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In all polynomial zerofinding algorithms, a good convergence requires a very good initial
approximation of the exact roots. The objective of the work is to study the conditions
for determining the initial approximations for an iterative matrix zerofinding method. The
investigation is based on the Newbery’s matrix construction which is similar to Fiedler’s
construction associated with a characteristic polynomial. To ensure that convergence to both the
real and complex roots of polynomials can be attained, threemethods are employed. It is found that
the initial values for the Fiedler’s companionmatrix which is supplied by the Schmeisser’s method
give a better approximation to the solution in comparison to when working on these values using
the Schmeisser’s construction towards finding the solutions. In addition, empirical results suggest
that a good convergence can still be attained when an initial approximation for the polynomial
root is selected away from its real value while other approximations should be sufficiently close
to their real values. Tables and figures on the errors that resulted from the implementation of the
method are also given.

1. Introduction

In recent years, various researches have been studied on the zerofinding algorithms. For the
first time, Galois established that a general direct method for calculating zeroes in terms of
explicit formulas exists only for general polynomials of degree less than five. Thus finding the
polynomial roots with higher degree needs numerical methods and each algorithm possesses
its own advantages and disadvantages. Wilkinson [1, 2] pointed out that there is no general
zerofinding algorithm that can suit any polynomial with arbitrary degree. In this paper, the
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zerofinding technique is considered for the class of unitary polynomials. Zerofinding unitary
polynomials have been based to determine companion matrix eigenvalues. Let u(z) be a
unitary polynomial of degree n as follows:

u(z) = zn + an−1zn−1 + · · · + a0. (1.1)

If A is its companion matrix associated with u, then

det(A − λI) = (−1)np(λ). (1.2)

Conventional methods for numerically solving polynomials, and contemporary numerical
methods from linear algebra, linear programming, and Fourier analysis, have been developed
for the solution of (1.1). Most of these methods rely on a good initial approximation of the
roots to ensure convergence besides stability considerations. It becomes the aim of this work
to seek for an effective resolution that avoids the inaccuracy of root finding, in particular for
the case of ill-conditioned algebraic or polynomial equations as in the case of higher degree
polynomials and polynomials with closed or multiple roots.

The paper is organized as follows.
In Section 2, we have reviewed the iterative methods which have been used for finding

roots of polynomials. In Section 3, the basis of the Fiedler’s theorems is reviewed. In Section 4,
we have introduced Fiedler’s method by considering the initial values of Schmeisser’s
method. In Sections 5 and 6, we have illustrated the solutions of polynomials by considering
the initial values from a section of the complex plane and initial values from the circle with
a certain radius, R. In Section 7, we have presented the results of choosing initial values for
arbitrary degree polynomial in the Fiedler’s method to attain the convergence of the roots.

It is to be noted that in Sections 4, 5, 6, and 7 the tables given indicate the accuracy
of our results. Moreover, the errors of the methods are shown by the figures. Importantly, in
order to implement our methods and to obtain the results as illustrated by the figures and
tables, we have utilized Matlab and Maple software. In Section 8, the analysis of the results is
discussed. Finally, in Section 9, the conclusion of this research is given.

2. Review on Existing Methods

Graeffe’s root-squaring method replaces the given polynomial by another polynomial whose
roots are the squares of the original polynomial. Newton’s method is an iterative procedure
based on a Taylor series of the polynomial about the approximate root.

As for the study by Foster [3]: “Convergence requires a very good initial approxima-
tion of the exact root.” The algorithm of Jenkins and Traub involves three stages and the
roots have to be computed in an approximately increasing order of magnitude in order to
avoid instability that arises when deflating with a large root [4, 5]. The Laguerre’s method
has cubic convergence for simple roots and also has linear convergence for multiple roots
but each iteration requires that the first and second derivatives be evaluated at the estimated
root, which makes the method computationally expensive [3, 6]. Trefethen and Toh [5, 7]
studied on the convergence between roots of a given polynomial and eigenvalues of the
Frobenius companion matrix [8] and also Traub and Reid have shown that these two sets
are comparable.
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For the case of polynomials with repeated roots, Hull and Mathon [9] presented an
iterative polynomial zerofinding algorithm such that the iterations not only converge to
simple roots but also converge to multiple roots. In 2005 Yan and Chieng [10] introduced
a method that theoretically resolves the multiple-root issue. The proposed method adopts
the Euclidean algorithm to obtain the greatest common divisor (GCD) of a polynomial
and its first derivative. The multiple roots are then defaulted into simple ones and then
the multiplicities of the roots are determined and calculated accordingly by applying
conventional root-finding methods. In 2007, Winkler [11] denoted that GCD computations
by Uspensky’s algorithm enable the multiplicity of each root to be calculated, and the
initial estimates of the roots of a polynomial are obtained by solving several lower degree
polynomials, all of whose roots are simple.

In some work, pejorative manifold have been applied. For example, Zeng [12]
presented an algorithm which transforms the singular root-finding problem into a regular
nonlinear least squares problem on a pejorative manifold and calculates multiple roots
simultaneously from a given multiplicity structure and initial root approximations.

Besides stability considerations in most of the conventional zerofinding methods,
convergence requires a good initial approximation of the exact roots. In this study, we
consider the importance of choosing good initial approximation of the roots to ensure that
convergence is attained. We present generally how to choose initial values by applying
Fiedler’s theorems and remarks, and the hybrid between Schmeisser’s and Fiedler’s methods.
The work partly focuses on the comparison of errors between the Schmeisser’s method
and the Schmeisser-Fiedler’s method when the initial values for the Fiedler’s method are
generated from the Schmeisser’s method, for solving the same polynomial. Moreover, this
study also discusses the error of finding roots of a polynomial by using the Fiedler’s method,
choosing initial values on a complex plane and on a circle. However, Malek and Vaillancourt
[13] has similarly investigated on the finding of the roots of polynomials by choosing the
initial values through the mentioned ways without paying attention to the comparison and
condition of choosing desired initial values. In this study, we have especially investigated
on the effects of attaining convergence, despite choosing only one initial value that is not
sufficiently close to its exact value. The upcoming tables and figures show the associated error
of the corresponding computations. What is more, the polynomials used in this research are
not restricted to only a particular class of polynomials. It is also highlighted that one of the
main tasks of this research is the implementation of all the methods that we have described
here for solving polynomials and drawing related figures by Matlab and Maple software.

3. Fiedler’s Method

The basis of Fiedler’s method is a reflection of an important theorem in linear algebra:
all roots of the characteristic polynomial of a real symmetric matrix are real. In fact,
Fiedler’s method is Newbery’s expanded method [14] and it determines real symmetric
matrix for polynomial with real roots. Required initial values in Fiedler’s method are
chosen by some different ways: from the initial values supplied by Schmeisser’s method,
randomly taken from a region in the complex plane, or from a circle with a large
radius.

In the method of Fiedler, there are some important theorems for obtaining the
companion matrix which are given as Theorems 3.1, 3.2, and 3.5 below. In fact, Fiedler’s
Theorem is an advantage of general theorem described below.
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Theorem 3.1 (see [15]). For n ≥ 1, assume that b1, b2, . . . , bn are n distinct numbers and

v(x) =
n∏

i=1

(x − bk). (3.1)

Let u(x) and w(x) be polynomials of degree n such that u(bk)/= 0 for each k = 1, 2, . . . , n. Define
n × n matrices A, C, and D as follows.

For i, k = 1, 2, . . . , n, let A = diag(−w(bk)/u(bk)), and let C = (cik) such that

if i /= k cik =
w(bi)/u(bi) −w(bk)/u(bk)

bi − bk
, else cik =

(
w(t)
u(t)

)′

t=b
. (3.2)

Let d = diag(dk) such that for a fixed constant δ /= 0, δv′(bk)d2
k
− u(bk) = 0 is satisfied.

Then for each t with v(t)/= 0, the number −w(t)/V (t) is an eigenvalue of (u(t)/V (t))A −
δDCD and dk/(t − bk) is the corresponding eigenvector.

We present the important result of the above theorem as follows.

Result 1. It is seen that by the selection of t0 as a root of u(t) in the above theorem, the matrix
δDCD will have an eigenvalue given by −w(t0)/V (t0) and this number will be equal to t0 if
unitary polynomials u(x) and w(x) are assumed such that w(x) = x[u(x) − v(x)] since we
can write −w(t0)/V (t0) = − t0[u(t0) − V (t0)]/V (t0) = t0.

Theorem 3.2 (see [16, Fiedler’s Theorem]). Assume that u(x) is a unitary polynomial of
degree n > 1, and b1, . . . , bn ∈ C are n distinct numbers such that u(bk)/= 0 for k = 1, 2 . . . , n.
Consider

v(x) =
n∏

k=1

(x − bk), B = diag(dk), (3.3)

and define the matrix A is a chaos of the matrix B, such that for a fixed δ /= 0,

A = B − δddT ∈ C
n×n, (3.4)

where, for i, k = 1, 2, . . . , n.

If i /= k then aik = −δdidk ,

else akk = bk − δd2
k

such that dk is a root of δv′(bk)d2
k
− u(bk) = 0, then det(A − λI) = (−1)nu(λ).

If roots of u are distinct and real and b1, . . . , bn are approximations of the roots, then δ can be
chosen as +1 or −1 in such a way that dk ∈ R, thus A is real symmetric [16].

Remark 3.3. If u(x) and bk are all real then each dk is real or imaginary.

Remark 3.4. Schmeisser [16] have proved that if the roots of u are distinct and single and the
numbers b1, . . . , bn are approximations of these roots, then the matrix A in Theorem 3.2 is a
unitary matrix.
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Theorem 3.5 (see [14]). Let u(x) be a unitary polynomial of n ≥ 1 such that

u(x) = xn − pxn−1 + r(x), deg r ≤ n − 2 (3.5)

and b1, . . . , bn are complex and distinct numbers that u(bk)/= 0 for k = 1, . . . , n − 1. Let

V (x) =
n∏

k=1

(x − bk), B = diag (bk) ∈ C(n−1)×(n−1). (3.6)

Assume that C = (ck) ∈ Cn−1 is a column vector such that ck satisfies

V ′(bk)c2k +U(bk) = 0 k = 1, . . . , n − 1. (3.7)

Then, there exists a bounded and symmetric matrix A ∈ Cn×n,

A =
[
B C
ct d

]
that d = −p −

n−1∑

k=1

bk det(A − λI) = (−1)np(λ). (3.8)

If all the roots of u(x) are simple and real and bk is approximation of these roots, thenA is real
and symmetric, that is, AT = A ∈ Rn×n. Thus the matrix A is similar to Newbery’s matrix.

According to the aforementioned theorems and remarks, we can find the roots of polynomials
with estimating initial values b1, . . . , bn by using the methods of Fiedler and Schmeisser and also
by generating the companion matrix A, where A = B − δddt ∈ Cn×n and by the definition dk as
the root of δV ′(bk) − u(bk) = 0. We present some examples of solving polynomials by applying
Fiedler’s Theorem and Schmeisser’s method. Further, we will examine the condition when only one
of the approximations of the roots is far from its real value. For future study, we will go through
another approach for estimation of the roots without much restriction and without compromising the
convergence of the method to the exact solutions with a high degree of accuracy.

4. Hybrid of Fiedler’s Method and Schmeisser’s Method

Schmeisser [16] generated a symmetric tridiagonal matrix, T , by using a modified Euclidean
algorithm. According to Schmeisser’s theorem which is based on a modified Euclidean
algorithm and the matrix T , we implemented the related algorithm using Matlab for solving
monic polynomials. Consider a monic polynomial U(x) and the corresponding matrix
T, after solving, det(T − λI) = (−1)nU(λ), we obtain the roots of U(x) approximately. In this
method, we consider the obtained values of Schmeisser’s method as the desired initial values
for Fiedler’s method.

Example 4.1. Consider the Wilkinson polynomial as follows:

u(x) = (x − 1)(x − 2)(x − 3) · · · (x − 19)(x − 20). (4.1)

Using this method after ten iterations, we find the respective root of the polynomial and the
results are shown in Table 1.
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Table 1: Achieved roots of Wilkinson polynomial by considering initial values of Schmeisser’s method.

Roots of u(x) Initial values of b[i] Eigenvalues of U Schmeisser error Fiedler error
1 0.99999999965 0.99999999988800000663 0.00E − 15 1.199E − 9
2 1.99999999999 1.99999999680000058 5.33E − 15 3.199E − 10
3 2.99999999998 2.9999999999359999597 2.66E − 15 6.400E − 10
4 3.99999999999 3.999999999679999014 1.421E − 14 3.20E − 10
5 5.00000000001 4.999999999999999988 2.66E − 15 1.200E − 17
6 6.00000000001 5.999999999999999626 0.00E − 15 3.74E − 16
7 7.00000000007 6.999999999999999984 1.68E − 14 1.600E − 17
8 8.00000000004 7.999999999999999551 1.15E − 14 4.490E − 16
9 9.00000000005 8.999999999999999997 3.55E − 15 3.000E − 18
10 10.00000000001 9.999999999999998875 1.78E − 15 1.125E − 15
11 11.00000000001 10.999999999999999904 5.33E − 15 9.600E − 16
12 12.00000000001 12.00000000000000001 7.11E − 15 1.000E − 17
13 13.00000000002 12.99999999999999974 5.33E − 15 2.600E − 16
14 14.00000000002 14.00000000000000019 1.78E − 15 1.900E − 16
15 15.00000000002 14.99999999999999982 7.11E − 15 1.800E − 16
16 16.00000000002 15.99999999999999977 1.776E − 14 2.300E − 16
17 17.00000000002 16.99999999999999949 3.55E − 15 5.100E − 16
18 18.00000000002 17.99999999999999949 7.11E − 15 5.100E − 16
19 19.00000000002 18.99999999999999977 1.421E − 14 2.230E − 15
20 20.00000000002 19.99999999999999916 2.487E − 14 8.400E − 16

Now, the error chart for the obtained results is given in Figure 1.
The second column of Table 1 gives the eigenvalues of the matrix generated

by Schmeisser’s method. These values correspond to the respective roots of the given
polynomial, when applying Schmeisser’s method. Subsequently, the values which are
obtained by Schmeisser’s method are used in Fiedler’s method as initial approximations of
the roots and the eigenvalues of the associated companion matrix A are then obtained. From
row four to the last row of Table 1, it is clearly shown that the errors of solving the polynomial
by Schmeisser’s method are higher than the errors accumulated from applying Fiedler’s
method in which the desired initial values are acquired from Schmeisser’s method. Likewise,
Figure 1 shows that the errors of Fiedler’s method by applying Schmeisser’s method for roots
greater than 5 in Wilkinson polynomial decrease.

5. Fiedler’s Method Initial Values from a Section of the Complex Plane

In this method, we choose the initial values of Fiedler’s method taken from a section of the
complex plane.

Example 5.1. Consider the polynomial u(x) = (x − i)(x − 2i)(x − 3i)(x − 4i)(x − 5i).
Using this method, we obtain the roots of this polynomial and the results are shown

in Table 2.
The error chart is depicted in Figure 2.
The second column of Table 2 gives the approximated values of the roots when the

initial values for solving polynomial of Example 5.1 are chosen from a complex plane using
Fiedler’s method. Working on the generated matrix U, it was found that its eigenvalues
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Figure 1: Error of Schmeisser-Fiedler method Wilkinson polynomial.

Table 2: Achieved roots of polynomial in Example 5.1 by considering initial values of a complex plane.

Roots of u(x) Initial values of b[i] Eigenvalues of matrix U Fiedler-error
1i

√
2 + 5i 0.99999999999432932 i 0.0 + 5.670iE − 12

2i 2 + i 1.99999999968706632i 0.0 + 3.129iE − 10
3i 7 + 3i 8.122 × 10−191 + 2.9999999987826582i 0.0 + 1.217iE − 10
4i

√
3 + 2i 4.0000000000806822i 0.0 + 8.68iE − 12

5i 1 + 3i 4.99999999982455368i 0.0 + 1.754iE − 10

converge to the respective real roots of the polynomial in the third column of Table 2.
Referring to the fourth column, the errors of this method are adequately small in comparison
with the real roots. Figure 2 depicts the results in Table 2, as well.

6. Fiedler’s Method with Initial Values from a Circle with R Radius

In this method, we choose the initial values of Fiedler’s method from a circle with radius R.
It should be taken care that the approximations converge to smaller roots if R is considered
to be sufficiently large (R > 10), and the method converges to larger roots if R is assumed to
be adequately small R < 1).

Example 6.1. Consider the polynomial u(x) = (x−11)(x−12)(x−13)(x−14) using this method,
R = 10 is chosen and we obtain the roots.

The results are shown in Table 3.
The error chart is depicted in Figure 3.
In Table 3, the second column points out the desired initial values for solving

polynomial given in Example 6.1 by applying Fiedler’s method. They were taken from the
circle with radius R = 10. After computing the eigenvalues of matrix U, given in the third
column of Table 3, each corresponding to the respective roots of the polynomial, the errors
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Figure 2: Error of Fiedler’s method for complex polynomial.

Table 3: Achieved roots of polynomial by choosing initial values on the circle.

Roots of u(x) Initial values of b[i] Eigenvalues of matrix U Fiedler error
11 1 + 3i 11.000000036818370 3.681E − 8
12 −1 − 3i 11.9999999996290109 3.709E − 8
13

√
2 +

√
8i 13.0000000034938808 3.493E − 8

14 −√2 − √
8i 13.9999999957633268 4.236E − 8

of the method were satisfactorily small in comparison with real roots. Figure 3 illustrates the
results in Table 3, as well.

7. Approximation of Initial Values for Fiedler’s Method for Arbitrary
Degree Polynomial

In this part, after a set of research about the polynomial with each degree, we obtained that if
we want to choose the initial values b1, b2, . . . , bn we are allowed to choose one of the roots
to be away from the real roots but the others must be close to the real ones.

Example 7.1. Consider the below polynomial:

u(x) = x4 − 10x3 + 35x2 − 50x + 24. (7.1)

By considering the initial values as the second column in the table below, we obtain the roots
of the polynomial after 10 iteration of Fiedler’s method. The results are listed in Table 4.

The error chart for the results obtained is given in Figure 4.
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Table 4: Achieved roots of polynomial in Example 7.1 by considering initial values (one of the
approximations is away from real value).

Roots of u(x) Initial values of b[i] Eigenvalues of matrix U Fiedler error
1 3.9 0.99999999999961600 5.293E − 11
2 13.3 1.99999999999998450 1.023E − 7
3 2.1 2.99999999999999287 2.476E − 11
4 1.5 3.9999999999999702 1.524E − 11

In Table 4, the second column shows the desired initial values for solving the
polynomial, given in Example 7.1, by applying Fiedler’s method. In the second row, the
amount of 13.3 is taken away from the exact value. In the third column, the eigenvalues
of the matrix U which corresponds to the respective roots of polynomial are shown. The
results are appropriately close to the real roots. Figure 4 illustrates the results in Table 4, as
well.

8. Discussion

Many numerical methods, using linear algebra, linear programming, and Fourier analysis,
have been developed for the solution of the polynomial (1.1). In this stage, we describe the
disadvantages of the present methods and explain the findings of our results in the form of
tables and figures.

Considering the disadvantages of the zerofinding methods, Winkler mentioned
that the Graeffe’s root-squaring method fails when there are roots of equal magnitudes
[11, p. 3]; however, by applying Fiedler’s method the algebraic equations which have
roots with almost the same modulus can be solved [17]. In addition, Bairstow’s
method is only valid for polynomials containing real coefficients avoiding complex
arithmetic. Moreover, the algorithm of Jenkins and Traub also involves three stages
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and is only valid for polynomials with real coefficients. Another insufficient method
like Laguerre’s technique is not completely perfect whereby each iteration requires that
the first and second derivatives be evaluated at the estimated root, which makes the
method computationally expensive. Muller’s method is a variant of Newton’s method and
convergence in Newton’s method requires that the estimate be sufficiently near the exact
root.

It can be gathered that the above methods have been facing some issues which need
to be reviewed. The information in Table 1 shows that after choosing the desired initial
values from the results obtained by Schmeisser’s method, the third column of Table 1, the
approximate results are reasonable, having the accuracy of nearly 10−10 after ten iterations.
By comparing the results in columns 4 and 5 of Table 1, it reveals that the Fiedler’s method,
assuming the desired initial values taken from obtained values of Schmeisser’s method, is
more accurate than solving the polynomial by Schmeisser’s method entirely.

It can be seen that 75 percent of the roots have accuracy up to almost 10−16. Similarly,
Figure 1 also verifies that in case of roots which are greater than 5 the error of Fiedler’s
method in which Schmeisser’s method is applied steadily decreases.

The information in Table 2 points out the estimated initial values which are chosen of
a complex plane. The results obtained by Fiedler’s method in Example 4.1 are reasonable and
nearly have accuracy of 10−11. Figure 2 confirms the same results as well.

Choosing suitable initial values on the circle with R = 10 in Example 6.1 along with
comparison of the third column in Table 3 and the real roots of the polynomial concludes
that the results which were found by using this method are reasonable. These results roughly
have accuracy of 10−14. Likewise, Figure 3 confirms the similar findings.

In the second column of Table 4 while the real roots are {1, 2, 3, 4}, only one of
approximation of the roots is chosen away from the exact value. In Example 7.1, we have
considered an initial value approximately equals 13.3 for the real root 2. According to the
third column of Table 4, the eigenvalues of matrix U correspond to the roots of polynomial.
the results were adequately close to the real roots with an accuracy of 10−10. Similarly, Figure 4
also proves this statement.
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9. Conclusion

Fiedler’s different algorithms are described. As mentioned earlier, it can be seen that among
existing numerical algorithms, we are not able to say that there is a special algorithm for
every arbitrary polynomial that is better than other ones and also there are the zerofinding
explicit formulas for maximum fifth-degree polynomial. In order to find the roots of an
arbitrary polynomial, we could find the roots of polynomial with high accuracy by using
one of the algorithms presented in this paper. In the case of using these algorithms for
choosing the initial values, we are able to choose these values from Schmeisser’s method
or by selection from a square or circle or by an arbitrary selection that all values must be
closed to the real ones except for one of them. In addition, besides stability considerations, in
future work we are interested to find the root-finding algorithms with less limitation of good
initial approximation of the roots to ensure convergence besides stability considerations. In
this case, future studies should consider whether we can find an approach of polynomial
zerofinding which ensures convergence to the roots even though some of the initial values
may not necessarily be closed to the real roots.
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