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This paper presents a multiobjective differential evolution algorithm with multiple trial vectors.
For each individual in the population, three trial individuals are produced by the mutation
operator. The offspring is produced by using the crossover operator on the three trial individuals.
Good individuals are selected from the parent and the offspring and then are put in the
intermediate population. Finally, the intermediate population is sorted according to the Pareto
dominance relations and the crowding distance, and then the outstanding individuals are selected
as the next evolutionary population. Comparing with the classical multiobjective optimization
algorithm NSGA-II, the proposed algorithm has better convergence, and the obtained Pareto
optimal solutions have better diversity.

1. Introduction

Multiobjective optimization problems (MOPs) are different from single objective optimiza-
tion problems (SOPs). ForMOPs, the objective functions are often conflict, so the best solution
often does not exist. It is difficult to find the optimal solution. The MOPs need to find a
noninferior solution set that is called Pareto optimal solution set (or nondominated optimal
solution set). The key is to find a solution set which is as close to the Pareto front and
uniformly distributed as possible. In the past ten years, evolutionary algorithms have been
widely used for solvingmultiobjective optimization problems. The typical algorithm contains
NSGA [1], NSGA-II [2], SPEA [3], SPEA2 [4], and so on.

Differential evolution (DE) [5] is an important branch of the evolutionary algorithms.
Because of its easiness to use and robustness, it has been widely applied in many fields.
The basic DE algorithm is a greedy algorithm and is used to solve the SOPs. The individual
choice is based on the objective function value. In solving MOPs, the objective function value
is a vector value and the individual choice is based on the vector value. Some scholars have
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improved DE algorithm to solve MOPs. Abbass et al. [6] proposed a differential evolution
algorithm based on the Pareto front’s (PDE) to solve MOPs. Later, the PDE algorithm is
improved to an adaptive PDE algorithm (SPDE) [7]. Madavan [8] proposed the differential
evolution algorithm based on the Pareto (PDEA). Xue et al. [9] and Robi and Filipi [10]
and Qian and Li [11] proposed the different kind of multiobjective differential evolution
algorithm. Gong and Cai [12] proposed an improved multiobjective differential evolution
based on the Pareto-adaptive ε-dominance and the orthogonal design.

Here, a multiobjective differential evolution algorithm with multiple trial vectors
(MTVDE) is proposed. In this algorithm, for each individual in the parent, three different
mutation operators and a crossover operator are used to produce three trial individuals.
First, we compare the three trial individuals. If an individual Pareto-dominate another, the
better one is retained. If two individuals do not dominate each other, both two individuals
are retained. Secondly, retained trial individuals compare with the parent individual: if an
individual Pareto-dominate another, put the nondominated individual in the intermediate
population, and if the two individuals do not dominate each other, two individuals are
put in the intermediate population. Finally, in the intermediate population, the individuals
are sorted according to the Pareto dominance relations and the crowding distance. We
eliminate some low-quality individuals from the intermediate population and retain some
fine individuals to form the next evolutionary population. The individuals are sorted
according to the nondominated relations, and individuals with low ordinal value are better
individuals. When individuals are with the same ordinal, the individual of larger crowding
distance is better than the individual of smaller crowding distance.

2. Multiobjective Optimization Problem and Related Concepts

Below, we give several concepts related to this paper. Because the maximum optimization
problems and minimum optimization problem can be transformed into each other, here we
only consider the minimum multiobjective optimization problem.

Definition 2.1 (multiobjective optimization problems, MOPs). The MOPs are described as
follows:

min y = f(x) =
(
f1(x), f2(x), . . . , fk(x)

)
,

s.t. g(x) =
(
g1(x), g2(x), . . . , gl(x)

) ≤ 0,

h(x) = (hl+1(x), hl+2(x), . . . , hm(x)) = 0,

x = (x1, x2, . . . , xn) ∈ X,

y =
(
y1, y2, . . . , yk

) ∈ Y,

(2.1)

where y ∈ Rk indicates the target vector, x ∈ Rn indicates the decision vector, X indicates
decision space of the decision vector x, Y indicates the target space of the target vector y.

Definition 2.2 (the dominance relationship of the target vector). The target vector u =
(u1, u2, . . . , uk) is better than v = (v1, v2, . . . , vk) if and only if for all i ∈ (1, 2, . . . , k) ul ≤ vl and
there exists at least one i ∈ (1, 2, . . . , k) such that ui < vi was established, then the target the
vector u Pareto better than v, or v Pareto inferior to u.
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Definition 2.3 (decision vector relations of domination). If the decision vector z =
(z1, z2, . . . , zn) Pareto-dominates w = (w1, w2, . . . , wn) if and only if f(z) Pareto is superior
to f(w), we call the decision vector z Pareto-dominatingw or the decision vectorw is Pareto
dominated by z.

Definition 2.4 (Pareto optimal solution). Decision vector xu ∈ F (F is the feasible solution set)
is a Pareto optimal solution, if and only if an individual does not exist in the feasible solution
set F dominate xu, then xu is called the MOPs’ Pareto optimal solution, or xu is called the
MOPs’ nondominated optimal solution. The set of all Pareto optimal solution is known as
the MOPs’ Pareto optimal solution set or nondominated optimal solution set.

Definition 2.5 (Pareto front). For given MOPs, Pareto optimal solution set corresponding to
the objective function value vector is known as the MOPs’ Pareto front. Therefore, our task is
to make the current nondominated optimal solution set as close as possible to the theoretical
Pareto optimal solution set, from the view of Pareto front is to ask the Pareto front as possible
as close to the theoretical Pareto front and uniformly distributed.

Definition 2.6 (individual nondominant relationship sort, INDR). There are n individuals in
the population P . For each individual xi, i = 1, 2, . . . , n, Si represents the set of individuals
that are dominated by xi, ni represents the number of individuals dominating the individual
xi. Finally, if ni = 0, then xi belongs to the first level. The sequence of xi is ranki = 1, xi

joined to F1 (F1 indicates the individual set of ordinal value is 1). The counter of the initial
sequence value rank = 1, if Frank /=φ, (Frank represents the set of individuals’ sequence value
rank = 1) each individual xi in Frank, each individual xi, nj = nj − 1 in the corresponding Si.
Finally, if ni = 0, then xj belongs to the rank+1 level. The sequence value of xj is rankj =
rank+ 1. Update sequence value’s counter rank = rank+ 1, xj joined to Frank. As a result, we
can calculate the ordinal value of each individual in the population P .

Definition 2.7 (the same level of individuals’ crowding distance) (ICD). Let I be a set of
individuals of a certain grade. All the targetm (m = 1, 2, . . .) individuals are sorted according
to the objective function value in I. The first and the last individuals’ crowding distances are
infinite. The other individuals’ crowding distance is calculated as subtract the two neighbor
individuals’ objective function and then square it. Then sum the crowding distance on
all objective functions as the individuals’ crowding distance. The individuals are sorted
according to crowding distance in the same level.

3. Multiobjective Differential Evolution Algorithm with Multiple Trial
Vectors (MTVDE)

3.1. The Mutation Operation

Mutation components are difference vectors of the parent generation. Each vector is
generated by the different individuals in the parent population. The mutation operation on
the basis of the difference vector and its equation is

vi1t = xit + F(xr1t − xr2t),

vi2t = xr1t + F(xr2t − xr3t),

vi3t = xit + F(xr1t − xr2t) + F(xr3t − xr4t),

(3.1)
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where vi1t, vi2t, vi3t are the mutated individuals, xit is individual of parent population.
xr1t, xr2t, xr3t, xr4t are different from each other, and they are different from xit. F ∈ (0, 2]
is the scaling factor. It indicates the influence degree of the difference vector to the
offspring. From the mutation operator, each individual in parent population produces
three individuals through the mutation operator, which can enhance the diversity of the
population.

The value of F has a certain influence on the algorithm performance. If F is too large,
the convergence rate slows, and the algorithm runs longer. If F is too small, the diversity of
the population decreases, according to experimental tests, and F is often set to 0.5.

3.2. Crossover Operator

The mutated individual vi(t + 1), (i = i1, i2, i3), and the individual xi(t) in parent population
use the crossover operator to generate the trial individual ui(t+1), (i = i1, i2, i3). The crossover
operator is expressed as

uij(t + 1) =

⎧
⎨

⎩

vij(t + 1), if (rand(0, 1) ≤ CR) or
(
j = rand i(1, D)

)
,

xij(t), otherwise,
(3.2)

where rand(0, 1) is an uniformly distributed random number between (0, 1), rand i(1, D) is
the integer randomly selected from {1, 2, . . . , D}, which can insure at least one ui(t+1) is from
vi(t + 1). CR ∈ [0, 1] is the crossover probability. It is used to control the variable in ui(t + 1)
to be from vi(t + 1) or xi(t). If CR = 1, then ui(t + 1) = vi(t + 1).

3.3. Selecting Operation

For MOPs, this paper uses the following criteria to select the next evolution population.

(1) For each individual in the parent population, three different mutated operators and
a crossover operator are used to produce three trial individuals. For the three trial
individuals and the parent individual, the one who Pareto-dominates another is
retained in the intermediate population. If the two individuals do not dominate
each other, both are retained.

(2) Some low-quality individuals in the intermediate population need elimination.
Individuals are sorted in the intermediate population according to the Pareto
dominance relations and the crowding distance of individuals. First of all, the
individuals are divided into several levels according to the non-dominant relations
in the intermediate population. Individuals in the same level are sorted according
to the crowding distance. We choose the former NP individuals to form the next
evolution population.

3.4. MTVDE Description of the Algorithm

Step 1. Set the basic parameters: the population size NP, the scaling factor F, the maximum
evolution generation, and the crossover probability factor CR.



Abstract and Applied Analysis 5

Step 2. Initialize the population.

Step 3. Mutation is according to the mutation operation (3.1) to generate three variation
individuals.

Step 4. Crossover is according to the crossover operation (3.2) to generate three test
individuals.

Step 5. Select the next evolution population.

Step 6. If the maximum iteration is reached, stop and output optimal solution, otherwise
return to Step 3.

4. Numerical Experiments

4.1. Algorithm Performance Evaluation Criteria

Multiobjective optimization algorithm performance can be evaluated by two criteria.

(1) The obtained nondominated optimal solution set needs to be as close as possible to
the true Pareto front.

(2) The obtained nondominated optimal solution set need as possible as uniformly
distribute to the true Pareto front.

The two indexes are used to test the convergence and distribution of the solution set,
respectively. The definitions of the approximation index and the uniformity index are given
below.

(a) Approximation index is defined as follows:

γ =
∑n

i=1 di

n
, (4.1)

where n is the number of vectors in the set of nondominated solutions found so far, di is
the Euclidean distance (measured in objective space) between each of these solutions and
the nearest member of the Pareto optimal set. di is calculated as di = min{|Xi − Yj |, j =
1, 2, . . . ,N}, where N denotes the total number of the true Pareto front vectors, Xi denotes
the nondominated optimal solutions set, Yj denotes the true Pareto front, and | · | denotes
Euclidean distance. The value of γ is smaller, the degree of algorithm approximating to true
Pareto front is higher. It is clear that a value γ = 0 indicates that all the generated elements
are in the Pareto front.

(b) The uniformity index is defined as follows:

Δ =
df + dl +

∑n−1
i=1

∣∣∣di − d
∣∣∣

df + dl + (n − 1)d
, (4.2)

where di is the Euclidean distance between neighboring solutions in the obtained
nondominated solutions set and d is the mean of all di. The parameters df and dl
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are the Euclidean distances between the extreme solutions and the boundary solutions
of the obtained nondominated set. df is calculated as df = |Xf − Yf |, where Xf is
the leftmost vector of obtained nondominated optimal target vector, Yf is the leftmost
vector of theoretical Pareto front. dl is calculated as dl = |Xl − Yl|, where Xl is the
rightmost vector of obtained nondominated optimal target vector, Yf is the rightmost vector
of theoretical Pareto front, | · | denotes Euclidean distance. The value of Δ is smaller,
the degree of obtained nondominated solutions’ diversity and uniform distribution is
better.

4.2. Numerical Experiments and Analysis

In order to know how competitive the MTVDE algorithm was, it was compared with
NSGA-II. In algorithm NSGA-II, ηc = 20, ηm = 20 Pool size = 100, Tour size = 2.
In MTVDE algorithm, CR = 0.9 except the problem ZDT4 that CR = 0.3. For all test
functions, the population size of the two algorithms is taken as 100, and the number of
iterations is taken as 250. Figures 1, 2, 3, 4, 5, 6, 7 and 8 show the results of the MTVDE
algorithm by testing eight multiobjective functions. It can be seen from the figures the
MTVDE algorithm produces a more uniform solution, and the solution quality is better than
NSGA-II.

From Tables 1, 2, 3, 4, 5 and 6 eight testing functions are chosen to test the
approximation index, uniformity index (mean value and variance in 10 runs). For the first five
functions, the MTVDE algorithm is compared with the five classic algorithms in [8, 9, 11, 12].
For the rest three functions, the MTVDE algorithm is compared with NSGA2.

N/A denotes the algorithm does not calculate the index; the PDEA algorithm in
[7] calculates the index GD (generational distance) instead of calculating the index (the
convergence metric). The MODE algorithm in [7] did not calculate the index (diversity
metric). We can be seen from Tables 1–6 that MTVDE algorithm has better convergence
solutions except the problems ZDT1, ZDT2, and SCH.

In this paper, the population size is 250. Through experiments, we found that the
increasing of population size has no effect on performance of the algorithm but only can
increase the running time. In order to detect the impact of the scaling factor and the crossover
probability on performance of algorithm, we make 50 times independent experiments for
problem SCH. In order to test the impact of F and CR on the algorithm performance, it can
be found that the F and CR have little effect on the algorithm performance by the testing
data. Through comparison, F = 0.5, CR = 0.9 results are a little better, but the algorithm
performance (approximation index and uniformity index) is not particularly sensitive to the
values of F and CR (Table 7).

5. Summary

InMTVDE algorithm, the improvedDE algorithm is used to solveMOPs. Themain difference
between MTVDE algorithm and other MOEA algorithms is the three test vectors and the
new select method. Eight benchmark functions are used to test the MTVDE algorithm.
Experimental results show that MTVDE algorithm is better than most MOEA. In order to
find the best solution, different values of crossover probability are tested, the results of ZDT4
are very sensitive to the crossover probability (crossover probability is 0.3 better results). In
short, the algorithm in this paper can effectively converge to the Pareto front of the problem
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Figure 1: ZDT1.
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Figure 2: ZDT2.
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Figure 3: ZDT3.
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Figure 4: ZDT4.
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Figure 5: ZDT6.

SCH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.5

2

2.5

3

3.5

4

MTVDE

1

1.5

2

2.5

3

3.5

4

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f
2

f1 f(x1)

f
(x

2)

Figure 6: SCH.



Abstract and Applied Analysis 9

f2
f1

f
3

MTVDE NSGA2

00.1 0.2 0.3 0.4 0.5 0.6 0.7

0.8
0.6

0.4
0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

1 2 3 4 5 6 7

15

10

5

0
0

5

10

15

20

0

f(x1)

f(x2)

f
(x

3)

Figure 7: DTLZ1.
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Figure 8: DTLZ2.

Table 1: Testing result’s statistics of the problem ZDT1.

Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.033482 ± 0.004750 0.390307 ± 0.001876
NSGA-II (binary-coded) 0.000894 ± 0.000000 0.463292 ± 0.041622
SPEA 0.001799 ± 0.000001 0.784525 ± 0.004440
PAES 0.082085 ± 0.008679 1.229794 ± 0.000742
PDEA N/A 0.298567 ± 0.000742
MODE 0.005800 ± 0.000000 N/A
MTVDE 0.001200 ± 0.000002 0.505800 ± 0.003200
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Table 2: Testing result’s statistics of the problem ZDT2.

Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.072391 ± 0.031689 0.430776 ± 0.004721
NSGA-II (binary-coded) 0.000824 ± 0.000000 0.435112 ± 0.024607
SPEA 0.001339 ± 0.000000 0.755184 ± 0.004521
PAES 0.126276 ± 0.036877 1.165942 ± 0.007682
PDEA N/A 0.317958 ± 0.001389
MODE 0.005500 ± 0.000000 N/A
MTVDE 0.004700 ± 0.000006 0.645900 ± 0.002600

Table 3: Testing result’s statistics of the problem ZDT3.

Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.114500 ± 0.004940 0.738540 ± 0.019706
NSGA-II (binary-coded) 0.043411 ± 0.000042 0.575606 ± 0.005078
SPEA 0.047517 ± 0.000047 0.672938 ± 0.003587
PAES 0.023872 ± 0.000010 0.789920 ± 0.001653
PDEA N/A 0.623812 ± 0.000225
MODE 0.021560 ± 0.000000 N/A
MTVDE 0.006000 ± 0.000002 0.604400 ± 0.000326

Table 4: Testing result’s statistics of the problem ZDT4.

Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.513053 ± 0.118460 0.702612 ± 0.064648
NSGA-II (binary-coded) 3.227636 ± 7.307630 0.479475 ± 0.009841
SPEA 7.340299 ± 6.572516 0.798463 ± 0.014616
PAES 0.854816 ± 0.527238 0.870458 ± 0.101399
PDEA N/A 0.840852 ± 0.035741
MODE 0.638950 ± 0.500200 N/A
MTVDE 0.005200 ± 0.000002 0.744500 ± 0.003500

Table 5: Testing result’s statistics of the problem ZDT6.

Algorithm Convergence metric Diversity metric
NSGA-II (real-coded) 0.296564 ± 0.013135 0.668025 ± 0.009923
NSGA-II (binary-coded) 7.806798 ± 0.001667 0.644477 ± 0.035042
SPEA 0.221138 ± 0.000449 0.849389 ± 0.002713
PAES 0.085469 ± 0.006664 1.153052 ± 0.003916
PDEA N/A 0.473074 ± 0.021721
MODE 0.026230 ± 0.000861 N/A
MTVDE 0.000414 ± 3.4014e − 009 0.926300 ± 0.000895
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Table 6: Testing result’s statistics of the problems SCH, DTLZ1, and DTLZ2.

Problem Algorithm Convergence metric Diversity metric

SCH NSGA-II 0.0076 ± 6.2023e − 008 0.8471 ± 1.9253e − 004
MTVDE 0.0084 ± 1.2296e − 007 0.8728 ± 8.0547e − 005

DTLZ1 NSGA-II 7.459200 ± 12.42210 1.02050 ± 0.005900
MTVDE 0.023200 ± 0.000014 0.774900 ± 0.002300

DTLZ2 NSGA-II 0.659100 ± 0.004000 0.914300 ± 0.002700
MTVDE 0.512900 ± 0.001100 0.647000 ± 0.001500

Table 7

F CR Convergence metric Diversity metric
0.1 0.9 0.0086 ± 1.9976e − 007 0.9551 ± 1.8152e
0.3 0.9 0.0090 ± 1.4876e − 007 0.9361 ± 1.6769e
0.5 0.9 0.0084 ± 1.2296e − 007 0.8728 ± 8.0547e
0.7 0.9 0.0091 ± 1.9254e − 007 0.9281 ± 1.4343e
0.9 0.9 0.0088 ± 9.4253e − 008 0.9276 ± 1.9030e
0.5 0.1 0.0088 ± 7.6655e − 008 0.9258 ± 1.6304e
0.5 0.3 0.0089 ± 1.4744e − 007 0.9283 ± 2.0532e
0.5 0.5 0.0091 ± 2.8769e − 008 0.9327 ± 1.1066e
0.5 0.7 0.0091 ± 1.5230e − 007 0.9313 ± 5.6436e
0.5 0.9 0.0084 ± 1.2296e − 007 0.8728 ± 8.0547e

and maintain the diversity of the Pareto optimal solution set. It is an effective algorithm
for solving multiobjective optimization problems. In the future work, we intend to use
MTVDE algorithm or appropriate improved MTVDE algorithms for solving other complex
constrained MOPs.

Acknowledgments

The work is supported by the Foundations of National Natural Science China under Grant
no. 60962006 and by the Foundations of Research Projects of State Ethnic Affairs Commission.

References

[1] N. Srinivas and K. Deb, “Multi-objective optimization using non-dominated sorting in genetic
algorithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221–248, 1994.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[3] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the
strength Pareto approach,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271,
1999.

[4] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength Pareto evolutionary
algorithm,” Tech. Rep. 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology (ETH) Zurich, Zurich, Switzerland, 2001.

[5] R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization
over continuous spaces ,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.



12 Abstract and Applied Analysis

[6] H. A. Abbass, R. Sarker, and C. Newton, “PDE: a Pareto-frontier differential evolution approach
for multi-objective optimization problems,” in Proceedings of the Congress on Evolutionary Computation
(CEC’01), pp. 971–978, May 2001.

[7] H. A. Abbass, “PDE: the self-adaptive Pareto differential evolution algorithm,” in Proceedings of the
Congress on Evolutionary Computation (CEC’02), vol. 1, pp. 831–836, IEEE Service Center, Piscataway,
NJ, USA, 2002.

[8] N. K. Madavan, “Multi-objective optimization using a Pareto differential evolution approach,” in
Proceedings of the Congress on Evolutionary Computation (CEC’02), vol. 2, pp. 1145–1150, IEEE Service
Center, Piscataway, NJ, USA, 2002.

[9] F. Xue, A.C. Sanderson, and R.J. Graves, “Pareto-based multi-objective differential evolution,” in
Proceedings of the Congress on Evolutionary Computation (CEC’03), vol. 2, pp. 862–869, IEEE Press,
Canberra, Australia, 2003.

[10] T. Robi and B. Filipi, “DEMO: differential evolution for multi- objective optimization,” in Lecture Notes
in Computer Science, pp. 520–533, Springe, Berlin, Germany, 2005.

[11] W. Qian and A. li, “Adaptive differential evolution algorithm for multiobjective optimization
problems,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 431–440, 2008.

[12] W. Gong and Z. Cai, “An improved multiobjective differential evolution based on Pareto-adaptive
ε-dominance and orthogonal design,” European Journal of Operational Research, vol. 198, no. 2, pp. 576–
601, 2009.


