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Some new fixed point theorems for nonlinear maps are established. By using these results, we can
obtain some new coincidence point theorems. Our results are quite different in the literature and
references therein.

1. Introduction and Preliminaries

Let us begin with some basic definitions and notation that will be needed in this paper.
Throughout this paper, we denote by N and R, the sets of positive integers and real numbers,
respectively. Let (X, d) be a metric space. For each x ∈ X, and A ⊆ X, let d(x,A) =
infy∈Ad(x, y). Denote by N(X) the class of all nonempty subsets of X, C(X) the family of
all nonempty closed subsets ofX, and CB(X) the family of all nonempty closed and bounded
subsets of X. A function H : CB(X) × CB(X) → [0,∞), defined by

H(A,B) = max

{
sup
x∈B

d(x,A), sup
x∈A

d(x, B)

}
, (1.1)

is said to be the Hausdorff metric on CB(X) induced by the metric d on X.
A point v inX is a fixed point of a map T if v = Tv (when T : X → X is a single-valued

map) or v ∈ Tv (when T : X → N(X) is a multivalued map). The set of fixed points of T is
denoted by F(T).

Let g : X → X be a self-map and T : X → N(X) be a multivalued map. A point x
in X is said to be a coincidence point (see, for instance, [1–4]) of g and T if gx ∈ Tx. The set of
coincidence points of g and T is denoted by COP(g, T).
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The celebrated Banach contraction principle (see, e.g., [5]) plays an important role in
various fields of applied mathematical analysis. Since then a number of generalizations in
various different directions of the Banach contraction principle have been investigated by
several authors in the past; see [6–20] and references therein. In 1969, Nadler [6] first proved
a famous generalization of the Banach contraction principle for multivalued maps.

Let f be a real-valued function defined on R. For c ∈ R, we recall that

lim sup
x→ c

f(x) = inf
ε>0

sup
0<|x−c|<ε

f(x),

lim sup
x→ c+

f(x) = inf
ε>0

sup
0<x−c<ε

f(x).
(1.2)

Definition 1.1 (see [3, 4, 7–10, 21, 22]). A function ϕ : [0,∞) → [0, 1) is said to be an MT-
function (or R-function) if

lim sup
s→ t+

ϕ(s) < 1 ∀t ∈ [0,∞). (1.3)

It is obvious that if ϕ : [0,∞) → [0, 1) is a nondecreasing function or a nonincreasing
function, then ϕ is an MT-function. So the set of MT-functions is a rich class. But it is worth
to mention that there exist functions which are not MT-functions.

Example A (see [4]). Let ϕ : [0,∞) → [0, 1) be defined by

ϕ(t) :=

⎧⎨
⎩

sin t
t

, if t ∈
(
0,

π

2

]
,

0, otherwise.
(1.4)

Since lim sups→ 0+ ϕ(s) = 1, ϕ is not anMT-function.
Very recently, Du [4] first proved the following characterizations of MT-functions.

Theorem 1.2 (see [4]). Let ϕ : [0,∞) → [0, 1) be a function. Then the following statements are
equivalent.

(a) ϕ is an MT-function.

(b) For each t ∈ [0,∞), there exist r(1)t ∈ [0, 1) and ε
(1)
t > 0 such that ϕ(s) ≤ r

(1)
t for all

s ∈ (t, t + ε
(1)
t ).

(c) For each t ∈ [0,∞), there exist r(2)t ∈ [0, 1) and ε
(2)
t > 0 such that ϕ(s) ≤ r

(2)
t for all

s ∈ [t, t + ε
(2)
t ].

(d) For each t ∈ [0,∞), there exist r(3)t ∈ [0, 1) and ε
(3)
t > 0 such that ϕ(s) ≤ r

(3)
t for all

s ∈ (t, t + ε
(3)
t ].

(e) For each t ∈ [0,∞), there exist r(4)t ∈ [0, 1) and ε
(4)
t > 0 such that ϕ(s) ≤ r

(4)
t for all

s ∈ [t, t + ε
(4)
t ).

(f) For any nonincreasing sequence {xn}n∈N
in [0,∞), one has 0 ≤ supn∈N

ϕ(xn) < 1.
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(g) ϕ is a function of contractive factor [10]; that is, for any strictly decreasing sequence
{xn}n∈N

in [0,∞), one has 0 ≤ supn∈N
ϕ(xn) < 1.

In 1989, Mizoguchi and Takahashi [11] proved the following fixed point theorem
which is a generalization of Nadler’s fixed point theorem and gave a partial answer of
Problem 9 in Reich [12]. It is worth to mention that the primitive proof of Mizoguchi-
Takahashi’s fixed point theorem is quite difficult. Recently, Suzuki [13] gave a very simple
proof of Mizoguchi-Takahashi’s fixed point theorem.

Theorem MT (Mizoguchi and Takahashi). Let (X, d) be a complete metric space and T : X →
CB(X) be a multivalued map and ϕ : [0,∞) → [0, 1) be aMT-function. Assume that

H
(
Tx, Ty

)
≤ ϕ

(
d
(
x, y

))
d
(
x, y

)
∀x, y ∈ X, (1.5)

then F(T)/= ∅.

In 2007, M. Berinde and V. Berinde [14] proved the following interesting fixed point
theorem which generalized Mizoguchi-Takahashi’s fixed point theorem.

TheoremBB (M. Berinde and V. Berinde). Let (X, d) be a complete metric space, T : X → CB(X)
be a multivalued map, ϕ : [0,∞) → [0, 1) be aMT-function and L ≥ 0. Assume that

H
(
Tx, Ty

)
≤ ϕ

(
d
(
x, y

))
d
(
x, y

)
+ Ld

(
y, Tx

)
∀x, y ∈ X, (1.6)

then F(T)/= ∅.

Let (X, d) be a metric space. Recall that a function p : X × X → [0,∞) is called a
w-distance [3, 5, 7, 15–23], if the following are satisfied:

(w1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;

(w2) for any x ∈ X, p(x, ·) : X → [0,∞) is l.s.c.;

(w3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤
ε.

A function p : X × X → [0,∞) is said to be a τ-function [3, 7, 16, 18–22], introduced
and studied by Lin and Du, if the following conditions hold:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;

(τ2) if x ∈ X and {yn} in X with limn→∞yn = y such that p(x, yn) ≤ M for some M =
M(x) > 0, then p(x, y) ≤ M;

(τ3) for any sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0, if there exists
a sequence {yn} in X such that limn→∞p(xn, yn) = 0, then limn→∞d(xn, yn) = 0;

(τ4) for x,y,z ∈ X, p(x, y) = 0 and p(x, z) = 0 imply y = z.

It is well known that the metric d is a w-distance and any w-distance is a τ-function,
but the converse is not true; see [7, 16].
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The following results are crucial in this paper.

Lemma 1.3 (see [7, 20]). Let (X, d) be a metric space and p : X×X → [0,∞) be a function. Assume
that p satisfies the condition (τ3). If a sequence {xn} inX with limn→∞ sup{p(xn, xm) : m > n} = 0,
then {xn} is a Cauchy sequence in X.

Let p : X × X → [0,∞) be any function. For each x ∈ X and A ⊆ X, let p(x,A) =
infy∈A p(x, y).

Lemma 1.4 (see [7, 19, 20]). Let A be a closed subset of a metric space (X, d) and p : X × X →
[0,∞) be any function. Suppose that p satisfies (τ3) and there exists u ∈ X such that p(u, u) = 0.
Then p(u,A) = 0 if and only if u ∈ A.

Recently, Du [7, 19] first introduced the concepts of τ0-functions and τ0-metrics as follows.

Definition 1.5 (see [7, 19]). Let (X, d) be a metric space. A function p : X × X → [0,∞) is
called a τ0-function if it is a τ-function on X with p(x, x) = 0 for all x ∈ X.

Remark 1.6. If p is a τ0-function, then, from (τ4), p(x, y) = 0 if and only if x = y.

Definition 1.7 (see [7, 19]). Let (X, d) be a metric space and p be a τ0-function (resp., w0-
distance). For any A, B ∈ CB(X), define a function Dp : CB(X) × CB(X) → [0,∞) by

Dp(A,B) = max
{
δp(A,B), δp(B,A)

}
, (1.7)

where δp(A,B) = supx∈A p(x, B), then Dp is said to be the τ0-metric (resp., w0-metric) on
CB(X) induced by p.

Clearly, any Hausdorff metric is a τ0-metric, but the reverse is not true.

Lemma 1.8 (see [7, 19]). Let (X, d) be a metric space and Dp be a τ0-metri on CB(X) induced by a
τ0-function p. Then every τ0-metric Dp is a metric on CB(X).

Recently, Du [7] established the following new fixed point theorems for τ0-metric and MT-
functions to extend Berinde-Berinde’s fixed point theorem.

Theorem D (Du [7, Theorem2.1]). Let (X, d) be a complete metric space, T : X → C(X) be a
multivalued map and ϕ : [0,∞) → [0, 1) aMT-function. Suppose that for each x ∈ X

p
(
y, Ty

)
≤ ϕ

(
p
(
x, y

))
p
(
x, y

)
∀y ∈ Tx, (1.8)

and T further satisfies one of the following conditions:

(D1) T is closed;

(D2) the map f : X → [0,∞) defined by f(x) = p(x, Tx) is l.s.c.;

(D3) the map g : X → [0,∞) defined by g(x) = d(x, Tx) is l.s.c.;

(D4) for each sequence {xn} in X with xn+1 ∈ Txn, n ∈ N and limn→∞xn = v, one has
limn→∞p(xn, Tv) = 0;

(D5) inf{p(x, z) + p(x, Tx) : x ∈ X} > 0 for every z /∈ F(T).

Then F(T)/= ∅.
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In [7], Du also gave the generalizations of Kannan’s fixed point theorem, Chatterjea’s
fixed point theorem and other new fixed point theorems for nonlinear multivalued
contractive maps; see [7] for more detail.

In this paper, we first establish some new types of fixed point theorem. Some
applications to the existence for coincidence point and others are also given. Our results are
quite different in the literature and references therein.

2. New Inequalities and Nonlinear Conditions for
Fixed Point Theorems

In this section, we first establish some new existence theorems for fixed point.

Theorem 2.1. Let (X, d) be a complete metric space, p be a τ0-function and T : X → C(X) be a
multivalued map. Suppose that

(A1) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is an MT-function and for
each x ∈ X, it holds

3p
(
y, Ty

)
≤ ϕ

(
p
(
x, y

))
p(x, Tx) + τ

(
p
(
x, y

))
p
(
x, Ty

)
∀y ∈ Tx. (2.1)

(A2) T further satisfies one of the following conditions:

(H1) T is closed, that is, GrT = {(x, y) ∈ X ×X : y ∈ Tx}, the graph of T is closed in X ×X;

(H2) the map f : X → [0,∞) defined by f(x) = p(x, Tx) is l.s.c.;

(H3) the map g : X → [0,∞) defined by g(x) = d(x, Tx) is l.s.c.;

(H4) for any sequence {xn} in X with xn+1 ∈ Txn, n ∈ N and limn→∞xn = v, one has
limn→∞p(xn, Tv) = 0;

(H5) inf{p(x, z) + p(x, Tx) : x ∈ X} > 0 for every z /∈ F(T).

Then F(T)/= ∅.

Proof. Let u1 ∈ X. If u1 ∈ Tu1, then we are done. If u1 /∈ Tu1, then p(u1, Tu1) > 0 by
Lemma 1.4. Choose u2 ∈ Tu1. If u2 ∈ Tu2, then u2 is a fixed point of T . Otherwise, if u2 /∈ Tu2,
then, by (A1), we have

3p(u2, Tu2) ≤ ϕ
(
p(u1, u2)

)
p(u1, Tu1) + τ

(
p(u1, u2)

)
p(u1, Tu2)

≤ ϕ
(
p(u1, u2)

)
p(u1, u2) + τ

(
p(u1, u2)

)
p(u1, Tu2).

(2.2)

Since ϕ(p(u1, u2)) + τ(p(u1, u2)) < 2, there exists u3 ∈ Tu2 such that

3p(u2, u3) <
(
2 − τ

(
p(u1, u2)

))
p(u1, u2) + τ

(
p(u1, u2)

)
p(u1, u3)

≤
(
2 − τ

(
p(u1, u2)

))
p(u1, u2) + τ

(
p(u1, u2)

)[
p(u1, u2) + p(u2, u3)

]
,

(2.3)
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which implies

p(u2, u3) <
2

3 − τ
(
p(u1, u2)

)p(u1, u2). (2.4)

Since u3 /=u2 and p is a τ0-function, p(u2, u3) > 0. Since 0 ≤ τ(p(u1, u2)) < 1, we have 2/(3 −
τ(p(u1, u2))) ∈ [2/3, 1) and hence

0 < p(u2, u3) < p(u1, u2). (2.5)

Continuing in this way, we can construct inductively a sequence {un}n∈N
in X satisfying

un+1 ∈ Tun, {p(un, un+1)} is strictly decreasing in (0,∞) and

p(un+1, un+2) <
2

3 − τ
(
p(un, un+1)

)p(un, un+1) (2.6)

for each n ∈ N. Since τ is an MT-function, applying Theorem 1.2, we get

0 ≤ sup
n∈N

τ
(
p(un, un+1)

)
< 1. (2.7)

Put λ := supn∈N
τ(p(un, un+1)) and ξ := 2/(3 − λ). Then λ ∈ [0, 1), ξ ∈ [2/3, 1) and

2
3 − τ

(
p(un, un+1)

) ≤ ξ ∀n ∈ N. (2.8)

By (2.6) and (2.8), we have

p(un+1, un+2) < ξp(un, un+1) < · · · < ξnp(u1, u2) for each n ∈ N. (2.9)

We claim that limn→∞ sup{p(un, um) : m > n} = 0. Let αn = (ξn−1/(1 − ξ))p(u1, u2), n ∈ N. For
m, n ∈ N withm > n, we have

p(un, um) ≤
m−1∑
j=n

p
(
uj , uj+1

)
< αn. (2.10)

Since ξ ∈ [2/3, 1), limn→∞αn = 0 and, from (2.10), we get

lim
n→∞

sup
{
p(un, um) : m > n

}
= 0. (2.11)

Applying Lemma 1.3, {un} is a Cauchy sequence in X. By the completeness of X, there exists
v ∈ X such that un → v as n → ∞. From (τ2) and (2.10), we have

p(un, v) ≤ αn ∀n ∈ N. (2.12)
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Now, we verify that v ∈ F(T). If (H1) holds, since T is closed, un ∈ Tun−1 and un → v as
n → ∞, we have v ∈ Tv.

If (H2) holds, by the lower semicontinuity of f , un → v as n → ∞ and (2.11), we
obtain

p(v, Tv) = f(v)

≤ lim inf
m→∞

f(un)

= lim inf
m→∞

p(un, Tun)

≤ lim
n→∞

p(un, un+1) = 0,

(2.13)

which implies p(v, Tv) = 0. By Lemma 1.4, we get v ∈ F(T).
Suppose that (H3) holds. Since {xn} is convergent in X, limn→∞d(un, un+1) = 0. Since

d(v, Tv) = g(v)

≤ lim inf
m→∞

d(un, Tun)

≤ lim
n→∞

d(un, un+1) = 0,

(2.14)

we have d(v, Tv) = 0 and hence v ∈ F(T).
If (H4) holds, by (2.11), there exists {an} ⊂ {un} with limn→∞ sup{p(an, am) : m >

n} = 0 and {bn} ⊂ Tv such that limn→∞p(an, bn) = 0. By (τ3), limn→∞d(an, bn) = 0. Since
d(bn, v) ≤ d(bn, an) + d(an, v), it follows that bn → v as n → ∞. By the closedness of Tv, we
get v ∈ Tv or v ∈ F(T).

Finally, assume that (H5) holds. On the contrary, suppose that v /∈ Tv. Then, by (2.10)
and (2.12), we obtain

0 < inf
x∈X

{
p(x, v) + p(x, Tx)

}
≤ inf

n∈N

{
p(un, v) + p(un, Tun)

}
≤ inf

n∈N

{
p(un, v) + p(un, un+1)

}
≤ lim

n→∞
2αn

= 0,

(2.15)

a contradiction. Therefore v ∈ F(T). The proof is completed.

If we put p ≡ d in Theorem 2.1, then we have the following result.
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Corollary 2.2. Let (X, d) be a complete metric space and T : X → C(X) be a multivalued map.
Suppose that

(B1) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is an MT-function and for
each x ∈ X, it holds

3d
(
y, Ty

)
≤ ϕ

(
d
(
x, y

))
d(x, Tx) + τ

(
d
(
x, y

))
d
(
x, Ty

)
∀y ∈ Tx. (2.16)

(B2) T further satisfies one of the following conditions:

(h1) T is closed;
(h2) the map g : X → [0,∞) defined by g(x) = d(x, Tx) is l.s.c.;
(h3) for any sequence {xn} in X with xn+1 ∈ Txn, n ∈ N and limn→∞xn = v, one has

limn→∞ d(xn, Tv) = 0;
(h4) inf{d(x, z) + d(x, Tx) : x ∈ X} > 0 for every z /∈ F(T).

Then F(T)/= ∅.

The following result is immediate from Theorem 2.1.

Theorem 2.3. Let (X, d) be a complete metric space, p be a τ0-function, and T : X → C(X) be a
multivalued map. Suppose that the condition (A2) holds and further assume that

(A3) there exists anMT-function α : [0,∞) → [0, 1) such that for each x ∈ X,

3p
(
y, Ty

)
≤ α

(
p
(
x, y

))(
p(x, Tx) + p

(
x, Ty

))
∀y ∈ Tx, (2.17)

then F(T)/= ∅.

Corollary 2.4. Let (X, d) be a complete metric space and T : X → C(X) be a multivalued map.
Suppose that the condition (B2) holds and further assume that

(B3) there exists anMT-function α : [0,∞) → [0, 1) such that for each x ∈ X,

3d
(
y, Ty

)
≤ α

(
d
(
x, y

))(
d(x, Tx) + d

(
x, Ty

))
∀y ∈ Tx, (2.18)

then F(T)/= ∅.

Theorem 2.5. Let (X, d) be a complete metric space, p be a τ0-function, and T : X → C(X) be a
multivalued map. Suppose that the condition (A2) holds and further assume that

(A4) there exist α, β ∈ [0, 1) such that for each x ∈ X, 3p(y, Ty) ≤ αp(x, Tx) + βp(x, Ty) for
all y ∈ Tx,

then F(T)/= ∅.

Proof. Let ϕ, τ : [0,∞) → [0, 1) be defined by ϕ(t) = α and τ(t) = β for all t ∈ [0,∞). Then
(A4) implies (A1) and the conclusion follows from Theorem 2.1.
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Corollary 2.6. Let (X, d) be a complete metric space and T : X → C(X) be a multivalued map.
Suppose that the condition (B2) holds and further assume that

(B4) there exist α, β ∈ [0, 1) such that for each x ∈ X, 3d(y, Ty) ≤ αd(x, Tx) + βd(x, Ty) for
all y ∈ Tx,

then F(T)/= ∅.

Theorem 2.7. Let (X, d) be a complete metric space, p be a τ0-function, and T : X → C(X) be a
multivalued map. Suppose that the condition (A2) holds and further assume that

(A5) there exists γ ∈ [0, 1) such that for each x ∈ X, 3p(y, Ty) ≤ γ(p(x, Tx) + p(x, Ty)) for
all y ∈ Tx,

then F(T)/= ∅.

Proof. Let α = β = γ . Then (A5) implies (A4) and the conclusion follows from Theorem 2.5.

Remark 2.8. (A4) and (A5) are equivalent. Indeed, in the proof of Theorem 2.7, we have
shown that (A5) implies (A4). If (A4) holds, then put γ = max{α, β}. So γ ∈ [0, 1) and
(A5) holds. Hence (A4) and (A5) are equivalent. Therefore Theorem 2.5 can also be proved
by using Theorem 2.7 and we know that Theorems 2.5 and 2.7 are indeed equivalent.

Corollary 2.9. Let (X, d) be a complete metric space and T : X → C(X) be a multivalued map.
Suppose that the condition (B2) holds and further assume that

(B5) there exists γ ∈ [0, 1) such that for each x ∈ X, 3d(y, Ty) ≤ γ(d(x, Tx) + d(x, Ty)) for
all y ∈ Tx,

then F(T)/= ∅.

Remark 2.10. Corollaries 2.6 and 2.9 are equivalent.

3. Applications of Theorem 2.1 to the Existence of Coincidence Points

By applying Theorem 2.1, we can prove easily the following new coincidence point theorem.

Theorem 3.1. Let (X, d) be a complete metric space, p be a τ0-function, g : X → X be a self-map,
T : X → C(X) be a multivalued map, and L ≥ 0. Suppose that the condition (A2) holds and further
assume that

(A6) Tx is g-invariant (i.e., g(Tx) ⊆ Tx) for each x ∈ X;

(A7) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is anMT-function and it holds

3p
(
y, Ty

)
≤ ϕ

(
p
(
x, y

))
p(x, Tx) + τ

(
p
(
x, y

))
p
(
x, Ty

)
+ Lp

(
gy, Tx

)
∀x, y ∈ X, (3.1)

then COP(g, T) ∩ F(T)/= ∅.

Proof. For each x ∈ X, if y ∈ Tx, from (A6), we have gy ∈ Tx. So p(gy, Tx) = 0. Hence (A7)
implies (A1). Applying Theorem 2.1, F(T)/= ∅. So there exists v ∈ X such that v ∈ Tv. By
(A6), gv ∈ Tv. Therefore, v ∈ COP(g, T) ∩ F(T) and the proof is complete.
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The following result is immediate from Theorem 3.1.

Corollary 3.2. Let (X, d) be a complete metric space, g : X → X be a self-map, T : X → C(X) be a
multivalued map, and L ≥ 0. Suppose that the condition (B2) holds and further assume

(B6) Tx is g-invariant (i.e., g(Tx) ⊆ Tx) for each x ∈ X;

(B7) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is anMT-function and it holds

3d
(
y, Ty

)
≤ ϕ

(
d
(
x, y

))
d(x, Tx) + τ

(
d
(
x, y

))
d
(
x, Ty

)
+ Ld

(
gy, Tx

)
∀x, y ∈ X, (3.2)

then COP(g, T) ∩ F(T)/= ∅.

As an application of Theorem 3.1, one has the following fixed point theorem.

Theorem 3.3. Let (X, d) be a complete metric space, p be a τ0-function, T : X → C(X) be a
multivalued map, and L ≥ 0. Suppose that the condition (A2) holds and further assume that

(A8) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is anMT-function and it holds

3p
(
y, Ty

)
≤ ϕ

(
p
(
x, y

))
p(x, Tx) + τ

(
p
(
x, y

))
p
(
x, Ty

)
+ Lp

(
y, Tx

)
∀x, y ∈ X, (3.3)

then F(T)/= ∅.

Corollary 3.4. Let (X, d) be a complete metric space, T : X → C(X) be a multivalued map and
L ≥ 0. Suppose that the condition (B2) holds and further assume that

(A8) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is anMT-function and it holds

3d
(
y, Ty

)
≤ ϕ

(
d
(
x, y

))
d(x, Tx) + τ

(
d
(
x, y

))
d
(
x, Ty

)
+ Ld

(
y, Tx

)
∀x, y ∈ X, (3.4)

then F(T)/= ∅.

Theorem 3.5. Let (X, d) be a complete metric space, p be a τ0-function,Dp be a τ0-metric on CB(X),
T : X → CB(X) be a multivalued map, g : X → X be a self-map, and L ≥ 0. Suppose that the
conditions (A2) and (A6) hold and further assume that

(A9) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is anMT-function and it holds

Dp

(
Tx, Ty

)
≤ ϕ

(
p
(
x, y

))
p(x, Tx) + τ

(
p
(
x, y

))
p
(
x, Ty

)
+ Lp

(
gy, Tx

)
∀x, y ∈ X, (3.5)

then COP(g, T) ∩ F(T)/= ∅.

Corollary 3.6. Let (X, d) be a complete metric space, T : X → CB(X) be a multivalued map,
g : X → X be a self-map, and L ≥ 0. Suppose that the conditions (B2) and (B6) hold and further
assume that



Journal of Applied Mathematics 11

(B9) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is anMT-function and it holds

H
(
Tx, Ty

)
≤ ϕ

(
d
(
x, y

))
d(x, Tx) + τ

(
d
(
x, y

))
d
(
x, Ty

)
+ Ld

(
gy, Tx

)
∀x, y ∈ X, (3.6)

then COP(g, T) ∩ F(T)/= ∅.

Theorem 3.7. Let (X, d) be a complete metric space, p be a τ0-function,Dp be a τ0-metric on CB(X),
T : X → CB(X) be a multivalued map, and L ≥ 0. Suppose that the condition (A2) holds and further
assume that

(A10) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is anMT-function and it holds

Dp

(
Tx, Ty

)
≤ ϕ

(
p
(
x, y

))
p(x, Tx) + τ

(
p
(
x, y

))
p
(
x, Ty

)
+ Lp

(
y, Tx

)
∀x, y ∈ X, (3.7)

then F(T)/= ∅.

Corollary 3.8. Let (X, d) be a complete metric space, T : X → CB(X) be a multivalued map and
L ≥ 0. Suppose that the condition (B2) holds and further assume that

(B10) there exist two functions ϕ, τ : [0,∞) → [0, 1) such that τ is anMT-function and it holds

H
(
Tx, Ty

)
≤ ϕ

(
d
(
x, y

))
d(x, Tx) + τ

(
d
(
x, y

))
d
(
x, Ty

)
+ Ld

(
y, Tx

)
∀x, y ∈ X, (3.8)

then F(T)/= ∅.
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