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A blow-up time for nonlinear heat equations with transcendental nonlinearity is investigated. An
upper bound of the first blow-up time is presented. It is pointed out that the upper bound of the
first blow-up time depends on the support of the initial datum.

1. Introduction

We are concerned with the initial value problem of nonstationary nonlinear heat equations:

∂

∂t
u(x, t) −Δu(x, t) = F(u(x, t)),

u(x, 0) = u0(x),
(1.1)

where x ∈ R
n, F is a given nonlinear function and u is unknown. Due to the mathematical

and physical importance, existence and uniqueness theories of solutions of nonlinear heat
equations have been extensively studied by many mathematicians and physicists, for
example, [1–10] and references therein. Unlike other studies, we focus on the nonlinear heat
equations with transcendental nonlinearities such as

∂

∂t
u −Δu = |u|pe|u|q , (1.2)
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for some positive real numbers p, q. The nonlinearity in the above problem grows so fast that
the solutions may blow up very fast. We are interested in how fast! Even though we present
only one problem with the specific nonlinear function F(u) ≡ |u|pe|u|q , this nonlinearity
exemplifies (analytic) nonlinearities with rapid growth.

The study of the blow-up problem has attracted a considerable attention in recent
years. The latest developments for the case of power type nonlinear terms F(u) ≡ |u|p−1u are
mainly devoted to the subjects of blow-up rate, set, profiles, and the possible continuation
after blow-up. The continuity with respect to the initial data also has been studied.

The studies on finite time blow-up rates were conducted in [11–21]. For example, it
has been proved that for 1 < p < (n + 2)/(n − 2), there exists a uniform constant C such that

‖u(t)‖L∞ ≤ Ct−1/(p−1) (1.3)

under certain constraints before the blow-up, see [19, 22]. It also has been noticed after the
blow-up that for such subcritical cases 1 < p < (n + 2)/(n − 2) the blow-up is complete, that is
to say, a proper continuation of the solution beyond the blow-up point identically equals +∞
in the whole space R

n. The first main contribution in this direction seems to be the work of
Baras and Cohen [23] who looked into the complete blow-up of semi-linear heat equations
with subcritical power type nonlinear terms, and thus established the validity of a conjecture
of H. Brezis (page 143 in [23]). Further results were obtained in [18, 24, 25]; see also the
references therein.

It seems to be very natural and important to find the explicit blow-up time in study
of the blow-up problem. To the author’s knowledge, explicit blow-up time has not been
uncovered yet—even for the case of power type nonlinearity. One only began to understand
that the blow-up time is continuous with respect to the initial data u0 (for a certain topological
sense) for details, see [8, 23, 24, 26–28].

This paper is mainly concerned with the blow-up time. For the power type
nonlinearity, when the blow-up phenomena are established, a partial representation for an
upper bound of the (first) blow-up time can be found in Section 9 in [29] and also in [30].
One preliminary observation of this research is that an upper bound of the blow-up time
for the case of the power type nonlinear term is related with the explicit solution of the
classical Bernoulli’s equations (see (3.5) below). For the case of transcendental nonlinearities,
we prove a series of ordinary differential inequalities and equations to disclose an effective
upper bound of the blow-up time for positive solutions with a large initial datum. We have
found that the blow-up time (of the positive solutions) may depend not only on the norm of
given initial datum but also on the area of the support of the initial datum.

The upper bound of the blow-up time we present here is universal in the sense that
it is an upper bound for many popular function spaces as explained at Remark 2.3. A better
upper bound and a lower bound in a special space, for example the Lebesgue space L∞, are
of obvious interest.

2. The Main Theorem

Let u0 be a function with compact support in R
n and let u be a (smooth) solution of

(1.2) inside of suppu0 with a homogeneous Dirichlet’s boundary condition and the initial
condition u(x, 0) = u0(x). It is clear that suppu(t) ⊂ suppu0 for all t ≥ 0 if we employ
the trivial extension of u to the whole space R

n. By virtue of maximum principle, if the
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initial source u0 is nonnegative, so is u. It is also well known that a positive solution u
of (1.2) with sufficiently large initial datum blows up within a finite time; that is, there
exists a positive constant T ∗ (the maximal existence time) so that limt↑T∗‖u(t)‖X = ∞ in an
appropriate function spaceX. We choose an open ball Bδ of radius δ that contains the support
of u0. We proceed by choosing an orthonormal basis {wj}∞j=1 for L2(Bδ), where wj ∈ H1

0(Bδ)
is an eigenfunction corresponding to each eigenvalue λj of −Δ:

−Δwj = λjwj in Bδ,

wj = 0 on ∂Bδ,
(2.1)

for j = 1, 2, . . .. In particular, we are interested in the eigenfunctions corresponding to the
principal eigenvalue λ1 > 0.

We recall a relationship between the volume of the domain and the principal
eigenvalue of the Laplacian, which says that

λ1 =
r20
δ2

, (2.2)

where r0 > 0 is the first positive zero of the Bessel function Jn/2−1 of order (n/2)− 1 which can
be expressed by elementary functions (for n ≥ 2, see page 45 in [31]). Also, we may choose
an eigenfunction w1 satisfying

w1 > 0 in Bδ,

∫
Bδ

w1(x) dx = 1. (2.3)

A smooth solution u inH1
0(Bδ) can be expressed by a linear combination of {wj}∞j=1: u(x, t) =∑∞

j=1 aj(t)wj(x) (0 ≤ t < T ∗, x ∈ Bδ), where aj(t) =
∫
Bδ

u(x, t)wj(x)dx. In particular, we
denote the eigen-coefficient of uwith respect to the eigenfunction w1 by η(t) ≡ a1(t).

We introduce two specific real numbers m1 and c0 as follows: m1 is the smallest
positive integer among m satisfying qm + p > 1, and c0 is the smallest nonnegative number
such that tpet

q
> λ1t holds for all t > c0.

Theorem 2.1. Let the spatial dimension n be greater than 1. With the notations above, assume that
the given initial source u0 is large enough that the initial eigen-coefficient η0 ≡ ∫Bδ

u0(x)w1(x)dx

is greater than both (m1!λ1)
1/(qm1+p−1) and c0. Then the (first) blow-up time T ∗

η of the first eigen-
coefficient η(t) is less than or equal to the positive number

δ2(
qm1 + p − 1

)
r20

ln

⎛
⎝ δ2η

qm1+p−1
0

δ2η
qm1+p−1
0 −m1!r20

⎞
⎠, (2.4)

where δ = (1/2)max {|x − y| : x, y ∈ supp u0}.
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Remark 2.2. We notice that as the diameter δ of the support of u0 gets bigger, (2.4) converges
to

m1!(
qm1 + p − 1

)
η
qm1+p−1
0

. (2.5)

Remark 2.3. By virtue of Hölder’s inequality on η(t) =
∫
Bδ

u(x, t)w1(x)dx, it is noted that the
blow-up time T ∗ of ‖u‖X cannot exceed the (first) blow-up time T ∗

η of η(t). Here the space
X can be one of any function spaces that obey Hölder’s inequality together with the dual
space X′. Classical Lebesgue spaces, BMO, Besov spaces, Triebel-Lizorkin spaces, and Orlicz
spaces are some of the examples.

3. The Arguments

The monotone convergence theorem implies that

d

dt
η(t) =

∫
Bδ

utw1dx =
∫
Bδ

(
Δu + |u|pe|u|q

)
w1dx

= −λ1η(t) +
∞∑
k=0

1
k!

∫
Bδ

|u|qk+pw1dx.

(3.1)

Hölder’s inequality and (2.3), on the other hand, yield that for each k

∣∣η(t)∣∣ ≤
∫
Bδ

|u|w1dx ≤
(∫

Bδ

|u|qk+pw1dx

)1/(qk+p)(∫
Bδ

w1dx

)(qk+p−1)/(qk+p)

=

(∫
Bδ

|u|qk+pw1dx

)1/(qk+p)

.

(3.2)

Therefore we have | η(t)|qk+p ≤ ∫Bδ
|u|qk+pw1dx. Apply this inequality on (3.1) to find that for

0 ≤ t < T ∗,

d

dt
η(t) ≥ −λ1η(t) +

∞∑
k=0

1
k!
∣∣η(t)∣∣qk+p = −λ1η(t) +

∣∣η(t)∣∣pe|η(t)|q . (3.3)

We are now going to find a lower bound function for η(t). To do it, take φ to be a
solution of the ordinary differential equation:

d

dt
φ(t) = −λ1φ(t) +

∣∣φ(t)∣∣pe|φ(t)|q (3.4)

with η(0) = φ(0). We also define a real-valued function f by f(t) ≡ −λ1t+ |t|pe|t|q . A closer look
at (3.3) and a chain of considerations on the choice of c0 deliver that η(t) ≥ η(0) = η0 > c0,
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which in turn implies that (d/dt)η(t)/f(η(t)) ≥ 1. Integrate both sides with respect to t,
and we have

∫ t
0((d/ds)η(s)/f(η(s)) )ds ≥ t. Consider an indefinite integral F of 1/f(x) to

get F(η(t)) − F(η(0)) ≥ t. Similarly, we can obtain F(φ(t)) − F(φ(0)) = t. Hence these facts
together with η(0) = φ(0) yield that F(η(t)) ≥ F(η(0)) + t = F(φ(0)) + t = F(φ(t)). Note that F
is monotone increasing on (c0,∞), and so we can deduce that η(t) ≥ φ(t) for 0 ≤ t < T ∗.

We will find the first blow-up time for φ(t). First, for a fixed k ∈ N, we consider two
real-valued functions g, h : [0,∞) → R defined by g(x) ≡ −λ1x + |x|pe|x|q and h(x) ≡ −λ1x +∑k

m=0(1/m!) |x|qm+p. Then it is clear that g(x) ≥ h(x) for all 0 ≤ x < ∞. Let ρk be a solution
for a Bernoulli-type equation:

d

dt
ρk(t) = h

(
ρk(t)

)
(3.5)

with the initial condition:

ρk(0) =
(
1 − 1

k + 2

)
φ(0). (3.6)

Lemma 3.1. For each k, φ(t) ≥ ρk(t) for all t ∈ [0, T ∗).

Proof. We choose indefinite integrals G and H of 1/g and 1/h, respectively, with the
conditions that G(0) = 0 and H(ρk(0)) = G(φ(0)). We have G(x) ≤ H(x) for all x, which
follows from the facts that g(x) ≥ h(x) for all x and ρk(0) < φ(0). On the other hand, the
argument used above leads to getG(φ(t))−G(φ(0)) = t, and similarly t = H(ρk(t))−H(ρk(0)).
Hence we arrive at G(φ(t)) = H(ρk(t)). From this together with the fact that the function G
is dominated by H, we can realize that ρk should be dominated by φ, that is, φ(t) ≥ ρk(t) for
all 0 ≤ t < T ∗.

We assert that the sequence {ρk(t)}∞k=1 is monotone increasing and converges to φ(t) for
t ∈ [0, T ∗). In fact, by the same argument used in Lemma 3.1, it can be noticed that {ρk(t)}∞k=1
is monotone increasing and bounded above by φ(t), and so it converges to some ξ(t). The
integral representation of (3.5) can be written as

ρk(t) = ρk(0) − λ1

∫ t

0
ρk(τ)dτ +

∫ t

0

k∑
m=0

1
m!
∣∣ρk(τ)∣∣qm+p

dτ. (3.7)

Lebesgue dominated convergence theorem together with Lemma 3.1 leads to the (pointwise)
limit of (3.7): ξ(t) = φ(0) − λ1

∫ t
0 ξ(τ)dτ +

∫ t
0 |ξ(t)|pe|ξ(t)|

q

dτ , which implies that ξ is the solution
of (3.4). The uniqueness of the solution for (3.4) yields that ξ = φ.

We can explicitly compute the solutions ρk by observing that ρk =
∑k

m=0 
m, where 
m
are solutions for classical Bernoulli’s equations: (d/dt)
m = −λ1
m + (1/m!)
qm+p

m with initial
values:


m(0) =
(

1
m + 1

− 1
m + 2

)
φ(0). (3.8)
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By solving each Bernoulli’s equation and summing up the solutions, we obtain

ρk(t) =
k∑

m=0

(
λ1m!

λ1m! − 
m(0)qm+p−1(1 − e−(qm+p−1)λ1t)
)1/(qm+p−1)

e−λ1t
m(0), (3.9)

provided that the denominator is not zero. In case (1−p)/q is a positive integer, to saym0, then
the m0-th term in the summation above should be replaced by 
m0(0)e

((1/m0!)−λ1)t. Therefore
we obtain

φ(t) =
∞∑

m=0

(
λ1m!

λ1m! − 
m(0)qm+p−1(1 − e−(qm+p−1)λ1t)
)1/(qm+p−1)

e−λ1t
m(0). (3.10)

The first blow-up time at the right hand side of (3.10) is

T1 ≡ − 1(
qm1 + p − 1

)
λ1

ln

(
1 − {(m1 + 1)(m1 + 2)}qm1+p−1m1!λ1

η(0)qm1+p−1

)
, (3.11)

(m1 is defined at page 3) which implies that T ∗ ≤ T1, and so the solution blows up before the
finite time T1.

We now present a better upper bound than T1 of the blow-up time T ∗. In fact, the
number “{(m1 + 1)(m1 + 2)}qm1+p−1” in (3.11) can be improved by taking another initial data
in (3.6) and (3.8). We choose a strictly increasing sequence of real numbers {ak}∞k=1 satisfying
0 = a1 < a2 < · · · < limk→∞ak = 1. Then by replacing the initial conditions in (3.6) and (3.8)
with ρk(0) = ak+2 φ(0) and 
m(0) = (am+2 − am+1)φ(0), respectively, we have

T ∗
η ≤ − 1(

qm1 + p − 1
)
λ1

ln

(
1 − m1!λ1

{am1+2 − am1+1}qm1+p−1η(0)qm1+p−1

)
(3.12)

instead of (3.11). The estimate (3.12) holds for any sequence {am}∞m=1 with 0 < am1+1 < am1+2 <
1. Therefore letting the number am1+2 − am1+1 go to 1, we finally get a better upper bound

1(
qm1 + p − 1

)
λ1

ln

(
η(0)qm1+p−1

η(0)qm1+p−1 −m1!λ1

)
(3.13)

of T ∗. This completes the proof.
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