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Optimal control, prevention and investigation of accidents, and detection of discrepancies in
estimated gas supply and distribution volumes are relevant problems of trunkline operation.
Efficient dealing with these production tasks is based on the numerical recovery of spacetime
distribution of nonisothermal transient flow parameters of transmitted gas mixtures based on full-
scale measurements in a substantially limited number of localities spaced considerable distances
apart along the gas pipelines. The paper describes a practical method of such recovery by defining
and solving a special identification problem. Simulations of product flow parameters in extended
branched pipelines, involving calculations of the target function and constraint function for the
identification problem of interest, are done in the 1D statement. In conclusion, results of practical
application of the method in the gas industry are briefly discussed.

1. Problem Statement

Optimal accident-free control of gas trunklines and distribution pipelines, prevention and
investigation of accidents in pipeline systems, and detection and localization of discrepancy
sources in estimated gas supply and distribution volumes are relevant problems for
pipeline transmission, mechanical engineering, and chemical industry [1–6]. Solution of
these production problems requires advanced computer simulation methods. These methods
use in-depth numerical analysis of commercial and natural gas mixture flow dynamics in
high- and medium-pressure linear and circular networks. The cornerstone of such analysis
is adequate recovery of spacetime distribution of nonisothermal transient flow parameters of
transmitted gas mixtures based on full-scale measurements in a substantially limited number
of localities spaced considerable distances apart along the investigated pipeline system.

In other words, solution of effective and accident-free control of pipeline systems
requires information about actual pressure, temperature, and gas flow rate distribution
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along the length of the pipeline and in time. CFD-methods are used for such space-time
distributions constructing. At production problems solution one of main reasonableness
criteria of obtained numerical estimates of flow parameters is its good correlation in timewith
full-scale measurements. Meanwhile these measurements are satisfied for limited number
of gas flow cross-sections in pipeline. Current cross-sections separate from each other
at considerable distance along the length of the pipelines. Modern methods of gas flow
modeling along extended branched pipelines can be a base for the obtaining of practically
significant correlation between calculated and measured estimates of gas flow parameters by
usage of Dirichlet boundary conditions, which are given at chosen boundaries of pipeline
network. So, it is reasonable to solve the problem of numerical recovery of gas flows in
gas pipeline system by statement and solution of identification problem of fitting calculated
and measured estimates of gas flow parameters. The set of changeable in time Dirichlet
boundary conditions are assumed as vector of controlled variables of the mentioned problem.
The stated above problem is formulated in the form of nonlinear programming problem.
As it is known, in practice the global solution of general nonlinear programming problem
is rather difficult. That is why it is necessary to develop method of decision of an option
with approximate results to the set of full-scale measurements from solution of set of local
minimization problems.

As noted above, analysis can be done for linear, branched, or circular pipeline net-
works. Pipeline segments in such an analysis are composed of single and/or multiple threads
made of pipes with rough rigid walls. This paper assumes that the length and location of
network pipelines allow for using the one-dimensional setup for the gas network gas flow
recovery problem.

Simulated commercial and natural gases are conventionally treated as homogeneous
multicomponent heat-conducting viscous gas mixtures of known composition with specified
heat transfer, physical and mechanical properties. Equations of state (EOS) for these mixtures
are assumed to be known.

Basic modes of their flow through the pipeline networks are assumed to be transient
and nonisothermal. At the same time, it is assumed that actual dynamics of real simulated
gas flow permits the use of basic assumptions and allowances of the quasi-steady-state flow
change method for the gas flow recovery [7, 8].

For the 1D problem statement, one can assume that full-scale measurements of gas
flowparameters are taken at fixed points located both at the boundaries of the pipeline system
(boundary points) and along the length of the pipelines (internal points). Boundary points
are generally used to take measurements of pressure, temperature, and mass flow rate of
gases (considering their composition), and internal points are used to measure gas pressure.
Ambient temperature is measured at points spaced apart from each other at considerable
distances. Results of such measurements may contain random and systematic errors.

In order to avoid too much technical details in the paper, it is assumed in the first
approximation that the analyzed gas network contains no injectors, gas compressor units,
dust catchers, or gas pressure regulators, and that operation of valves and/or accidents do
not alter its configuration over the time interval of interest Δτ . A detailed description of the
methods for modeling nominal, transient, and contingency operation of gas trunklines and
distribution networks allowing for the operation of valves, compressor and gas distribution
plants can be found, for example, in [3, 9–15].

Using the above background information, we should recover distributions of basic
gas parameters (i.e., density, pressure, temperature, flow velocity, and composition) along
the length of the pipeline and in time for the given interval Δτ .
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Figure 1: Schematic representation of a joint of N pipelines.

2. On Modeling of Gas Mixture Flow in the Pipeline Network

Solving the stated problem provides for the use of mathematical models of transient
nonisothermal flow of multicomponent gas mixtures developed based on the rule of
minimization of the number and depth of necessary adopted assumptions [15]. This is
explained by the fact that the use of excessively simplified gas flow models generally leads
to the loss of practically essential credibility of simulation results (especially as applied to
a detailed analysis of actual gas flow dynamics and search for discrepancies in estimated
volumes of natural gas supply to consumers [16]).

An example of a mathematical model satisfying the above requirement is the 1D
mathematical model of a transient nonisothermal turbulent flow of a viscous chemically inert
compressible multicomponent heat-conducting gas mixture in a branched graded pipeline
of circular variable cross-section with absolutely rigid rough heat-conducing walls [17]
(Figure 1):
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(ii) junction conditions for each joint:
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(n)TL = (ξ)TL, εJoint = (n)εL,
(n)(εm)L = (ξ)(εm)L, ρJoint = (n)ρL, pJoint = (n)pL,
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(2.6)

(iii) fitting conditions for each joint:
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(iv) EOS and additional relations:

p = p({Smix}), ε = ε({Smix}), K = K({Smix}), T1 = T2 = · · · = TNS = T,

εm = εm({Smix}), Dm = Dm({Smix}), m = 1,NS;
(2.11)

(v) auxiliary geometric relations:
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The function Φ(T, Tam) characterizes the heat exchange of the gas flow core through the
boundary gas layer, pipe wall, and insulation with the environment. It expresses a specific
(per unit length) total thermal flux along the perimeter χ of the cross-section having an
area of f from the transported gas to the environment (Φ(T, Tam) > 0 corresponds to heat
removal; Tam is the spacetime distribution of ambient temperature at the domain boundary).
The system of equations (2.1)–(2.13) is supplemented with boundary conditions.

The first version of the model (2.1)–(2.13)was proposed by Seleznev et al. jointly with
the author of this paper at the end of the last century in order to improve the credibility of
gas trunkline flows modeling by suppressing the adverse effects of numerical discrepancies
that are completely difference-based [18]. The model (2.1)–(2.13) uses the fitting conditions
(2.7)–(2.10), which—together with the junction conditions (2.5) and (2.6)—serve to provide
guarantied fulfillment of (2.1)–(2.4) in pipeline joints in their numerical analysis involving
gridmethods (including simulations on coarse spatial grids). This provides correct—from the
practical point of view—compliance with the basic conservation laws in branched pipeline
networks, including the mass balance of the transported product. Many years of active use
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of this model in production simulations of pipeline system confirmed its high efficiency [19–
24]. In addition, it should be noted that the model of steady-state nonisothermal gas mixtures
transmitted in pipeline network can be obtained through straightforward operations to
simplify the system of equations (2.1)–(2.13) using natural assumptions that partial time
derivatives are equal to zero.

The model (2.1)–(2.13) implicitly includes the parameters (n)γ, n = 1,N (2.13). It is
evident that these parameters are strictly geometric characteristics. In addition, the choice
of their specific values is not constrained in any way. As a result, it may seem that the
solution of the system of partial differential equations (2.1)–(2.13) depends on arbitrarily
chosen geometric parameters (n)γ, n = 1,N, which makes it ambiguous. However, one can
demonstrate that this model remains correct for arbitrary values of (n)γ, n = 1,N. Validation
of this statement is beyond the scope of this paper, but its detailed description can be found
in [17, 25].

A detailed presentation of the practical methods for numerical solution of the system
(2.1)–(2.13) and its modification for steady-state flows can be found, for example, in [15, 17,
25–27].

3. Formalization of the Gas Mixture Flow Recovery Problem and
Method of Its Solution

The procedure of transmitted flows recovery for linear and/or circular pipeline systems
based on “noisy” field measurement data can be formalized as a statement and solution
of a special mathematical identification problem. For this purpose, we introduce the notion
of identification point (IP). In our case, the IP is an inner or boundary point in the
computational model of the pipeline network of interest, in which full-scale measurements
of pressure of the transported gas mixture are taken over a given time interval Δτ . Note
that the computational model of a gas pipeline system is built according to the principle
of minimization of assumptions made in the description of the system’s real topology
supported by actual or rated characteristics of its segments. The choice of gas mixture
pressure as an identification parameter is explained by the fact that pressure histories in
real pipeline systems are determined today more accurately than temperature or flow rate
parameters.

In the course of mathematical identification, calculated and measured estimates of gas
mixture pressure histories for the entire set of IPs distributed across the computational model
of the pipeline network should be fitted as closely as possible. The preferable location of
each IP is determined subject to the following requirement: any considerable change in gas
dynamic parameters of pipeline system operation should be accompanied by considerable
changes in gas mixture flow parameters actually measured at this point. The distribution of
IPs in the computational model of the pipeline system should be as uniform as possible. The
close fit between corresponding calculated and measured pressure histories in the general
case should be provided in three senses [28, 29]: (1) close fit between two functional relations
(in essence, between the first derivatives of the functions being compared); (2) close fit
between two functional relations in the time-weighted average metric L1 (in our case, it is
defined by means of the octahedral vector norm, that is, L1 = ‖	Y‖1 =

∑n
i=1 |yi|, 	Y ∈ Rn)

or metric L2 (in our case, it is defined by means of the Euclidean vector norm, that is,
L2 = ‖	Y‖2 = [

∑n
i=1 y

2
i ]

0.5
, 	Y ∈ Rn); (3) close fit between two functional relations within their



Journal of Applied Mathematics 7

uniform deviation, that is, in the metric L0 (in our case, it is defined by means of the cubic
vector norm, that is, L0 = ‖	Y‖0 = max1≤i≤n|yi|, 	Y ∈ Rn).

Real pipeline systems contain a number of branches, through which transmitted
fluids enter or leave the system. Inlet branches that supply the gas mixture into the
simulated pipeline system will be designated conventionally as “supplier branches,” and
outlet branches, as “consumer branches.” In the first approximation, it is assumed that each
network branch cannot change its purpose over a given time interval Δτ , that is, a gas
supplier cannot become a consumer and vice versa.

In practice, there is generally a shortage of instruments at outlet boundaries of
the gas pipeline system of interest. In this case, a number of consumers having no
flow rate meters joint declare their gas consumption based on regulatory documents. All
the foregoing (together with real instrument errors and encountered cases of artificial
under-/overdeclaration of gas mixture volumes transported through the pipeline system)
results in arithmetic discrepancies between estimated volumes of gas supply made by
consumers and suppliers. This situation should be taken into account in gas flows recovery.

Given all the reasoning above, the special problem of mathematical identification can
be stated using conditional optimization:

P
[
t, Fscenario, 	Z(t)

]
−→ min

	Z(t)∈Π(t)⊂Rn
. (3.1)

In our case, components of the vector-function 	Z(t) are time functions of pressure and
mass flow rates of the gas mixture at outlet boundaries of the gas pipeline system, that is,
components of boundary conditions. They are distributed in the following way: gas mixture
pressures at u (u ≤ l) outlets of supplier branches and at s (s ≤ k) outlets of consumer
branches, where k is a given number of consumer branches, through which the gas mixture
leaves the gas pipeline system over the time Δτ ; mass flow rates of the gas mixture at (l − u)
outlets of supplier branches and at (k − s) outlets of consumer branches. Hence, the total
number of variable components in the boundary conditions is n = l + k. In production
simulations, the search for boundary conditions at outlet boundaries of a number of branches
during identification can be replaced with rigidly set Dirichlet boundary conditions in the
form of combinations of known time functions of measured mass flow rates and pressures of
the gas mixture. This reduces the number of variable components in the boundary conditions,
n < l + k. Note also that as Dirichlet boundary conditions for temperature and relative mass
fraction one can use predefined time laws for respective measured values.

When running production simulations, pipeline system operators face the necessity
of gas flow recovery under three basic assumptions: estimated volumes of gas mixture
supply declared by suppliers and consumers contain errors (the Full Distrust computational
scenario); only supplier-declared estimated volumes of gas mixture supply are credible (the
trust-in-supplier computational scenario); only consumer-declared estimated volumes of gas
mixture supply are credible (the trust-in-consumer computational scenario). The flag of the
computational scenario assigned to the identification problem Fscenario takes the values of 11,
12, 13, 21, 22, 23, 31, 32, and 33 in series, allowing us to choose various modifications of the
problem statement (3.1). The way of using the set of values assigned to the flag Fscenario will
be demonstrated below (see (3.2)–(3.9)).
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The target function P[t, Fscenario, 	Z(t)] of the problem (3.1) subject to the requirement
that calculated and measured values should fit together in the three above senses can be
formalized as follows:

P
[
t, Fscenario, 	Z(t)

]
=
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I
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[
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(3.2)

The vector-function 	pIP
calc[t, 	Z(t)] is built by numerical solution of (2.1)–(2.13) for the known

initial conditions and defined Dirichlet boundary conditions, containing all the components
of the vector-function 	Z(t).

The first form of the target function (i.e., for Fscenario < 21 in (3.2)) in the problem
statement (3.1) expresses the requirement that calculated and measured estimates of gas
mixture pressure should be close in the second and third senses (see above). In practice,
striving for the fulfillment of this requirement makes it possible to obtain a correct solution
in the presence of random errors in flow pressure measurements aggravated by single
instrument failures. Note that the results of minimization of (3.1), when searching for the
sources of discrepancies between natural gas supply estimates with such a form of the target
function, are most reasonable from the legal point of view.

The second form of the target function (for Fscenario < 31 in (3.2)) was proposed
to enable a closer fit between calculated and measured estimates of gas mixture pressure
in the first and third senses (see above). This requirement is aimed at obtaining a correct
solution in the presence of systematic errors in gasmixture pressuremeasurements and single
instrument failures. It makes sense to note that under production simulations it failed to fit
calculated and measured estimates of gas mixture pressure in all the three senses at once.
This was primarily attributed to a fairly high level of “noise” (random and systematic errors)
field measurement data.

The third form of the target function in (3.2)was proposed by V. V. Kiselev, first of all,
in order to compensate for the shortage of IPs, which is frequently experienced in practice.
As noted in the legend to (3.2), both natural (physically based) pressure differences between
neighbor IPs (including those in circular pipelines) and virtual pressure differences between
intentionally chosen pairs of IPs are considered here. IPs in each pair of points determining
the controlled virtual pressure differences can be located in far parts of the analyzed pipeline
system. In order to define natural and virtual gas mixture pressure differences controlled
during minimization of (3.1), a generalized set of IP pairs is established in advance. The
composition of this set does not depend on time. It is established using simple rules: IP pairs
should include (at least once) each IP in the computational model of the pipeline system;
repetitions and one of “mirror-reflected” IP pairs (if present in the original set) is necessarily
excluded from the set; the condition Mdifference � MIP should be strictly fulfilled. If the
third rule is violated, it seems unreasonable to use the third form of the target function for
production simulations.
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Now, let us proceed to discussing numerous constraints on (3.1):

	Z(t) ∈ Π(t) =
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The vector-function 	qconsumer
calc [t, 	Z(t)] is built by numerical solution of (2.1)–(2.13) for

the known initial conditions and defined Dirichlet boundary conditions, containing all
the components of 	Z(t). The following law of signs is true for the vector-function
	qconsumer
calc [t, 	Z(t)]: if [qconsumer

calc [t, 	Z(t)]]
i
< 0, the gas mixture moves from the gas pipeline

system to the consumer, i = 1, k. The second and third inequalities in the list of constraints
make it possible to reliably control the variations in gas mass flow rates at outlets of all system
branches irrespective of whether these functions are components of the vector-function of
controlled boundary conditions, or they are purely computational parameters needed for
simulations of gas mixture flow through the pipeline system.

The formal representation of the inequality in (3.3) can be expanded in the following
way:
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(3.4)

The vector-function 	qsupplier
calc [t, 	Z(t)] is built by numerical solution of (2.1)–(2.13) for the

known initial conditions and Dirichlet boundary conditions, containing all the components
of the vector-function of the controlled boundary conditions. In this case, the following law
of signs is valid for the components of the mass flow rate vector-functions introduced above.
[qsuppliercalc [t, 	Z(t)]]

i
> 0 or [qsuppliermeas (t)]i > 0 means that the gas mixture enters the gas pipeline

system, i = 1, l. The following law of signs is true for components of the vector-function
	qconsumer
meas (t): if [qconsumer

meas (t)]i < 0, the gas mixture moves from the gas pipeline system to the
consumer, i = 1, k.
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Today, it does not seem possible to solve the problem (3.1)–(3.4) in such a statement
using computing facilities available to a wide range of pipeline industry specialists. However,
as mentioned in Section 2, actual operation dynamics of most commercial gas trunklines
renders it possible to use basic allowances and assumptions of the quasi-steady-state flow
change method. In this connection, it is suggested that the time interval of interest Δτ be
conventionally divided into (Nt+1) time layers separated from each other by a given uniform
step Δτ . The m = 0 layer will correspond to the lower boundary of the time interval Δτ , and
the m = Nt layer, to its upper boundary. In order to improve the credibility of estimated gas
mixture supply to consumers, when using the quasi-steady-state (for one time layer) problem
statement, one should give consideration to the effect of product buildup in the pipes of
the simulated pipeline system. For each time layer, the gas mixture buildup varies over the
preceding time interval Δt. A practical way of accounting for this buildup was proposed
by Seleznev et al. [17, 30]. As noted above, quasi-steady-state pipeline system operation
parameters can be calculated with a simplified version of the model (2.1)–(2.13).

Thus, using the above assumptions and applying the difference approximation of
partial time derivatives present in (3.1)–(3.4), the special identification problem can be stated
in the following discrete form:

P
(
Fscenario, 	Zm

)
−→ min

	Zm∈Πm⊂Rn
; (3.5)

P
(
Fscenario, 	Zm

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
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pIPcalc

(
	Z
)
− pIPmeas

]i

m
−Ωm(Fscenario)

[
pIPcalc

(
	Z
)
− pIPmeas

]i

m−1

)2

,

if Fscenario < 31;
√

Mdifference∑

i=0

([
pIPcalc

(
	Z
)
− pIPmeas

]I,i

m
+

[
pIPmeas − pIPcalc

(
	Z
)]II,i

m

)2

, otherwise,

(3.6)

	Zm ∈ Πm =
{
	Zm ∈ Rn : 	gm ≤ 	Zm ≤ 	fm,

[
gq

]s
m
≤

[
q
supplier
calc

(
	Z
)]s

m
≤ [

fq
]s
m
, s = 1, l,

[
gq

]s
m
≤

[
qconsumer
calc

(
	Z
)]s−l

m
≤ [

fq
]s
m
, s = l + 1, l + k,

〈
unequality

(
Fscenario, 	Z

)〉

m

}
, m = 0,Nt,

(3.7)

where

Ωm(Fscenario) =
{

0, if m = 0 or Fscenario < 21,
1, otherwise,

(3.8)
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q
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calc

(
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− q

supplier
meas
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− ε ≤ 0, otherwise.

(3.9)

For numerical solution of the problem (3.5)–(3.9), the following default values for the second
and third groups of constraints in (3.7) are recommended:

[
gq

]s
m
= max

{
−ε̃;min

([
q
supplier
meas

]s

m
−Qdiscrep;

[
q
supplier
meas

]s

m
−Δqm

)}
, s = 1, l,

[
gq

]s
m
= min

{[
qconsumer
meas

]s−l
m −Qdiscrep;

[
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meas

]s−l
m −Δqm

}
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[
fq

]s
m
= max
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q
supplier
meas

]s

m
+Qdiscrep;

[
q
supplier
meas

]s

m
+ Δqm
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[
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m
= min
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([
qconsumer
meas

]s−l
m +Qdiscrep;

[
qconsumer
meas

]s−l
m + Δqm
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, s = l + 1, l + k,

m = 0,Nt.

(3.10)

In practice, quite a suitable procedure for numerical solution of the problem (3.5)–(3.9)
at them-th time step is the well-knownmethod of modified Lagrange functions [31–33]. This
method provides for constructing a modified Lagrange function defined as

L̃c

(
	μr ,

	Zm

)
= P

(
Fscenario, 	Zm

)
+ 0.5c−1r

l+k+1∑

j=1

{[
max

{
0;μj

r + crg̃j
(
	Zm

)}]2 −
(
μ
j
r

)2
}
, (3.11)

where 	̃g(	Zm) ∈ Rl+k+1 is a composite function of constraints comprising the second and third
groups of constraints in (3.7), and a constraint given by the inequality (3.9). For the Lagrange
multiplier vector 	μr given at the rth iteration and the value of the scalar penalty parameter
cr , the vector 	Zm is defined as a minimum of the function (3.11) with simple constraints on
the variables (	gm ≤ 	Zm ≤ 	fm) (see the first group of constraints in (3.7)). The problem of
minimum search for the function (3.11) with simple constraints on variables can be solved
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by a modified conjugate direction method [31, 34, 35], which is stable with respect to the
accumulation of arithmetic errors. Next, we calculate:

μ
j

r+1 = max
{
0;μj

r + crg̃j
(
	Zr
m

)}
, j = 1, l + k + 1,

cr+1 =

⎧
⎨

⎩
βcr as

∥
∥
∥	̃g

(
	Zr
m

)∥
∥
∥
0
> γ̃

∥
∥
∥	̃g

(
	Zr−1
m

)∥
∥
∥
0
,

cr , otherwise.

(3.12)

The initial vector 	μ0 is chosen as close as possible to the optimal vector 	μopt. For this purpose,
we use available a priori information about the solution. The initial value of the parameter c0
should not be too large in order to avoid making the function minimization problem (3.11)
with simple constraints artificially ill conditioned.

The successive solution of the problem (3.5)–(3.9) at the (Nt + 1) time steps makes
it possible to recover the agreed Dirichlet boundary conditions for all the pipeline system
boundaries within the chosen computational scenarios (see above). Upon their recovery
based on the discrete values obtained, it is reasonable to interpolate the boundary conditions.
Cubic spline interpolation performs well in this case [28].

In order to obtain spacetime distribution of the recovered transient nonisothermal
gas mixture flow parameters, one should conduct a numerical analysis of the model (2.1)–
(2.13) closed by interpolated boundary and initial conditions. It should be noted here that in
practice, if there is no information on initial conditions, they can be approximated by quasi-
steady-state simulation results at the zero time layer.

4. On the Criterion in the Comparative Analysis of Finding Solutions

The above approach to the numerical recovery of gas dynamic parameters of gas mixture
flows through pipeline systems based on full-scale measurements gives a number of
alternative solutions. This is associated, first of all, with a set of computational scenarios
involved and ambiguity of building the vector-function of controlled boundary conditions.
In order to choose the best approximation of space-time distributions of real flow parameters,
one should propose a criterion to compare the calculated gas dynamic parameters. Such
a criterion can be developed by quantitative assessment of the fit between calculated and
measured parameters of gas mixture pressure versus time at each IP.

For this purpose, let us introduce the so-called identification factor in the first sense
for the jth IP:

Ident Level 1j = Δτ−1
∥∥∥∥
∂

∂t
pIPcalc(t) −

∂

∂t
pIPmeas(t)

∥∥∥∥

j

1

= Δτ−1
∫

Δτ

∣∣∣∣
∂

∂t
pIPcalc(t) −

∂

∂t
pIPmeas(t)

∣∣∣∣
j

dt, j = 1,MIP.

(4.1)
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The identification factor in the second sense in our case is written as

Ident Level 2j = Δτ−1
∥
∥
∥pIPcalc(t) − pIPmeas(t)

∥
∥
∥
j

1

= Δτ−1
∫

Δτ

∣
∣
∣pIPcalc(t) − pIPmeas(t)

∣
∣
∣
j
dt, j = 1,MIP.

(4.2)

Note that for the time interval Δτ , the level of identification of actual time histories of
physical gas flow parameters by calculated time histories in the small neighborhood of j-th IP,
other conditions being equal, will be the higher, the smaller is the value of the corresponding
identification factor in the first and second sense.

For simultaneous assessment of identification level in the first and second senses,
the law of conventional coloring of IPs is used subject to achieved in its neighborhood
identification level. One will take the small neighborhood of jth IP for the time interval Δτ
be at high identification level in the first and second senses, if at least one of the following
two conditions is satisfied: (1) Ident Level 1j < Cmin 1

Blue IP; (2) Ident Level 2j ≤ Cmin 2
Green IP;

(3) Ident Level 1j ≤ Cmax 1
Blue IP and Cmin 2

Green IP < Ident Level 2j < Cmin 2
Blue IP. In order to make the

practical results more demonstrative, the IP of interest will be denoted by a green circle
because of the law of coloring usage in the IP layout diagram and the identification level
in its neighborhood will be called green identification level.

In a similar situation, the identification level is considered satisfactory in the first
and second senses, if at least one of the following two conditions is satisfied: (1) Cmax 1

Blue IP <
Ident Level 1j and Cmin 2

Green IP < Ident Level 2j < Cmin 2
Blue IP; (2) C

min 1
Blue IP ≤ Ident Level 1j ≤ Cmax 1

Blue IP
and Cmin 2

Blue IP ≤ Ident Level 2j ≤ Cmax 2
Blue IP. In this case, the IP of interest in the IP layout diagram

will be denoted by a blue circle (blue identification level).
Achievement of the identification level disputable in the first and second sense

(orange identification level) is characterized by satisfying simultaneously the following two
conditions: (1) Cmin 1

Blue IP ≤ Ident Level 1j ≤ Cmax 1
Blue IP; (2) C

max 2
Blue IP < Ident Level 2j . As a rule,

such IPs display a systematic error in gas mixture flow pressure measurements. Such IPs
need to be carefully analyzed by specialists operating the simulated pipeline system.

If the above combinations of conditions are not satisfied, a conclusion is drawn that
there is no identification in the first and second senses in the small neighborhood of this IP
for the time interval Δτ . In this case, the IP will be denoted by a red circle in the IP layout
diagram, and the lack of identification in its neighborhood corresponds to the red level.

Analysis of the fit between time histories in the first and second sense does not allow
us to account for the influence of individual discrepancy spikes in measurement results on
the assessment of the achieved identification level to the full extent. Therefore, additional
analysis of the fit between calculated and measured functions in the third sense is required in
the neighborhood of the jth IP as follows:

Ident Level 3j

=

⎧
⎨

⎩

0, if Ident Level 1j ≤ Cmax 1
Blue IP;∥∥pIPcalc(t) − pIPmeas(t)

∥∥
0 = sup

Δτ

∣∣pIPcalc(t) − pIPmeas(t)
∣∣
j
, otherwise.

(4.3)
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According to the method of comparison of calculated gas dynamic parameters described
here, the identification level established in the first and second senses should be lowered:
from green to blue, if Cmin 3

Green IP < Ident Level 3j ≤ C
sup 3
IP ; from blue to orange, if Cmin 3

Blue IP <

Ident Level 3j ≤ C
sup 3
IP ; from orange to red, if Cmin 3

Orange IP < Ident Level 3j ≤ C
sup 3
IP ; from any

color to red, if C sup 3
IP < Ident Level 3j . The procedure of lowering the identification level for

each IP can be done only once, that is, successive lowering of the green level to the blue one,
the blue one, to the orange, and the orange, to the red is not permitted.

The overall assessment of the actual identification level achieved by the r-th
computational gas dynamic mode of actual gas mixture flow through the pipeline system
of interest over the given time interval is done using the following formula:

P Identr =
{
Sgreen

[
P Identgreen

]
r
+ Sblue[P Identblue]r + Sorange

[
P Identorange

]
r

}

×
(
Sgreen

[
Cmin 2

Green IP

]−1
MIP

)−1
, r = 1, VCFD,

[
P Identgreen

]
r
=

⎧
⎪⎨

⎪⎩

0, if Lr
Green IP = 0,

Lr
Green IP∑

j=1

[
max

{
Cmin 2

Green IP, Ident Level 2j
}]−1

r
, otherwise,

[P Identblue]r =

⎧
⎪⎨

⎪⎩

0, if Kr
Blue IP = 0,

Kr
Blue IP∑

j=1

[
max

{
Cmin 2

Blue IP, Ident Level 2j
}]−1

r
, otherwise,

[
P Identorange

]
r
=

⎧
⎪⎪⎨

⎪⎪⎩

0, if Nr
Orange IP = 0,

Nr
Orange IP∑

j=1

[
Ident Level 2j

]−1
r
, otherwise.

(4.4)

The solution to the problem of numerical recovery of gas flows in the simulated
pipeline system will be a unique identified gas flow (IGF) that a priori satisfies the defined
requirements (constraints) and is compliant with the pipeline system’s real physics of
accident-free operation and characterized by the highest value of the quantitative index of
identification level (4.4). Thus, the relation

P IdentCFD ID = max
1≤r≤VCFD

{P Identr}. (4.5)

It should be emphasized that the IGF status is assigned to the gas dynamic flow developed
only if the following inequality is true for the corresponding prevalence factor of green, blue
and orange IPs FCFD ID:

FCFD ID = M−1
IP

(
LCFD ID
Green IP +KCFD ID

Blue IP +NCFD ID
Orange IP

)
≥ CCFD ID. (4.6)
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function of (3.5)–(3.9) at

solving system (2.1)–(2.13)

Figure 2: Flow diagram for the numerical implementation of the problem.

Otherwise, a conclusion is drawn that the required identification level was not achieved and
the IGF was not found, that is, the recovery problem for the gas flows in the gas pipeline
system was not solved.

5. On Arrangement of Problem Solution Process

General principles of numerical implementation of identification problem (3.1)–(3.4) can be
illustrated by flow diagram for the numerical implementation of the problem (Figure 2).
Assignment of new 	Z and new value of flag Fscenario is made by users of the method
independently proceeding from their research experience of such pipeline systems. As a rule,
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Figure 3: Example of the Alfargus/Mosregiongaz computer system application in the control room of
GAZPROMMezhregiongaz Moscow LLC.

in practice 	Z is fixed from one time layer to another. This fact is reflected in diagram (see
Figure 2). However, it should be noted that possibility of its modification under its layer wise
solution was stipulated in problem statement (3.5)–(3.9) (as 	Zm is used in (3.5)–(3.9)).

Unique IGF selection from several versions of calculated gas dynamic parameters filed
to database of calculation results (DCR) allows compensating negative influence of random
measurement errors on credibility of numerical recovery of transport flows.

6. Results of Practical Application

Efficiency of the method of numerical recovery of gas flows in trunkline systems
proposed in the paper was demonstrated in 2010–2012 in production simulations at
GAZPROM Mezhregiongaz Moscow LLC within the Alfargus/Mosregiongaz Computer
System (Figure 3).

Themethodwas used for numerical recovery of the flow of natural gas delivered (from
a single supplier) to consumers through seven branches of the Moscow Gas Ring (MGR).
MGR has a total length of over 200 km and more than 130 consumer branches. The flow was
recovered at 106 IPs, which were relatively uniformly distributed over the gas pipeline ring.
In Figure 4, the given IPs were indicated in the form of circles of different diameter and color
depending on its arrangement on the boundaries of “supplier branches” (dark red circles),
and on the boundaries of “consumer branches” (pink circles) and in network and on the
boundaries of uncontrolled by flow meters branches (yellow circles).

The transport flow is transient nonisothermal gas flow. The example of flow diagram
(i.e., recovered flow direction and numerical estimates of volumetric flow rate of natural
gas (dimension: thousand cubic meters per day) in accordance with color gradation) in the
South-East MRG sector (temporal section) was shown in Figure 4. In table on the right of
Figure 5 one can see quantitative estimates of gas flow rate distribution (column 2, dimension:
thousand standard cubic meters per day) and gas pressure (column 3, dimension: gauge
atmospheres) for recovered flows in specific branches in the South-East MRG sector (tempo-
ral section). In the first column of the table under consideration description of branches are
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Figure 4: Example of IP distribution in the MRG model.

Figure 5: Example of flow diagram in the South-East MRG sector (temporal section).

given in topographical map reference. The example of diagram correlation of time history
of calculated and measured estimates of pressure and mass flow rates for one from the IPs,
which is used in MGR (gas flow temperature was measured with a poor accuracy and long
time intervals andwas not suitable for comparative analysis)was shown in Figure 6. It should
be noted that measurement results underwent preliminary verification and smoothing. The
recovered gas flow parameters were used to analyze the performance of MGR, and to detect
and localize the sources of discrepancy in estimated volumes of gas supply through MGR
[36].

As a demonstration of natural gas pressure, volumetric gas flow rate and temperature
distribution along the length of MGR circular segment (see Figure 4) for one time layer
were given on Figure 7. Fragmentary nature of flow rates space distribution containing
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Figure 6: Example of curve correlation of calculated and measured pressure history (a) and mass flow rate
(b) for one from the IPs used in MGR.

breaks made for gas extraction and discharge in MGR. In continuous space distribution of
transported gas pressure the extremes basically made for gas discharge to MGR circular
segment by different suppliers and gas extraction by major consumers. Certain breaks in
temperature distribution along the length ofMGR circular segment are explained by branches
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Figure 7: Example of space distributions “pressure-volumetric flow rate” (a) and “pressure-temperature”
(b) along the length of MGR circular segment (temporal section).

existence and multiline structure of MGR circular segment—for some segments different
pipeline threads are shown.

Earlier versions of the flow recovery method were used to investigate trunkline
accidents and to train gas pipeline operators in efficient pipeline control under conditions
as close as possible to real operation of gas transmission and delivery systems using high-
accuracy computer simulators [16, 37].
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7. Conclusion

The paper describes a version of the practical method for numerical recovery of transient
gas flow in gas trunkline systems by setting up and solving a special identification problem.
Simulations of gas mixture flow parameters in extended branched pipelines, involving
calculations of the target function and constraint function for the identification problem
of interest, are done in the 1D statement. The method can be implemented on computers
available to a wide range of pipeline industry specialists. Efficiency of this method as applied
to practical simulations was demonstrated, when it was used to provide computerized
support of operator decisions in gas distribution companies, investigate accidents in gas
pipeline systems and train gas pipeline operators in pipeline control under normal and
contingency conditions using research and high-accuracy computer simulators.

Nomenclature

CCFD ID: Empirical constant, the value of which is chosen based on the experience
of doing simulations with the recovery method described here, CCFD ID > 0

CFD ID: Index, will be true for the identified gas flow

Cmin 2
Green IP, C

min 1
Blue IP, C

max 1
Blue IP, C

min 2
Blue IP, C

max 2
Blue IP, C

min 3
Green IP, C

min 3
Blue IP, C

min 3
Orange IP, C

sup 3
IP : Given

empirical constants

cr : Scalar penalty parameter

Dm: Binary diffusion coefficient of themth component

f : Gas pipeline flow section area

FCFD ID: Corresponding prevalence factor of green, blue and orange IPs

Fscenario: Flag of involved computational scenarios of the identification problem

g: Gravity acceleration modulus

	g(t) ∈ Rn,	f(t) ∈ Rn: Given vector-functions that establish limits in simple
constraints on the vector-function of controlled boundary conditions based on
structural and operational features of the simulated pipeline system, 	g(t) < 	f(t)

	gq(t) ∈ Rl+k,	fq(t) ∈ Rl+k: Given vector-functions that establish limits in constraints
providing a-priory preservation of the defined purpose of the branch over the time
interval Δτ (i.e., a gas supplier cannot become a gas consumer and vice versa, see
above), 	gq(t) < 	fq(t)

	̃g(	Zm) ∈ Rl+k+1: Composite function

Ident Level 1j : So-called identification factor in the first sense for the jth
Identification Point (IP)

Ident Level 2j : So-called identification factor in the second sense for the jth IP

Ident Level 3j : So-called identification factor in the third sense is required in the
neighborhood of the jth IP
(n)	i: Unit vector of the Ox axis of the nth pipeline

Kr
Blue IP: Number of blue IPs for the rth computational gas dynamic mode
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K: Heat conductivity of the gas mixture

k: Given number of consumer branches

L: Identifier of the considered pipeline cross sections

L0, L1, L2: Metrics

L̃c(	μr ,
	Zm): Modified Lagrange function

Lr
Green IP: Number of green IPs for each rth computational gas dynamic mode

l: Given number of supplier branches, through which the gas mixture enters the
pipeline system over the time Δτ

M: Identifier of the considered pipeline cross sections

Mdifference: Number of analyzable pressure differences between neighbor IPs

MIP: Number of IPs

N: Number of pipes constituting the simulated joint

Nt: Number of time layers separated from each other by a given uniform step Δτ

NS: Number of mixture components

Nr
Orange IP: Number of orange IPs for the rth computational gas dynamic mode

(0)	n: Unit vector of the normal to the volume (0)V

P[t, Fscenario, 	Z(t)]: Target function

P Identr : Actual identification level achieved by the rth computational gas dynamic
mode of actual gas mixture flow through the pipeline system

P IdentCFD ID: Quantitative index of identification level

p: Static pressure in the gas mixture

pJoint: Static pressure of the gas mixture in the joint (i.e., in the inner space of the
volume (0)V

	pIP
calc[t, 	Z(t)] ∈ RMIP : Vector-function describing the time variation of calculated

estimates of gas mixture pressure at the IP

	pIP
meas(t) ∈ RMIP : Given vector-function describing the time variation of measured

estimates of gas mixture pressure at the IP

Q: Specific (per unit volume) power of heat sources

Qdiscrep: Predefined empirical constant corresponding to the minimum value of the
module of total discrepancy between estimated gas supply volumes, which is of
practical significance for the analysis of the simulated gas pipeline network

	qconsumer
calc [t, 	Z(t)] ∈ Rk: Vector-function that describes the time variation of

calculated estimates of gas mixture mass flow rate at outlets of consumer branches

	qsupplier
calc [t, 	Z(t)] ∈ Rl: Vector-function describing the time variation of calculated

estimates of mass flow rates of the gas mixture at outlets of supplier branches

	qconsumer
meas (t) ∈ Rk: Given vector-function that describes the time variation of

measured or declared estimates of gas mass flow rates at outlets of consumer
branches
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	qsupplier
meas (t) ∈ Rl: Given vector-function describing the time variation of measured

estimates of mass flow rates of the gas mixture at outlets of supplier branches

R =
√
f/π : Inner pipe radius

Rn: n-dimensional Euclidean space

r: Iteration index of the method of modified Lagrange functions

Sgreen, Sblue, Sorange: Scalar weight factors used when establishing quantitative
indices of the identification level achieved, (Sgreen > Sblue � Sorange > 0)

s: Number of outlets of consumer branches, s ≤ k

(n)s: Auxiliary functions

T : Gas mixture temperature

Tam: Space-time distribution of ambient temperature at the domain boundary

t: Time (marching variable)
(0)V : Vanishingly small volume of the simulated joint of trunklines;

VCFD: number of alternative computational gas dynamic modes obtained by
practical implementation of Section 4 provisions

w: Projection of the vector of gas velocity averaged over the pipeline cross section
to the pipeline’s geometric axis of symmetry (on the assumption of developed flow
turbulence)

x: Spatial coordinate along the geometric pipeline axis (spatial variable)

Ym = ρm/ρ: Relative mass fraction of themth component

Ym,Joint: Relative mass fraction of themth component in the joint

yi: ith component of 	Y ∈ Rn

	Z(t): Vector-function of controlled boundary conditions that describes variations in
boundary conditions at pre-selected pipeline boundaries during calculation of the
identification problem
	Z: Vector of controlled boundary conditions that describes variations in boundary
conditions at pre-selected pipeline boundaries during calculation of the identifica-
tion problem

z1: Spatial coordinate of the point in the pipeline axis reckoned from an arbitrary
horizontal plane vertically upward (for natural gas trunklines, along the Earth
radius)

β: Given integer-valued parameter multiple of 10
(n)γ : Parameter, n = 1,N

Δ = Qdiscrep/2

Δq(t): Given function that describes the time variation of the module of declared
discrepancy between estimated gas supply volumes

Δt: Preceding time interval
(n)ΔX: Elementary segment between the cross sections (n)fL and (n)fM bounding
each elementary volume (n)V , n = 1,N
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ΔX: Comparison parameter, ΔX → 0

Δτ : Given time interval

ε: Specific (per unit mass) internal energy of the mixture

εm: Specific (per unit mass) internal energy of the mth component

εJoint: Specific (per unit mass) internal energy is of the gas mixture in the joint

ε: Predefined small quantity that establishes the minimum difference between
calculated and measured mass flow rates in the second sense of close fit, ε > 0

ε̃: Predefined small quantity to establish a boundary of practical significance of the
gas mixture mass flow rate through the branch (a lower-modulus gas mass flow
rate is considered zero), ε̃ > 0
(n)Θ: Auxiliary function

λ: Hydraulic friction coefficient in the widely known Darcy-Weisbach formula

	μr ∈ Rl+k+1: Vector of Lagrange multipliers

	μ0: Initial vector of Lagrange multipliers

	μopt: Optimal vector of Lagrange multipliers

Π(t): Constraint set

π : Pythagorean number

ρ: Gas mixture density

ρJoint: Gas mixture density in the joint

ρm: Reduced density of the mth component (mass of the mth component in unit
volume of the mixture)

Φ(T, Tam): Function characterizes the heat exchange of the gas flow core through
the boundary gas layer, pipe wall and insulation with the environment

χ: Perimeter of the cross section having an area of f

Ωm(Fscenario): Auxiliary multiplier

	ωI-II[t, 	Z(t)] ∈ RMdifference : Auxiliary vector-function;Mdifference is the number of given
pairs of IPs that determine the controlled natural and virtual pressure drops in the
gas mixture

〈unequality(Δτ, Fscenario, 	Z(t))〉: Formal representation of an additional limiting
inequality

{Smix}: Formal expression corresponding to a set of parameters defining the
described quantity

( (0)	n ·(n)	i): Scalar product of the vectors (0)	n and
(n)	i

Left superscript “(n)” denotes that some parameter belongs to pipe number n.
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