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This paper deals with solvability of the third-order nonlinear partial difference equation with
delays An(am,nAgn (xm,n"'bm/nxm—ru,n—og))+f(mr Ny Xm—11,5y, 0017 - - + /xm—rk,m,n—ak,,,) =Cmpn, M2 My, N2
no. With the help of the Banach fixed-point theorem, the existence results of uncountably many
bounded positive solutions for the partial difference equation are given; some Mann iterative
schemes with errors are suggested, and the error estimates between the iterative schemes and
the bounded positive solutions are discussed. Three nontrivial examples illustrating the results
presented in this paper are also provided.

1. Introduction and Preliminaries

In the past twenty years many authors studied the oscillation, nonoscillation, asymptotic
behavior, and solvability for various neutral delay difference and partial difference equations;
see, for example, [1-14] and the references cited therein.

By using the Banach fixed-point theorem, Cheng [2] investigated the existence of a
nonoscillatory solution for the second-order neutral delay difference equation with positive
and negative coefficients

A% (X + PXpom) + PuXnok — GuXn-1 =0, 1> np (1.1)
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under the condition p € R\ {-1}. Applying a nonlinear alternative of Leray-Schauder type for

condensing operators, Agarwal et al. [1] discussed the existence of a bounded nonoscillatory
solution for the discrete equation:

AapA(xy +pxn—z)) + Fn+1,x001-0) =0, n>0. (1.2)

Liu et al. [6] introduced the second-order nonlinear neutral delay difference equation
A(anA(xn + bxn*T)) + f(n/ xn—dln/ x‘rlfdzn/ sty xn,dkn) = Cn/ n Z 0 (13)

with respect to all b € R and gave the existence of uncountably many bounded nonoscillatory
solutions for (1.3) by utilizing the Banach fixed-point theorem. Kong et al. [3] investigated a
class of BVPs for the third-order functional difference equation

Nxy + anf (1, Xpm) =0, n>0 (1.4)

and established the existence of positive solutions for (1.4) under certain conditions. Using
the Schauder fixed-point theorem, Yan and Liu [12] studied the existence of a bounded
nonoscillatory solution for third order nonlinear delay difference equation

Axy + f(1,%n,X5-) =0, n>my (1.5)

and provided also a necessary and sufficient condition for the existence of a bounded
nonoscillatory solution of (1.5).
Karpuz and Ocalan [4] discussed the first-order linear partial difference equation:

Xm+1n T Xmn+l = Xmn + PmanXm-kn-1 = 0/ (m/ Tl) € ZO,O/ (16)

where {pmn}ommez,, 18 @ nonnegative sequence and k,I € N; and obtained sufficient
conditions under which every solution of (1.6) is oscillatory. Yang and Zhang [14] considered
oscillations of the partial difference equation with several nonlinear terms of the form

h

Xm+ln T Xmn+l — Xmn + Zpi(m/ 1’1) |xm—k,-,n—li |ai SEN Xyp—k; n-1l; = 0 (17)
i=1

and established some new oscillatory criteria by making use of frequency measures. Wong
and Agarwal [10] considered the partial difference equations

Xm+ln + ﬁm,nxm,rﬁ—l - 6m,nxm,n + P(m, n, xm—k,n—l) = Q(m/ n, xm—k,n—l)/ m > my, n 2 Hy,
(1.8)

T T
Xm+ln + ﬂm,nxm,rﬁl - 6m,nxm,n + Zpi(m/ n, xm—k,n—l) = ZQ(mr n, xm—k,n—l); m 2> my, N2> My
i=1

i=1
(1.9)
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and offered sufficient conditions for the oscillation of all solutions for (1.8) and (1.9),
respectively. Wong [9] established the existence of eventually positive and monotone
decreasing solutions for the partial difference inequalities

r r
A ApXpn + Zpi(m, n, ng(m),hi(n)) > (S)ZQi(m, n, xgi(m),hi(n))r m2>my, n2>ny, (1.10)
i=1 i=1

where g;(m) and h;(m) are some deviating arguments for 1 <i < 7.
However, to the best of our knowledge, there is no literature referred to the following
third order nonlinear partial difference equation with delays:

An <am,nA3n (xm,n + bm,nxm*To,Tl*O'(])> + f(m, N, Xty n=C1 7 v+ + s xmf'rk,m,nfok,n) ( )
1.11

=Cmpn, M 2Mmy, N2 Hy,

where mgy,ny € Ny, k, 79,00 € N, {am,n}(mrn)eN {bin} (mn)eN {Cm/"}(m,n)eNmO,no are real
sequences with a,,, 20, by, # £ 1 for (m,n) € Nyyny, f 1 Noggng ¥ RF — R and {7, 01, :

(m,1) € Ny o, 1€ {1,2,...,k}} C Z with

mong” mong’

lim (m—-1y,) = im (n—-o01,) =+00, 1€{1,2,...,k}. (1.12)

m— o

The aim of this paper is to establish three sufficient conditions of the existence of
uncountably many bounded positive solutions for (1.11) by using the Banach fixed-point
theorem, to suggest some Mann iterative methods with errors for these bounded positive
solutions and to compute the error estimates between the bounded positive solutions and
the sequences generated by the Mann iterative methods with errors. In order to explain the
results presented in this paper, three nontrivial examples are constructed.

Throughout this paper, the forward partial difference operators A,, and A, are defined
by AmXmn = Xmiin — Xmn and ApXpn = Xpnsl — Xmu, respectively the second and third-
order partial difference operators are defined by A2 x,, = Ap(ApXp,) and A,A2xy,, =
Ay (A2 x,0), respectively. Let R = (-oo, +o0), N and Z denote the sets of all positive integers
and integers, respectively,

No={0} UN, Ny={n:neNywithn>s}, seNy,

Nyt = {(m,n):mneNywithm>s,n>t}, s,teN,

Zsy={(m,n): mneZwithm>s,n>t}, steZ, (1.13)
a=min{m-1y,m-1,,:1 <1<k meN,},

p=min{n—-op,n—-o0,,:1<I<k,neN,}.
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lZ‘jﬁ represents the Banach space of all bounded sequences on Z, s with the norm

[xll = sup |xmn| forx = {xmn}

[o.0)
iz,
MNELg,p

mn)€Lqp
A(N, M) = {x = (X} ey € 1550 N < Xmu < M, (m,m) € za,ﬂ} for M > N > 0.
(1.14)

It is not difficult to see that A(NN, M) is a bounded closed and convex subset of the Banach
space l;"ﬁ. By a solution of (1.11), we mean a sequence {Xyu} (,nez,, With positive integers
my > my + 7o + |a] and ny > ng + op + | B| such that (1.11) is satisfied for all m > my and n > n;.

Lemma 1.1 (see [15]). Let {a(n)},cn,, {B(1)},en,, (Y (M)} ey, and {t(n)}, oy, be nonnegative
sequences satisfying the inequality

an+1) <A -tn)a(n) +tn)p(n) +ymn), neNy, (1.15)

where {t(n)} ey, C [0,1] with 3 20t(n) = +oo, lim, . ,f(n) = 0and 37 y(n) < +oo. Then
lim,, , ,a(n) = 0.

2. Existence of Uncountably Many Bounded Positive Solutions and
Mann Iterative Schemes with Errors

Utilizing the Banach fixed-point theorem, we now investigate the existence of uncountably
many bounded positive solutions for (1.11), suggest the Mann type iterative schemes with
errors and discuss the error estimates between the bounded positive solutions and the
sequences generated by the Mann iterative schemes.

Theorem 2.1. Assume that there exists positive constants M and N, nonnegative constants by and
by, and nonnegative sequences { Pm,n}(m,mel\%wJ and {ern}(mrn)eNmm satisfying

bl + b2 <1, N« [1 - (b1 + bz)]M, (21)
by < by, <by, eventually, (2.2)

|f(m/n/u1/u2/'-'/uk) _f(m,n,ﬁllﬁz,.,.,ﬁk)l S Pm,nmax”ul _ﬁl| : 1 S l S k}/
(2.3)
(m,n,u1, 1) € Ny oy x [N, M]?, 1<1<Kk,

|f(mrn/u1/u2/- /uk)l S Qm,nr (m,n,ul) e Nmo,fl[) X [N/M]/ 1 S l S k/ (24)

0

Z Z sup {LZ max{P;t, Qix,[citl} } < +o0. (2.5)
t=n

j=myg i=j N€Ny |ai,n| =
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Then

(@) for any L € (N + b1 M, (1 — bp) M), there exist 6 € (0,1), my > mg + 70 + |a| and ny >
1oy + 0g + |P| such that for any x(0) = {x,,(0) }(m,n)ezaﬂ € A(N, M), the Mann iterative
sequence with errors {x(s)}sen, = {Xmn(5) }(m,n,s)eZapro generated by the scheme:

([1-a(s) = B(s)] Xmu(s) +a(s)

j=m i=j Ln

XD Lf (it Xicay 00, (), - Xm0, (8)) = Ci] }
t=n
+ﬂ(S)Ym,Tl (S)/ (m/ 71) S Zm1,n1/ ES 1\]0/

[1-a(s)-BO)],,, (5) +als)
X {L - bm1/ﬂ1xm1—T0/n1—0‘o (S) + i i 1 S

k —a;
j=my i=j

Xmn(s+1) =4 (2.6)

LM p=py

X [f(l/ t/ xif'nl,-,t—au (S)/ sy xi*‘t‘kri,tfo'k,,g (S)) - Ci,t] }

+ﬁ(S)Ym1,n1 (S)/ (m/ Tl) € Zu,ﬂ \ Zmlrnl/ s € Ny,
converges to a bounded positive solution x € A(M, N) of (1.11) and has the following error estimate:
(s +1) = x]| < [1 = (1 =0)a(s)]llx(s) - x[| + 2MP(s), s €Ny, (2.7)

where {y(8)}sen, is an arbitrary sequence in A(M, N), {a(s) }se, and {B(8) }sen, are any sequences
in [0, 1] such that

>a(s) = +o, (2.8)
5=0

Zﬁ(s) < +oo or there exists a sequence {§(s)} .y, C [0, +o0) satisfying

par (2.9)

P(s) =é(s)a(s), seNo,  limg(s) =0;

(b) (1.11) possesses uncountably many bounded positive solutions in A(M, N).
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Proof. First of all we show that (a) holds. Set L € (N + by M, (1 — by) M). It follows from (2.1),
(2.2), and (2.5) that there exist 0 € (0,1), m; > mg + 1 + |a| and ny > ny + oy + |p| such that

6=b1+b2+ ZZsup{l |ZP”}, (210)

j=my i=j neN,,1

—by < by, <bi, (mn) €Ny a, (2.11)

iisup{| m|Z(Qlt+|clt|)}<mm{(1 b))M—-L,L-byM - N}. (2.12)

j=my i=j €Ny

Define a mapping Tt : A(N, M) — Ies by

oo} (oo} 1
L- bmnxm To,N—00 + Z Z_
jom iz Fim

TixXmn = & . 2.13
LEmmn XZ [f(ll t/ xi—TL,-,t—oLu ey xi—”rk,,-,t—ok,t) - Ci,t] ’ (mr 71) € Zml,m/ ( )
=n

TLxml,nlr (m/ Tl) € Za,ﬁ \ Zml,nl

for each x = {xm,n}(m,n)eza'p € A(N, M). By employing (2.1)-(2.4) and (2.10)-(2.13), we infer
that for x = {Xmn} (mmez, ;0 ¥ = {Ymn} mmez,, € AN, M) and (m, n) € Ly, n,

|TLxm,n - TLym,n| = bm,n (xm—T[],n—D'(] - ym—Tg,n—og)

o 0 0

1 .
- Z Z a_ Z [f (1/ t/ xi—TL,-,t—a'Lt/ ey xi—’l‘k,,-,t—ck,;)

j=mi=j “ UM t=n
_f(i/ t, Vi t-014r- -/ yi—Tk,i,t—O'k,t)]

S |bm,n| |xm—To,‘r‘l—G[) - ym—To,n—ao |

D))

jEmi=j

Z|f(lrt Xi—my i t=C1 7 - » /xi*Tkli,t*o‘k,f)

|a znl

_f(i/ t/ yi—TL,-,t—GL[r sy yi—Tk,,',t—Gk,t) |

© ® q
< (bl + bz)”x— y” + ZZW
j=mi=j 171

[ee)
X Zpi,t maX{ |xi—T1,i,t—O'1,t - yi—Tl,i,t—O'l,t| : 1 S l S k}

t=n
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§<b1+b2+ ZZSUP{ szt}> lx -yl =6llx-vl

j=my i=j neN,, ai nl

[f(l' t, Xi-yjt=014r+ -7 xi—Tk,i,t—Uk,t) - Ci,t]

Ms

[o'e] [e'e] 1
TrxXmn = L = bunXm-zyn-o, + Z Za_

j=m i=j bt

1l
N

oo}
Z If(l/ t/ xi*TLi,t*O'Ly/ ey xi*’rk,,',tfo'k,t) | + |Ci,t|]

|ln t=n

<L+b2M+Zi

j=m i=j

<L+bM+ iisup{lt;
Ln

j=my i=j neN,,1

|Z(Qi,t + |Ci,t|)}
t=n

<L+bM+min{(1-by))M-L L-byM-N} <M,

TLxmn =L- bmnxm —Tp,n—0) + ZZ Z f(l/t Xi— —T1i =017 /xi—Tk,i,t—Uk,t) - Ci,t]

j=mi=j Gin t=n

oo}
>L-bM - ZZ |aZ . Z |f(i/ t, Xi-rit-0147 -+ ’xi’Tk,i,t*Uk,l) | + |Ci,t|]

j=mi=j =n

>L-byM - ZZsup{l ln|Z(Qlt+|czt|)}

j=my i=j n€Nn
>L-byM —min{(1-by)M-L,L-byM - N} > N,
(2.14)

which lead to

TL(A(N, M)) C A(N, M), x,y € AN, M). (2.15)

Consequently, (2.15) means that T7, is a contraction mapping in A(N, M) and it has a unique
fixed-point X = {Xmn} (mmez,, € AN, M), which together with (2.13) gives that for (m,n) €

Zmb"l

0 0 1 0 .
Xmn = L- bm,n-xm—'ro,n—cro + Z Z @ Z [f(l/ £ Xi—my i t=C14r s xi—Tk,,-,t—crk,t) - Ci,t] ’ (216)
—; Gin

j=m i=j "t t=n

which yields that for (m, n) € Zy, »,

(xmn + b nXm—1y,n— O‘o) = Z Z[f(l/t Xi— —T1i =017 /xi—”rk,i,t—ok,t) - Ci,t]r

m in 1=
1 & 7
Afn (Xmn + b Xim—ryn-0y) = P [f(mr b Xty pyt=rgr -+ 7 xm—'rk,m,t—ok,t) - Cm,t]/ (217)
mn t—p

2
Ay, <am,nAm(xm,n + bm,nxm—rg,n—og)> = —f (M, 1, Xomry o n-01r- - - 1 Xty t-0r;) + Crmns

thatis, x = {x;,, }(m,n)ez,,,p is a bounded positive solution of (1.11) in A(N, M).
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Using (2.6), (2.13), and (2.15), we infer that for any s € Ny and (m, n) € Z, 5,

| %m0 (8 +1) = Xmu| =

[1 —a(s) - ﬂ(s)]xm,n (s) +a(s)

X {L - bm,nxm—'ro,n—oo (5)

+ZZ Z[f(l b Xiory i b-01,(8), -+ o) Xiory s -0y (5)) - Ci,t] }

j=mi=j in iy

+ﬂ(S)Ym,n (S) — Xm,n

< [1 - 0!(5) - ﬂ(S)] |xm,n(s) - xm,nl + a(s)lTLxm,n(S) - TLxm,nl
+ ﬂ(s) |Ym,n(s) - xm,n|
< [1-a(s) = B(s)]llx(s) — x|| + a(s)0]|x(s) — x| + 2Mp(s)

<[1-(@1-0)a(s)]llx(s) — x|l + 2Mp(s),
(2.18)

which yields that
lx(s+1) —x|| < [1 - (1-0)a(s)]|lx(s) — x| + 2Mp(s), s € No. (2.19)

That is, (2.7) holds. Consequently, Lemma 1.1 and (2.7)—(2.9) imply that lim,_, ,x(s) = x

Next we show that (b) holds. Let L1, L, € (N+b1 M, (1-b,) M) and let L1 # L,. As in the
proof of (a), we infer that for eachi € {1,2}, there exist 0;, m;,1, n;.1 and Ty, satisfying (2.10)—
(2.13), where 0, my, ny, L and Ty, are replaced by 6;, mj.1, ni1, Li, and Ty, respectively, and
the mapping Ty, has a fixed-point x' = {x, ,} (nnez,, € AN, M), which is a bounded positive
solution of (1.11), that is,

1 _ 1
Xinn = Ly - bm,ﬂxm—'rg,n—oo

1
+ ZZ A % Z [f <l t, xl T t-01” " xi—-rk,i,t—ok,,> - Ci,t]' (m' n) € Zm2!n2!

j=mi=j
(2.20)

2 _ 2
Xonn = L, - bm,nxm—'ro,n—ao

2
+ ZZ Z[f(l t,x2 b0y ...,xika'i,tfokJ - ci,t], (m, n) € Ly ns,-

7m1]a”‘tn
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In order to show that the set of bounded positive solutions of (1.11) is uncountable, it is
sufficient to prove that x! # x2. It follows from (2.3), (2.10), (2.11), (2.20) that for (m,n) €

Zmax[mz,m3 },max{ny,nsz}

1 2
|xm,n ~ Xmn

— 1 2
=|L1-Ly- bm,‘fl <xm—’T(),7‘l—O'0 - xm—Tg,n—()'o)

DR

jEmi=j

1
[f(l t, xl TLit=017 " ’xi—Tk,i,t—O'k,f>

alnt n

2
f<l’t xl ~T,ift—0147 " ’xi—”rk,,-,t—ok,t>]

2

m To,n—-00 xm—Tg,n—O'o

1
an<l t xl T1if=017 " " ’xi*Tk,irt*O'k,t>

: 2 2
_f <1’ t, Xiotit-onyr s xi—Tk,i,t—O'k,t> ”

>|Ly - Ly| - (by +b2)||x1 _x2”

> |Ll - L2| |bmn|

DH)

jEmi=j

|aln|

_ ZZ |am|ZPltmaX{| i1t _xiz_TI,i,t_UI,t :1<1I< k}
j=mi=j
> |Li - Ly| - <bl+b2+zz| |ZPzt> ”x -x ”
j=mi=j Qin

2|L1—L2|—<b1+b2+ Z 3 s {| |ZP’*}>”x I
] i

=max{my,mz} i=j ME€Nmax(nyn3)

>|Ly - Ly| - max{91,92}||x —x2”

2.21)
which implies that Li—L
1_ 2 s L= Lo
”x * ” ~ 1+ max{0y,6,) >0, (222)
that is, x! # x?. This completes the proof. O

Theorem 2.2. Assume that there exist positive constants M and N, negative constants by and b,
and nonnegative sequences {Pm,n}(m,n)el\lmw0 and {len}(m,n)eNmo,no satisfying (2.3)—(2.5) and

b < -1, N +by) > M(1+by); (2.23)

by < by, <by, eventually. (2.24)
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(a) forany L € (M(1 + b1), N(1 + by)), there exist 8 € (0,1), my > mgy + 19 + |a| and
ny > ng + oo + |P| such that for each x(0) = {Xmn(0)} immez,, € AN, M), the Mann iterative
sequence with errors {x(s)}sen, = {Xmn ()} (mms)ez, 5, Snerated by the scheme:

Xmn(s+1) =4

([1-a(s) - B(5)] xmu(s) + a(s)

m+Ty,n+0p bm+Tg,1’l+O'o bm+7'0,n+0'0 j:m+T0 l:] ai,i’H—O’o

x{ - L _ xm+-ro,n+oo(s) + 1 S e 1

[ee]
X Z [f(i' t, Xi-ry i, t-014 (S)/ oo s Xietyj t—0p s (S)) - Ci,t] }

t=n+0oy
+B(S)Ymn(s), (m,n) € Ly, n, s €Ny,
[1 - lX(S) - ﬂ(s)]xmlrnl (S) + [X(S)

X{ b L _ xm1+'rg,n1+0'0 (S) + 1 b < 1

mi+Ty,n1+00 bm1 +7p,M1+00 bm1 +Tp,Mn1+00 j:m1+TO l:] ai,n1+0'o

[ee]
X Z [f (i' t, Xi-11,t-014 (S)r <oy Xiety i b0y (S)) - Ci:f] }

t=ny1+0y

+:6(S)Ym1,n1 (S)/ (m/ n) € Za,ﬂ \ th"l/ s €Ny

(2.25)

converges to a bounded positive solution x € A(N, M) of (1.11) and has the error estimate (2.7),
where {y(5)}sen, 18 an arbitrary sequence in A(N, M), {a(s) }scn, and {B(s)} s, are any sequences
in [0, 1] satisfying (2.8) and (2.9);

(b) (1.11) possesses uncountably many bounded positive solutions in A(M, N).

Proof. First of all we show (a). Taking L € (M (1+b1), N(1+b2)), from (2.5), (2.23), and (2.24)
we infer that there exist 0 € (0,1), m; > mg + 1 + |a| and 1y > ng + 0y + |p| such that

:__<1+1§1§5§5{| m|zp”}>

b2 < bm,n < bl/ (mr 1’1) € le,nll

1 biL
ZZSUP{| ln|Z(Q1t+|Clt|)} <m1n{L M(1+b1), blN( b2> ;2 }

j=my i=j n€Nn

Define a mapping Tt : A(N, M) — lffp by

[ee] [ee]
L Xm+ry,n+0p 1 1

bm+‘[‘o,7‘l+0‘o bm+‘[‘o,‘rl+0'o bm+T0,‘rl+O'0 j=m+Tg i:j ai,n+o'0

TLxm,n =

)
X Z [f (l/ t/ xi—TL,',t—O'Ltr sy xi—Tk,i,t—O'k,t) - Ci,t] 7 (m/ n) c Z‘rm,nl/

t=n+0y

TLxrm,n]/ (m/ TL) € Za,ﬁ \ Zml/nl

(2.26)

(2.27)

(2.28)

(2.29)
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for each x = {xm/n}(m,n)eza,g € A(N, M). It follows from (2.3), (2.4), (2.23), (2.24), and (2.26)-
(229) that fOI' X = {xm,n}(m,n)eza,p/ y = {ym,n}(m,n)ezaﬁ € A(Nr M) and (m/ 1’1) € Z?m,"l :

[ee] [ee]
Xm+ry,n+oy — Ym+ry,n+op 1 1

|TLxm,n - TLym,nl =

bm+T(),7‘l+(70 bm+To,n+00 j=m+Ty i=j Ain+oyp

(e}
X Z [f(i' t, Xiry i t=C1pr++ 7 xi—Tk,i/t—O'k,t)

t=n+0y
_f(l’ t, Yi—rit-o14r -+ -1 Yi-tiit—0s )]
(o) (o)
|xm+-rg,n+ao = Ym+ry,n+op | 1 1
bm+7'o,n+og bm+To,n+00 j=m+Tg i=j |ai,Tl+O'0|

0
X Z |f(l/ t/ xi—Tl,i/t_Ul,t/ ey xi_Tk,i,t_o-k,[)

t=n+oyp

_f(i/ £ Yiry i t=014r+++7 yi*Tk,i,t*O'k,t) |

-yl 1 & & 1
B Y

- bl b1] =m+1y i=j |al n+00|
)
X Z Pi,t max{ |xi—77/,~,t—01,t - yi—n/i,t—ol,,l 11<1< k}
t=n+o0y

j=my i=j n€Ny;

1 [ee)
<L <1+ 53 sup {ﬁzp}> I vl = -l

L Xm+1y,n+00 1 S 1
TLxm,n = -
bm+Tg,n+00 bm+Tg,n+00 bm+Tg,n+00 jemtTy i=] Ain+oy
)
X Z [f(ll tr xi—Tl,,-,t—D'lltl ceey xi—Tk,,-,t—Gk,;) - Ci,t]
t=n+oyp
< L M 1 i = 1
- bl bl bl] =m+7y i=j |a1 n+00|
)
X Z [lf(ll tr xi—’l‘l/i,t—o'l/t/ ceey xi—’l'kl,-,t—o'k,t) | + |Ci,t|]
t=n+oyp
L M 1 & &
Sb__b__b_z Z(Qlt"‘lcztD
1 1 Licmatr, i=j |a’ ”+Go|t n+00

L M 1&&
Sb_l_b_l_b_zz up{l ln|Z(Q1t+|clt|)}

1 j=my i=j n€Ny,

<= - lm'm{L—Mu +b1),b1N<1+ l) blL} <M,
bl b2 bZ
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L Xm+1y,n+00 1 S 1
TLxm,n = -
bm+T0,n+O'0 bm+Tg,n+00 bm+Tg,n+00 jemty i=] Ain+oy
©
X Z [f(l/ t/ xi*TU,th'],,g/ ey xifrk,i,tfakr,) - Ci,t]
t=n+oy
S L N 1 i i 1
- b b bl] Sy in] |a1n+crg|
©
X Z [lf(l/ t/ xi—TLi,t—Ul,t/ ceey xi—Tk/i,t—Uk,t) | + |Ci,t|]
t=n+0y
L N 1 & & 1 —
i >, > (Qir + leigl)
2 2 Ljmmam i=j |al ”+‘70|t =n+0y

L N ad

sz t ZZsup{l m|Z(ta+|Czt|)}

] mi i= ]nean

L N

1 1 blL
P >
T + b mm{L M(1 + by), b1N< b2> bz } N,

(2.30)
which imply that (2.15) holds. Consequently, (2.15) ensures that T7 is a contraction mapping

in A(N, M) and it has a unique fixed-point x = {Xu,n} (nnyez,, € AN, M), which together
with (2.29) gives that

(o) (o)
x _ L xm+T(),Tl+O'0 1 1
mn — -
bm+T0,n+O'0 bm+T0,n+O'0 bm+Tg,n+O'0 jomeTy inj Ain+op
(2.31)
[oe)
x Z [f(i' t, Xi-ryjt=014r+ s xi—Tk,i,f—Uk,t) - Ci,t] , (mn)e Loy s »
t=n+oy

which yields that for (m,n) € Zy, »,

Am(xm,n + bm,nxm—ro,n—oo) ==

Ms

1
ai

Ms

[f (l/ t/ xl‘—’Tl,,',t—O'Ltl ey xi—Tk,i,t—O'k,t) - Ci,t] 7

i LMt

i
3

i
B

Ms

A12n(xm,n + bm,nxm—Tg,n—og) = [f (m, t/ xm—Tlrm,t—oul ey xm—Tkrm,t—ok,t) - Cm,t] s

Amn

-~
Il
N

2
An <am,n Am (xm,n + bm,nxm—To,n—og)> = —f(m, n, xm—Tl,m,n—ou/ ey xm_Tklm,t_O-k,[) + Cm,ns

(2.32)

which implies that x = {Xun} (nn)ez, ; is a bounded positive solution of (1.11) in A(N, M).
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It follows from (2.15), (2.25) and (2.29) that for any s € Ny and (m, n) € Zy, n,

|Xmn(s+1) = Xl =

[1-a(s) = B(s)] xmu(s) + a(s)

bm+7'0,n+oo bm+Tg,n+O'o bm+T0,7l+O‘0

% { L _ xm+’1‘o,n+0'() (S) + 1

. —a;
j=mtTgi=j - UMTO0 t=n+oy

x Z Z ! Z [f (l’ t, Xi-ry,t-01 4 (S)r oo s Xiem -0y (S)) - Ci,t] }

+ﬂ(S)Ym,n(S) — Xmmn

<[l-als) - ﬂ(s)] [, (8) = Xmn| + A(S)TL X0 (S) = TL X nl
+ ﬂ(S) |Ym,n(5) - xm,n|
< [1-a(s) = B(s)]llx(s) — x| + a(s)6]|x(s) — x| + 2Mp(s)

<[1-(1-0)a(s)]llx(s) — x|l + 2Mp(s),
(2.33)

which yields (2.7). Thus Lemma 1.1 and (2.7)—(2.9) ensure that lim,_, ,x(s) = x.

Next we show that (b) holds. Let L1, L, € (M (1+b1), N(14b,)) letand Ly # L,. Asin the
proof of (a), we infer that for eachi € {1,2}, there exist 0;, m;,1, n;.1 and Ty, satisfying (2.26)—
(2.29), where 0, my, n;, L and T}, are replaced by 6;, mj.1, ni.1, L; and T, respectively, and
the mapping Ty, has a fixed-point x' = {x}, ,} junez,, € A(IN, M), which is a bounded positive
solution of (1.11), that is:

1

o o
xl _ Ll xm+’1‘(],n+0'0 " 1 1
mmn — -
bm+7'0,n+(rg bm+To,n+O‘0 bm+To,n+O‘0 j=m+Tg i=j ai,n+0‘0
(2.34)
0
. 1 1
X Z [f (l’ t, xi—TL,-,t—oU' ces xi—'rk,,-,t—ak,,> - Ci,t]/ (m/ n) € Zmz,nzl
t=n+0y
L x5 1 |
xz _ 2 _ Tm+To,n+0p n
mmn —
bm+'r0,n+0'0 bm+'r0,n+o‘0 bm+'r0,n+0'0 j=m+T(] l':j ai,n+0'0
(2.35)

o
. 2 2
X Z [f (l’ t, xi—Tl/i,t—UU’ tes xi—Tk,,-,t—O'k,t> - Ci,t]/ (m, 1’1) € Zma,na'

t=n+0y
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In order to show that the set of bounded positive solutions of (1.11) is uncountable, it is
sufficient to prove that x' # x2. It follows from (2.3), (2.26), (2.27), (2.34), and (2.35) that for
(m, 1’1) € Zmax{mz,mg},max{nz,ngl

1 2
1 2 Li-L, Xm+ro,n+oy ~ Xm+ry,n+oy 1 - - 1
Xmn =~ Xmn| = b - b + b
M+To,n+00 m+T0,1n+0) MATON+00 jopmir i=j Ain+oy
[ee]
. 1 1 2
X Z [f <1’ t xi—Tl,i,t—ol,t"’"xi—Tk,i,t—Gk,t> f <l’t xl =T,k Gl/t/'”’xi_Tk/irt_Uk,t>]
t=n+0y
1 2
_ |L1 - L2| |xm+Tg,n+00 - xm+’l‘0,n+0‘0| + 1 - 1
- bm+To,7l+O‘0 bm+To,n+O'() bm+T0,n+0'0 j:m+T0 i:f |ai,7l+()'()|
[ee)
. 1 1 2
x Z |f<l’ t, xi—Tl,i,t—O'l,z" : "xi_Tk,irt_O'k,t> f<1 t, xl T k=017 " ’xi—Tk,z‘,t—O'k,t)|
t=n+o0y
> Lokl el L S S
N b2 ] m+Ty i=j |all’l+0'0|
[ee)
1 2 .
% Z Py max{ 'xi_Tl,i/t_O'l,t T Xm0 | l<i< k}
t=n+0y
Li-L, 1 & & 1 2
2 (1 3 P ) [« -]
2 1 oy inf |inso0 | 17,
Ly — Ly 1 — — 1 &
1 2
>——+—( 1+ su P;; ”x —x“
by by " 2 Z N P |ain|Z '
j=max{my,mz} i=j "ENmax(my,n3) g pr—m
Li-Lp
> _Mbi-lal max{61,62}”x1 p
by
(2.36)
which implies that
Li-Lp
nx1 - x2|| > | | >0, (2.37)
bz(l + max{61,92})
that is, x! # x2. This completes the proof. O

Theorem 2.3. Assume that there exist positive constants M and N, nonnegative constants by and
by, and nonnegative sequences {Pmln}(m,n)eNmm and {Qumn} " satisfying (2.3)—(2.5), (2.24)

(m,1) €Ny
and

1<by, bi<b},  Mbi(b2-b1)>Nbs(b2-bo). (2.38)
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Then

(a) forany L € (byN +b1M/b, , by M +byN /by ), there exist 6 € (0,1), my > mgy + 7o + ||
and ny > ng + oy + |B| such that for each x(0) = {x,,,,(0) Yommyez,, € AN, M), the Mann iterative
sequence with errors {x(s) }sen, = {Xmn(S)} mn,s5)ez, 5, S€Nerated by (2.25) converges to a bounded
positive solution x € A(N, M) of (1.11) and has the error estimate (2.7), where {y(s)}4sq is an
arbitrary sequence in A(N, M), {a(s) } o and {B(s) } so are any sequences in [0, 1] satisfying (2.8)
and (2.9);

(b) (1.11) possesses uncountably many bounded positive solutions in A(M, N).

Proof. Set L € (byN + by M/b,), b M + by N/by). It follows from (2.5), (2.24), and (2.38) that
there exist 8 € (0,1), my > my + 79 + |a| and ny > ng + op + | B| satisfying (2.27):

0 = 1< Zzsup{l |ZP”}> (2.39)
j=my i=j €Ny Qi

X & bbN b,L
Z Z sup Z(Qlt +cit]) ¢ < mm{sz L+-2 2— -M - sz}. (2.40)
| lnl b by

j=my i=j n€Np,

Let the mapping T, : A(N, M) — l;‘jﬁ be defined by (2.29). It follows from (2.3), (2.4), (2.24),
(2.27), (2.29), and (2.38)—(2.40) that for x = {x,, , }(m,n)eza,ﬂ/ Y= {ym,n}(m,n)ez,,,ﬂ € A(N, M) and
(ml n) e Zml,nl

oo} oo}
Xmtryn+oy — Ym+y,n+op 1 1

|TLxm,n - TLym,nl =

bm+T(],n+ao bm+T(],n+ao j=mim i=j Ain+oy

<)
X Z [f(l/ t/ xifTL,',th'Ltr ey xi*Tk,i,FO'k,t)

t=n+oy

_f (l/ t/ yi—Tl/,',t—()'Ltl ey yi—Tk,i,t—O'k,f )]

[oe] [o'e]
|xm+T[),n+O'[] - ym+Tg,n+oU| + 1 1

bm+-rg,n+ao bm+T0,1’l+0'() jemr i=) |ai,n+0'[)|

oo}
X Z |f(l/ t/ xi—Tl,i,t—O'l,t/ ey xi—Tk,,',t—O'k,t)

t=n+oy

_f<i/ t/ yi—rl,i,t—our ey yi—'rk,i,t—ok,t) I

x-wll &1
<S5 bz I

j=m+Tg i=j |ai "+‘70|

[0}
x> Pymax{|Xin 0, = Yimi-o,| 1 1 <1<k}

t=n+0y

1 [ee] [ee]
Sb—2<1+ ZZsuP{| a |ZRt}> lx-vy| =0lx-v|,

j=my i=j nEan
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L Xm+ry,n+0yp 1 = w1
TLxm,n = b - b b
m+Ty,n+0n m+Ty,n+0p m+Ty,n+0n i:m+T0m i:j ai,TH-Gl)
0
X Z [f(ll t/ xi_Tl,irt_O'l,t/ ey xi_Tk,i,t_O'k,t) - Ci,t]
t=n+oy
L N 1l & < 1
cp-per 35U
b2 b b2 | i n+o‘o|

j=mtT i=j

o]
X Z [|f(l/ t/ xi—T1,i,t—01/¢I (KR xi—Tk/i,t—()'k/t) | + |Ci,i|]

t=n+0y
L N 1 &&
e oY CIEN)
2 =my i=j €Ny | znl
L N 1 boN byL
< — boM - L -M-b,N M,
*b b b mm{ S T ? }
L xm+’1‘0 n+op 1 & — ]-
Trx = - :
Lmon bm+T0,Tl+O‘0 bm+T0,Tl+O‘0 bm+T0,Tl+O'U j:m+T0,m i=j ai,n+0‘0

[e'e]
X Z [f(ll t/ xi—Tlri,t—O'Lt/ ceey xi—Tkl,-,t—O'klt) - Ci,t]

t=n+0y

L M 1 & & 1

jemem i=j |ai s

oo}
X Z [|f(l/ tl xi—Tu,f—O‘ul ceey xi—Tkl,',t—O'klt) | + |Ci,t|]

t=n+oy
L M
Zb__b_——ZZsup{ Z(ta+|clt|)}
1 2 j=my i=j n€Ny in i
L M 1 | boN bL
s M _1 _
i mln{bgM L+—=— b b -M- sz} N,

(2.41)

which imply that (2.15) holds. Consequently (2.15) ensures that T}, is a contraction mapping,
and hence it has a unique fixed-point X = {Xm,n} (n,n)ez,, € AN, M), which gives that

=3 e
L xm+'r0 M+00 1 1

Xmn = b

m+Ty,n+0p bm+'ro,n+0'0 bm+‘ro,n+0'0 j=m+’T(] i=j ai,n+CJ'0
(2.42)
[*e]
X Z [f(ll t/ xi—TLi,t—ol/u ey xi—Tk,i,t—ok,¢> - Ci,t] s (mr 1’1) € Zml,nl-

t=n+0y

As in the proof of Theorem 2.2, it is easy to verify that x = {Xn} (s,n)cz,, 1S @ bounded positive
solution of (1.11) in A(N, M); (2.7) holds and lim; _, . x(s) =
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Next we show that (b) holds. Let L1, L, € (b N +byM /by ,boM +b;N/by) and Ly # L.
As in the proof of (a), we infer that for each i € {1, 2}, there exist 0;, m;1, ni1 and Ty, satisfying
(2.27), (2.29), (2.39), and (2.40), where 0, my, n;, L and T} are replaced by 6;, m;.1, niw1, Li,
and T, respectively, and the mapping Ty, has a fixed-point x' = {xin,n}(m,n)eza, , € AN, M),
which is a bounded positive solution of (1.11) and satisfies (2.34) and (2.35). In order to
show that the set of bounded positive solutions of (1.11) is uncountable, it is sufficient to
prove that x!'#x2. Tt follows from (2.3), (2.27), (2.34), (2.35), and (2.39) that for (m,n) €

Zimax {ma,m3},max{na,ns}

1 _ a2 =) )
'xl xz _ Li-L, Xm+ro,n+0o0 — Xmtro,n+op 1 1
mmn mn| — -
bm+To,‘rl+O'0 bm+‘l‘0,n+0’0 bm+7‘o,n+0'0 j:m+T(] i:j ai,n+0‘()
x Z flit, x} x}
i=T1it=017 """/ i_Tk,i/t_Gk,t
t=n+0y

2
f(l t, xl Ty t=017 * "/xi—‘rk,,-,t—crk,t>]

|L1 - L2| _ |x711’l+’l‘(),n+0‘0 - x12’rl+T0,Tl+O‘0| _ 1 — - 1

- bm+T0,Tl+O‘0 bm+To,7l+O‘o bm+To,n+O‘o j=m+T0 i=j |ai,71+00|

2]
: 1 1 2
X Z 'f<l’ 2 xi—Tl,i,t—Gl,f"“’xi—Tk,i,t—Ok,t> f<l Z xl T1if=014” ’xi_Tk,irt_Uk,t>|

t=n+0y

|1 — Lo| ||x skl O
2 — —Z

2 jomrry i=j |al "+00|

0
. 1 a2 .
x Z Py max{ |xi*‘l’1,i,t*0'1,f Ximit-ou| * 1<

t=n+0y

gt (0 S S Sl

G T R )

j=max{my,ms) i=j M€Nmax(ny,n3)

> |L1 — Lo|

b max{91,92}||x —x2||

(2.43)

which implies that

(R E b (1 -Ji;x?;ll,ez}) >0, 244

that is, x! # x2. This completes the proof. O
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3. Examples

Now we illustrate the results presented in Section 2 with the following three examples. Note
that none of the known results can be applied to the examples.

Example 3.1. Consider the third-order nonlinear partial difference equation with delays:

An<(—1)m"m4n3A$n <xm,n + ("Lxm_m,n_m,)) PV

3 M2 (2 + 1) mem(n1)/2
(3.1)
cos(m’n® —Inm) _ (-1)"sin(m* - 2n)

X 3 2, =
3_2m,n2—
(m +1)*n2 e mont +1

m>1, n>1,

where 79,09 € Nare fixed. Letmy=n9g=1,k=2,by =b, =1/3, a =min{l-71y,-1}, p=1-o0o,
M and let N be two positive constants with M > 3N and

—1)min )™ sin(m? - 2n
Amn = (_1)mnm4n3’ bm,n = ( ) ’ Cmn = ( ) ( )/
3 Vmdnt +1
cos(m®n® —Inm
f(m,n,u,v) = 2\/2£ w — ( 2 )2
m?(n* +1) (m+1)n?
1- 3.2
Ti,m = m(l —m), Tom = m<3 - m2>, On = d 5 n), On =1n(2-n), 32)
3M?2/n 2M M3\/n M?
Pm,n = f + an \/7

7 = + 7
m*(n*+1)  (m+1)*n? Tomrm?+1) (m+1)n?

(m,n,u,v) € Ny ny X R2.

It is easy to verify that (2.1)—(2.4) hold. Note that

o]

> Zsup{ LZ max{P;s, Qi it} }
t=n

j=my i=j n210 |ai,n| -

=S o] L e SMAVE . aM MWE - M? Jsin(-21)]
- b itnd & 2(2+1) i+ 21 +1)  (+1)22 VE+1

j=myg i=j nzng

142M +4M? + M? — = )
<< + + + ><hznl)ﬂ>j§0;ji4 < +oo

(3.3)

Hence the conditions of Theorem 2.1 are fulfilled. It follows from Theorem 2.1 that (3.1)
possesses uncountably many bounded positive solutions in A(NN, M). On the other hand, for
any L € (N +(1/3)M, (2/3)M), there exist 0 € (0,1) and m1 > mg + 79 + ||, 11 > ng + 0o + ||
such that the Mann iterative sequence with errors {x(s)},,, generated by (2.6) converges to
a bounded positive solution x € A(N, M) of (3.1) and has the error estimate (2.7), where
{y(s)}s>0 is an arbitrary sequence in A(N, M), {a(s)},5o and {f(s)}so are any sequences in
[0,1] satisfying (2.8) and (2.9).
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Example 3.2. Consider the third-order nonlinear partial difference equation with delays:

dn+ (-1)™n
A, <(—1)"m31n2(m +n)A2 <xm,,, - %xm_w_%))

. . . (3.4)
. Xn-2n-3%3p2 21 COS(nM® — \/m)
m’n? w1

m>1,n>1,

where 70,09 € N are fixed. Letmg =np =1, k=2, by = -2, bp = -5, a = min{l - 1y,-1}, f =
min{1 - o0y, -2}, M and let N be two positive constants with M > 4N and

(1) I b - dn+ (-1)"n _ cos(nm’® —/m)
amn = (-1)"m’In"(m + n), mp = ————————, Cmpn = —————>,
n+1 Ve +1
2,3
u“v ) 5
f(m,n,u,v) = .l Tim =2, Tom =-3m"+m+2, Oin=3, Oyn=-n+n+1,

5M* M>

Popn=——, Qmn =3, (M n,u,0)€ENpyyn, X R2.
m3n mdn

(3.5)

It is clear that (2.3), (2.4), (2.23), and (2.24) hold. Observe that

> Zsup{ ! > max{P;s, Qs lcifl }}
t=n

j=myg i=j 1210 |ai,n| —

© ® 1 o SME MS |cos <ti3 - \ﬂ>|
= = A —— 3.6
]-;U;i;g{ﬁlnz(nn);max{ PR PR Jpil (36)

1+5M4+ M/ & 1
LM (S
In“2 t=n0\/§

That is, the conditions of Theorem 2.2 are fulfilled. Thus Theorem 2.2 ensures that (3.4) has
uncountably many bounded positive solutions in A(IN, M). On the other hand, for any L €
(—M,—4N), there exist 0 € (0,1) and m; > my + 70 + |a|, 11 > ny + 0y + || such that the Mann
iterative sequence with errors {x(s)},,, generated by (2.25) converges to a bounded positive
solution x € A(N, M) of (3.4) and has the error estimate (2.7), where { Y(5)}ss0 is an arbitrary
sequence in A(N, M),{a(s)} s and {B(s) },( are any sequences in [0, 1] satisfying (2.8) and
(2.9).

© ®q
Z ZI_S < +00.
=my i=j

j=mo i
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Example 3.3. Consider the third-order nonlinear partial difference equation with delays:

-1)"-1/n) x*
A, <(—1)"<m5n> Afn (xm,n + MXm—Tg,n—Uo)) + (( ) ) mAnd

mn+1 mdn? +x2, |
m?*-2m,n3—n

(3.7)

G et L R
a md(n” +1) po ML=t

where 19,00 € N are fixed. Let my =ng =1,k =2,b; =3, bp =2, a = min{l — 79,-3}, f =
min{1 - 0y, -2}, M and N be two positive constants with M > (14/3) N and

2mn + 3 (=)™ (m? - 3n®
Amn = (_1)71 <Tl’l51’l>, bm,n = Cmn = 5 (7 )/
mn+ 1 m>(n’ +1)
(-D)"-1/n)u 3
f(m,n,u,v)= B Tim=4, Tom=m3-m), O1n=3, Oy =—N" +2n,
2M3(2m3n® + 2M? + 1) 2M* )
Ton = T g P T () € e R
(3.8)
Clearly (2.3), (2.4), (2.24), and (2.38) hold. Notice that
oo} [ee) 1 (o)
Z Zsup{ —Z max{P;;, Qit, |Cixl} }
j=my i=j n>ng |ai,n| t=n
~ ii 1 i 2MP (22 +2M* +1)  2M*  |i* -3 20
- s i;ﬁ i°n & max (Bt + N2)2 "B+ N2 B +1) (3.9)

< max{4,2M*,4M*(1+ M?) } (i%) s i% < +oo.

t=ng j=myg i=j

Hence the conditions of Theorem 2.3 are fulfilled. Consequently Theorem 2.3 implies that
(3.7) possesses uncountably many bounded positive solutions in A(NN, M). On the other
hand, forany L € BN+(3/2)M,2M+(2/3)N), there exist 0 € (0,1) and m; > mo+71o+|al, 11 >
ng + 0p + |B| such that the Mann iterative sequence with errors {x(s) },, generated by (2.25)
converges to a bounded positive solution x € A(N, M) of (3.7) and has the error estimate
(2.7), where {y(s)}s is an arbitrary sequence in A(N, M), {a(s)}o and {B(s)} o are any
sequences in [0, 1] satisfying (2.8) and (2.9).
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