn)un − αn−1u − (1 − αn−1)un−1‖
= ‖(αn − αn−1)u + un − un−1 − αn(un − un−1) − (αn − αn−1)un−1‖
≤ |αn − αn−1|‖u − un−1‖ + (1 − αn)‖un − un−1‖.

(3.8)
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On the other hand, from un = Trnxn and un+1 = Trn+1xn+1, we have

φ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C, (3.9)

φ
(
un+1, y

)
+

1
rn+1

〈
y − un+1, un+1 − xn+1

〉 ≥ 0, ∀y ∈ C. (3.10)

Putting y = un+1 in (3.9) and y = un in (3.10), we have

φ(un, un+1) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0,

φ(un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

(3.11)

So, from (A2)we have

〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0, (3.12)

and hence

〈
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)

〉
≥ 0. (3.13)

Without loss of generality, let us assume that there exists a real number b such that rn > b > 0
for all n ∈ N. Then, we have

‖un+1 − un‖2 ≤
〈
un+1 − un, xn+1 − xn +

(
1 − rn

rn+1

)
(un+1 − xn+1)

〉

≤ ‖un+1 + un‖
{
‖xn+1 − xn‖ +

∣∣∣∣1 −
rn
rn+1

∣∣∣
∣‖un+1 − xn+1‖

}
,

(3.14)

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖ + 1
rn+1

|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖ + 1
b
|rn+1 − rn|L, (3.15)

where L = sup{‖un − xn‖ : n ∈ N}. Then we obtain

‖un − un−1‖ ≤ ‖xn − xn−1‖ + 1
b
|rn − rn−1|L. (3.16)
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So, put (3.8) and (3.16) into (3.7) we have

‖xn+1 − xn‖ ≤ βnα‖xn − xn−1‖ +
∣
∣βn − βn−1

∣
∣
∥
∥f(xn−1) − Tyn−1

∥
∥

+
(
1 − βn

)
(
|αn − αn−1|‖u − un−1‖ + (1 − αn)

(
‖xn+1 − xn‖ + 1

b
|rn+1 − rn|L

))

≤ (
1 − (1 − α)βn

)‖xn − xn−1‖ + 1
b
|rn+1 − rn|L

+ |αn − αn−1|K1 +
∣
∣βn − βn−1

∣
∣K2,

(3.17)

where K1 := sup{‖u − un‖, ∀n ≥ 1} is a constant; K2 := sup{‖f(xn−1)‖ + ‖Tyn−1‖, ∀n ≥ 1} is a
constant.

Using Lemma 2.3 and conditions (I), (II), (III) we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.18)

From (3.15) and |rn+1 − rn| → 0, we have

lim
n→∞

‖un+1 − un‖ = 0. (3.19)

Since yn = αnu + (1 − αn)un, xn = βnf(xn−1) + (1 − βn)Tyn−1, we have

∥∥yn − un

∥∥ = αn‖u − un‖ −→ 0, as n −→ ∞, (3.20)

‖xn − Tun‖ ≤ ∥∥xn − Tyn−1
∥∥ +

∥∥Tyn−1 − Tun−1
∥∥ + ‖Tun−1 − Tun‖

≤ βn−1
∥∥f(xn−1) + Tyn−1

∥∥ +
∥∥yn−1 − un−1

∥∥ + ‖un − un−1‖ −→ 0, as n −→ ∞.

(3.21)

For p ∈ F(T) ∩ EP(φ), we have

∥∥un − p
∥∥2 =

∥∥Trnxn − Trnp
∥∥2 ≤ 〈

Trnxn − Trnp, xn − p
〉

=
〈
un − p, xn − p

〉

=
1
2

(∥∥un − p
∥∥2 +

∥∥xn − p
∥∥2 − ‖un − xn‖2

)
,

∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖un − xn‖2.

(3.22)
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Therefore, we have
∥
∥xn+1 − p

∥
∥2 =

∥
∥(1 − βn

)(
Tyn − p

)
+ βn

(
f(xn) − p

)∥∥2

≤ (
1 − βn

)2∥∥Tyn − p
∥
∥2 + 2βn

〈
f(xn) − p, xn+1 − p

〉

≤ (
1 − βn

)2(∥∥yn − un

∥∥ +
∥∥un − p

∥∥)2

+ 2βnα
∥
∥xn − p

∥
∥
∥
∥xn+1 − p

∥
∥ + 2βn

∥
∥f

(
p
) − p

∥
∥
∥
∥xn+1 − p

∥
∥

=
(
1 − βn

)2∥∥un − p
∥
∥2

+
∥
∥yn − un

∥
∥(1 − βn

)2(∥∥yn − un

∥
∥ + 2

∥
∥un − p

∥
∥)

+ 2βnα
∥
∥xn − p

∥
∥
∥
∥xn+1 − p

∥
∥ + 2βn

∥
∥f

(
p
) − p

∥
∥
∥
∥xn+1 − p

∥
∥

=
(
1 − βn

)2(∥∥xn − p
∥
∥2 − ‖un − xn‖2

)

+
∥∥yn − un

∥∥(1 − βn
)2(∥∥yn − un

∥∥ + 2
∥∥un − p

∥∥)

+ 2βnα
∥∥xn − p

∥∥∥∥xn+1 − p
∥∥ + 2βn

∥∥f
(
p
) − p

∥∥∥∥xn+1 − p
∥∥

=
(
1 − 2βn + β2n

)∥∥xn − p
∥∥2 − (

1 − βn
)2‖un − xn‖2

+
∥∥yn − un

∥∥(1 − βn
)2(∥∥yn − un

∥∥ + 2
∥∥un − p

∥∥)

+ 2βnα
∥∥xn − p

∥∥∥∥xn+1 − p
∥∥ + 2βn

∥∥f
(
p
) − p

∥∥∥∥xn+1 − p
∥∥,

(
1 − βn

)2‖un − xn‖2 ≤
∥∥xn − p

∥∥2 − ∥∥xn+1 − p
∥∥2

+ βn
(
βn
∥∥xn − p

∥∥2 − 2
∥∥xn − p

∥∥2
)
− (

1 − βn
)2‖un − xn‖2

+
∥∥yn − un

∥∥(1 − βn
)2(∥∥yn − un

∥∥ + 2
∥∥un − p

∥∥)

+ 2βnα
∥∥xn − p

∥∥∥∥xn+1 − p
∥∥ + 2βn

∥∥f
(
p
) − p

∥∥∥∥xn+1 − p
∥∥

≤ ‖xn − xn+1‖
{∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥}

+ βn
(
βn
∥∥xn − p

∥∥2 − 2
∥∥xn − p

∥∥2
)
− (

1 − βn
)2‖un − xn‖2

+
∥∥yn − un

∥∥(1 − βn
)2(∥∥yn − un

∥∥ + 2
∥∥un − p

∥∥)

+ 2βnα
∥∥xn − p

∥∥∥∥xn+1 − p
∥∥ + 2βn

∥∥f
(
p
) − p

∥∥∥∥xn+1 − p
∥∥.

(3.23)

By the above of what we have and the condition of limn→∞βn = 0, we get limn→∞‖xn−un‖ = 0.
Since ‖Tun − un‖ ≤ ‖Tun − xn‖ + ‖xn − un‖, it follows that ‖Tun − un‖ → 0.

Step 3. we show that

lim sup
n→∞

〈
f(z) − z, xn − z

〉 ≤ 0, (3.24)



10 Journal of Applied Mathematics

where z = PF(S)∩EP(φ)f(z). To show this inequality, we choose a subsequence {uni} of {un}
such that

lim sup
i→∞

〈
f(z) − z, xni − z

〉
= lim sup

n→∞

〈
f(z) − z, xn − z

〉
. (3.25)

Since {uni} is bounded, there exists a subsequence {unij
} of {uni} which converges weakly to

w. Without loss of generality, we can assume that uni ⇀ w. From ‖Tun − un‖ → 0, we obtain
Tuni ⇀ w. Let us show w ∈ EP(φ). By un = Trnxn, we have

φ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.26)

From (A2), we also have

1
rn

〈
y − un, un − xn

〉 ≥ φ
(
y, un

)
, (3.27)

and hence

〈
y − uni ,

uni − xni

rni

〉
≥ φ

(
y, uni

)
. (3.28)

Since uni − xni/rni → 0 and uni ⇀ w, from (A4) we have 0 ≥ φ(y,w) for all y ∈ C. For t with
0 < t < 1 and y ∈ C, let yt = ty + (1 − t)w. Since y ∈ C and w ∈ C, we have yt ∈ C and hence
φ(yt,w) ≤ 0. So, from (A1) and A4 we have

0 = φ
(
yt, yt

)

≤ tφ
(
yt, y

)
+ (1 − t)φ

(
yt,w

)

≤ tφ
(
yt, y

)
,

(3.29)

and hence 0 ≤ φ(yt, y). From (A3), we have 0 ≤ φ(w,y) for all y ∈ C, and hence w ∈ EP(φ).
We will show thatw ∈ F(T). Assume thatw /∈ F(T). Since uni ⇀ w andw/= Tw, from Opial’s
theorem we have

lim inf
i→∞

‖uni −w‖ < lim inf
i→∞

‖uni − Tw‖
≤ lim inf

i→∞
{‖uni − Tuni‖ + ‖Tuni − Tw‖}

≤ lim inf
i→∞

‖uni −w‖.
(3.30)

This is a contradiction. So, we get w ∈ F(T). Therefore, w ∈ F(T) ∩ EP(φ). Since z =
PF(T)∩EP(φ)f(z), we have

lim sup
n→∞

〈
f(z) − z, xn − z

〉
= lim

i→∞
〈
f(z) − z, xni − z

〉

=
〈
f(z) − z, w − z

〉 ≤ 0.
(3.31)
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From xn+1 − z = (1 − βn)(Tyn − z) + βn(f(xn) − z), we have

‖xn+1 − z‖2 ≤ (
1 − βn

)2∥∥yn − z
∥
∥2 + 2βn

〈
f(xn) − z, xn+1 − z

〉

≤ (
1 − βn

)2‖αn(u − z) + (1 − αn)(xn − z)‖2

+ 2βnα‖xn − z‖‖xn+1 − z‖ + 2βn
〈
f(z) − z, xn+1 − z

〉

≤ (
1 − βn

)2(
αn‖u − z‖2 + (1 − αn)‖xn − z‖2

)

+ βnα
(
‖xn − z‖2 + ‖xn+1 − z‖2

)
+ 2βn

〈
f(z) − z, xn+1 − z

〉

≤
[(
1 − βn

)2(1 − αn) + βnα
]
‖xn − z‖2

+ βnα‖xn+1 − z‖2 + (
1 − βn

)2
αn‖u − z‖2 + 2βn

〈
f(z) − z, xn+1 − z

〉
,

‖xn+1 − z‖2 ≤

((
1 − βn

)2 + βnα
)

1 − αβn
‖xn − z‖2

+

(
1 − βn

)2
αn

1 − αβn
‖u − z‖2 + 2βn

1 − αβn

〈
f(z) − z, xn+1 − z

〉

≤
[
1 − 2(1 − α)βn

1 − αβn

]
‖xn − z‖2 + β2n

1 − αβn
‖xn − z‖2

+

(
1 − βn

)2
αn

1 − αβn
‖u − z‖2 + 2βn

1 − αβn

〈
f(z) − z, xn+1 − z

〉

≤
[
1 − 2(1 − α)βn

1 − αβn

]
‖xn − z‖2 + 2(1 − α)βn

1 − αβn

×
{

βn
2(1 − α)

M +

(
1 − βn

)2
αn

2(1 − α)βn
‖u − z‖2 + 1

1 − α

〈
f(z) − z, xn+1 − z

〉
}

= (1 − δn)‖xn − z‖2 + δnζn,

(3.32)

where M = sup{‖xn − z‖2 : n ∈ N}, δn = 2(1 − α)βn/1 − αβn and ζn := βn/2(1 − α)M + (1 −
βn)

2αn/2(1−α)βn‖u − z‖2+1/1−α〈f(z)−z, xn+1−z〉. It is easy to see that δn → 0, Σ∞
n=1δn = ∞

and lim supn→∞ζn/δn ≤ 0 by (3.31) and the conditions. Hence, by Lemma 2.3, the sequence
{xn} converges strongly to z.

If zt is definition as (2.1), then, from Lemma 2.5, we have ‖zt − q‖ → 0 as t → 0, and
if we set Q(u) := limt→ 0zt, then Q defines the unique sunny nonexpansive retraction from C
onto Fix(T). So, if we replace twith αn, the corollary still holds. and it is that zn = T(αnu+(1−
αn)zn) is a fixed point sequence and ‖zn−q‖ → 0 as n → ∞, and if we setQ(u) := limn→∞zn,
thenQ defines the unique sunny nonexpansive retraction from C onto Fix(T). In the iterative
algorithm of Theorem 3.1, we can take zn to replace Tyn in particular. Then, we have xn+1 =
βnf(xn) + (1 − βn)zn, so ‖xn+1 − zn‖ = βn‖f(xn) − zn‖ → 0 as n → ∞. By the uniqueness
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of limit, we have z = q, that is, z = Q(u), where Q defines the unique sunny nonexpansive
retraction from C onto Fix(T).

Remark. We notice that un = Trnxn has not influence on xn, un → z = PF(T)∩EP(φ)f(z).

As direct consequences of Theorem 3.1, we obtain corollary.

Corollary 3.2. Let C be a nonempty closed convex subset of H, S : C → C be a nonexpansive
mapping of C intoH such that F(S)/= ∅. Let f be a contraction ofH into itself and let {xn} and {un}
be sequences generated initially by an arbitrary elements x1 ∈ H and then by

xn+1 = βnf(xn) +
(
1 − βn

)
S(αnu + (1 − αn)PCxn) (3.33)

for all n ∈ N, where {αn} ⊂ (0,∞) satisfies the following conditions:

(I) limn→∞αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 − αn| < ∞;

(II) limn→∞βn = 0,
∑∞

n=1 βn = ∞ and
∑∞

n=1 |βn+1 − βn| < ∞;

(III) limn→∞αn/βn = 0.

Then, the sequences {xn} converge strongly to z ∈ F(S), where z = PF(S)f(z).

Proof. Put φ(x, y) = 0, for all x, y ∈ C and rn = 1, for all n ∈ N in Theorem 3.1.
Then we have un = PCxn. So, from Theorem 3.1, the sequence xn generated by x1 ∈ H

and

xn+1 = βnf(xn) +
(
1 − βn

)
S(αnu + (1 − αn)PCxn) (3.34)

for all n ∈ N converges strongly to z ∈ F(S), where z = PF(S)f(z).

4. Application for Zeros of Maximal Monotone Operators

We adapt in this section the iterative algorithm (3.1) to find zeros of maximal monotone oper-
ators and find EP(φ). Let us recall that an operator A with domain D(A) and range R(A) in
a real Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖ is said to be monotone if the
graph of A,

G(T) :=
{(

x, y
) ∈ H ×H : x ∈ D(T), y ∈ Tx

}
(4.1)

is a monotone set. Namely,

〈
x − x′, y − y′〉 ≥ 0,

(
x, y

)
,
(
x′, y′) ∈ G(A). (4.2)

A monotone operator A is said to be maximal monotone of the graph G(T) is not
properly contained in the graph of any other monotone defined in H. See Brezis [16] for
more details on maximal monotone operators.
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In this section we always assume that A is maximal monotone and the set of zeros of
A, N(A) = {x ∈ D(A) : 0 ∈ Ax}, is nonempty so that the metric projection PN(A) from H
ontoN(A) is well-defined.

One of the major problems in the theory of maximal operators is to find a point in the
zero set N(A) because various problems arising from economics, convex programming, and
other applied areas can be formulated as finding a zero of maximal monotone operators.
The proximal point algorithm (PPA) of Rockafellar [17] is commonly recognized as the most
powerful algorithm in finding a zero of maximal monotone operators. This (PPA) generates,
starting with any initial guess x0 ∈ H, a sequence {xn} according to the inclusion:

xn + en ∈ xn+1 + cnA(xn+1), (4.3)

where {en} is a sequence of errors and {cn} is a sequence of positive regularization
parameters. Equivalently, we can write

xn+1 = JAcn(xn + en), (4.4)

where for c > 0, JAc denotes the resolvent of A,

JAc = (I + cA)−1, (4.5)

with I being the identity operator on the space H.
Rockafellar [17] proved the weak convergence of his algorithm (4.4) provided the

regularization sequence {cn} remains bounded away from zero and the error sequence {en}
satisfies the condition

∞∑

n=0
‖en‖ < ∞. (4.6)

The aim of this section is to combine algorithm (3.1) with algorithm (4.4). Our
algorithm generates a sequence {xn} and {un} be sequences generated initially by an arbitrary
elements x1 ∈ H and then by

φ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = βnf(xn) +
(
1 − βn

)
JAcn(αnu + (1 − αn)un + en),

(4.7)

where αn and cn are sequences of positive real numbers. Furthermore, we prove that {xn}
and {un} converge strongly to z ∈ N(A) ∩ EP(φ), where z = PN(A)∩EP(φ)f(z).

Before stating the convergence theorem of the algorithm (4.7), we list some properties
of maximal monotone operators.

Proposition 4.1. Let A be a maximal monotone operator in H and let JAc = (I + cA)−1 denote the
resolvent, where c > 0,

(a) JAc is nonexpansive for all c > 0;

(b) N(A) = F(Jc) for all c > 0;
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(c) For c > c′ > 0, ‖JAc′ − x‖ ≤ 2‖JAc − x‖ for x ∈ H;

(d) (The Resolvent Identity) For λ, μ > 0, there holds the identity:

JTλ x = JTμ

(μ
λ
x +

(
1 − μ

λ

)
JTλ x

)
, x ∈ H. (4.8)

Theorem 4.2. Let C be a nonempty closed convex subset of H, φ : C × C → ∞ be a bifunction
satisfying (A1)–(A4) and A be a maximal monotone operator such that N(A) ∩ EP(φ)/= ∅. Let f be
a contraction of H into itself and let {xn} and {un} be sequences generated initially by an arbitrary
elements x0 ∈ H and then by

φ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = βnf(xn) +
(
1 − βn

)
JAcn(αnu + (1 − αn)un + en),

(4.9)

for all n ∈ N, where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy the following conditions:

(I) limn→∞αn = 0, Σ∞
n=1αn = ∞ and Σ∞

n=1|αn+1 − αn| < ∞;

(II) lim infnrn > 0 and Σ∞
n=1|rn+1 − rn| < ∞;

(III) limn→∞(cn+1/cn) = 1;

(IV) limn→∞βn = 0, Σ∞
n=1βn = ∞, Σ∞

n=1|βn+1 − βn| < ∞, and limn→∞(αn/βn) = 0.

Then, the sequences {xn} and {un} converge strongly to z ∈ N(A) ∩ EP(φ), where z =
PN(A)∩EP(φ)f(z).

Proof. Below we write Jc = JAc for simplicity. Setting

wn = αnu + (1 − αn)un + en, yn = Jcnwn, (4.10)

we rewrite xn+1 of (4.7) as

xn+1 = βnf(xn) +
(
1 − βn

)
Jcnwn = βnf(xn) +

(
1 − βn

)
yn. (4.11)

Because the proof is similar to Theorem 3.1, here we just give the main steps as follows:

(1) {xn} is bounded;
(2) ‖xn+1 − xn‖ → 0, as n → 0;

(3) ‖un − Jcnun‖ → 0, as n → 0;

(4) ‖xn − un‖ → 0, as n → 0;

(5) lim supn→∞〈f(z) − z, xn − z〉 ≤ 0;

(6) xn, un → z, as n → z.
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5. Application for Optimization Problem

In this section, we study a kind of optimization problem by using the result of this paper. That
is, we will give an iterative algorithm of solution for the following optimization problemwith
nonempty set of solutions

minh(x),
x ∈ C,

(5.1)

where h(x) is a convex and lower semicontinuous functional defined on a closed convex
subset C of a Hilbert space H. We denoted by B the set of solutions of (5.1). Let φ be a
bifunction from C × C to R defined by φ(x, y) = h(y) − h(x). We consider the following
equilibrium problem, that is, to find x ∈ C such that

φ
(
x, y

) ≥ 0, ∀y ∈ C. (5.2)

It is obvious that EP(φ) = B, where EP(φ) denotes the set of solutions of equilibrium
problem (5.2). In addition, it is easy to see that φ(x, y) satisfies the conditions (A1)–(A4) in
the Section 2. Therefore, from Theorem 3.1, we know that the following iterative algorithm:

h
(
y
) − h(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = βnf(xn) +
(
1 − βn

)
T(αnu + (1 − αn)un),

(5.3)

for any initial guess x1, converges strongly to a solution z = PBf(z) of optimization problem
(5.1), where {αn} ⊂ [0, 1], {βn} ⊂ [0, 1], and {rn} ⊂ [0,∞) satisfy

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

|αn+1 − αn| < ∞,

lim
n→∞

βn = 0,
∞∑

n=1

βn = ∞,
∞∑

n=1

∣∣βn+1 − βn
∣∣ < ∞, lim

n→∞
αn

βn
= 0

lim inf rn
n→∞

> 0,
∞∑

n=1

|rn+1 − rn| < ∞.

, (5.4)

For a special case, we pick f(x) = η, for all η ∈ H, and rn = 1, βn = 1/2 and αn = 0 for
all n ≥ 1, then xn+1 = (1/2)Tun + (1/2)η, from (5.3), we get the special iterative algorithm as
follows:

h
(
y
) − h(un) +

〈
y − un, un −

(
1
2
η +

1
2
Tun

)〉
≥ 0, ∀y ∈ C, n ≥ 2,

h
(
y
) − h(u1) +

〈
y − u1, u1 −

(
1
2
η +

1
2
Tu1

)〉
≥ 0, ∀y ∈ C.

(5.5)

Then {un} converges strongly to a solution z = PBη of optimization problem (5.1).
In fact, z is the minimum norm point from η onto the B, furthermore, if η = 0, then z

is the minimum norm point on the B.
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