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This paper aims at presenting a general formulation of the hydrodynamic problem of a floating or
restrained oscillating water column device. Three types of first-order boundary value problems
are investigated in order to calculate the velocity potential of the flow field around the device. The
horizontal and vertical exciting wave forces, the rolling moment, the hydrodynamic parameters,
the volume flows, and the drift forces are obtained in order to find the loads on the structure. The
efficiency rate of the device is calculated in connection with the absorbed power and the capture
length of energy absorption. Finally, the resulting wave motion inside and outside the device and
the inner air pressure are examined.

1. Introduction

In the last years considerable efforts and advances have been made worldwide in
exploiting the energy of ocean waves due to the rise of the world’s energy consumption
and the requirement for “green” energy production. Among several classes of designs
proposed for the wave energy conversion, the oscillating water column device (OWC)
has received considerable theoretical attention. The OWC device is a partially submerged,
hollow structure open to the seabed below the water line. The vertical motion of the sea
surface alternatively pressurizes and depressurizes the air inside the structure generating a
reciprocating flow through a self-rectifying turbine which is installed beneath the roof of the
device. Full sized fixed and floating prototypes were built in Norway (in Toftestallen, near
Bergen, 1985), Japan (Sakata, 1990), India (Vizhinjam, near Trivandrum, Kerala State, 1990),
Portugal (Pico, Azores, 1999), UK (Scotland, 2000), and Japan (1998) [1, 2].
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A nearshore or onshore OWC device was analysed among others byMcCormick [3, 4],
Evans [5], Sarmento et al. [6], Evans and Porter [7], and Kokkinowrachos et al. [8], for
2D and 3D geometries of OWC devices with infinitesimal wall thickness. Hydrodynamic
analysis on a freely floating oscillating water column device could benefit from previous
worldwide studies on the dynamics of ships in wavy seas. The first theoretical analysis of
a floating oscillating water column device has been presented by Masuda [9]. He developed
a navigation buoy powered by wave energy, and equipped with an air turbine, while later
promoted the construction of a floating barge (80m × 12m), named Kaimei, which housed
several OWCs equipped with different types of air turbines [10]. Recently, Martins-Rivas and
Mei [11] presented an analysis on an OWC device mounded at the tip of a breakwater with
infinitesimal wall thickness and Falcão et al. [12] studied the dynamics of an OWC spar buoy.

In the present contribution, a vertical axisymmetric oscillating water column device
with finite wall thickness is examined that is free to move in finite depth waters.
Numerical results are given from the solution of three boundary value problems, namely,
the diffraction problem (body fixed in waves, atmospheric pressure on the OWC), the
radiation problem resulting from the forced oscillations of the body in otherwise still water,
also under atmospheric conditions above the OWC, and the radiation problem resulting
from an oscillating pressure head acting on the inner free surface of the OWC. Particularly,
numerically evaluated linear exciting wave forces in the horizontal and vertical directions
along with the volume flow, the added mass and wave damping coefficients are calculated
for the freely floating device. In view of evaluating the rigid body motions of the device,
the motion equations are solved in the frequency domain, for various values of turbine
parameters related to the pressure drop inside the oscillating chamber. The developed
method is based on matched axisymmetric eigenfunction expansions of the velocity potential
in properly defined ring-shaped fluid regions around the device and could be considered as
an extension of the methods employed by Miles and Gilbert [13], Garrett [14], and Yeung
[15] as far as a circular dock is concerned, by Mavrakos [16, 17] for bottomless cylinders,
by Kokkinowrachos et al. [18] for the hydrodynamic analysis (diffraction and radiation
problems) of arbitrary shaped vertical bodies of revolution. In particular, the method extends
the formulation given by Evans and Porter [7] to account for finite wall thickness of the
vertical bottomless cylindrical chamber and the related 2D formulation by Kokkinowrachos
et al. [8] to the case of freely moved vertical cylindrical ducts. The first-order numerical
results for the oscillating water column device are supplemented with corresponding ones
concerning the wave elevation around the OWC configuration. Finally, the paper investigates
the time-independent part of the second-order wave forces (drift forces) on the device’s wall
and the absorbed wave energy and capture length from the OWC device. Among several
types of self-rectifying air turbines that have been developed to equip OWCs [19, 20], it is
assumed that a “Wells” turbine, named after its inventor, is installed beneath the roof of the
device.

2. Formulation of the Hydrodynamic Problem

We consider a freely floating vertical axisymmetric cylindrical OWC device (Figure 1) of
internal and external radius b and a, respectively, excited by regular waves of amplitude
H/2, frequency ω, and wave number k in constant water depth, d. The draught of the
device’s chamber is (d − h). We assume small amplitude waves and motions and inviscid
incompressible irrotational flow. Cylindrical coordinates (r, θ, z) are introduced with the
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Figure 1: Typical floating oscillating water column device with finite wall thickness. Ring elements
definition.

vertical axis Oz directed upwards and origin at the sea bed. For the OWC device, we expect
the internal free surface of the device to be subjected to an oscillating pressure head Pin with
Pin(t) = Re[pin0 · e−iωt], having the same frequency, ω, as the incident wave.

The time harmonic complex velocity potential of the flow field around the structure
can be expressed as

Φ(r, θ, z; t) = Re
[
φ(r, θ, z) · e−iωt

]
. (2.1)

We decompose the above velocity potential as

φ = φ0 + φ7 +
∑

j=1,3,5

ẋj0 · φj + φP . (2.2)

Here, φ0 is the velocity potential of the undisturbed incident harmonic wave; φ7 is the
scattered potential for the body fixed in the waves with the duct open to the atmosphere, that
is, for a pressure in the chamber equal to the atmospheric one; φj , (j = 1, 3, 5), is the radiation
potential resulting from the forced body motion in the jth mode of motion with unit velocity
amplitude ẋj0 with the duct open to the atmosphere; φP is the radiation potential resulting
from the oscillating pressure head, Pin, in the chamber for the body fixed in otherwise calm
water.

The undisturbed incident wave potential, φ0, can be expressed in cylindrical co-
ordinates as [21]

φ0(r, θ, z) = −iω
(
H

2

) ∞∑
m=0

εmi
mΨ0,m(r, z) cos(mθ), (2.3)



4 Journal of Applied Mathematics

where

1
d
Ψ0,m(r, z) =

Z0(z)
dZ′

0(d)
Jm(kr). (2.4)

Here, Jm is themth order Bessel function of the first kind, εm is theNeumann’s symbol defined
as ε0 = 1 and εm = 2 for m ≥ 1 and Z0(z):

Z0(z) =
[
1
2

[
1 +

sinh(2kd)
2kd

]]−1/2
cosh(kz), (2.5)

with Z′
0(d) being its derivative at z = d. Frequency ω and wave number k are related by the

dispersion equation:

ω2 = k · g · tanh(kd). (2.6)

The diffracted potential, φD, around the restrained structure is described by the velocity
potential:

φD = φ0 + φ7. (2.7)

In accordance to (2.3) the diffracted velocity potential of the flow field around the OWC
device can be written in the form:

φD(r, θ, z) = −iω
(
H

2

) ∞∑
m=0

εmi
mΨD,m(r, z) cos(mθ). (2.8)

The fluid flow caused by the forced oscillation of a vertical axisymmetric body in otherwise
still water is symmetric about the plane θ = 0 and antisymmetric about plane θ = π/2
for surge, (j = 1), and pitch, (j = 5), whereas it is symmetric about both these planes for
heave, (j = 3). Thus the corresponding velocity potentials for these modes of motion can be
expressed as

φ1(r, θ, z) = Ψ1,1(r, z) cos(θ), (2.9)

φ3(r, θ, z) = Ψ3,0(r, z), (2.10)

φ5(r, θ, z) = Ψ5,1(r, z) cos(θ). (2.11)

As for the radiation potential φP , we note that due to the high sound speed in air, the low
frequency of sea waves, and the relatively small per unit volume air kinetic energy, the air
pressure can be assumed to be spatially uniform throughout the axisymmetric chamber [11].
Thus, since the forcing of the internal free surface is independent of θ, the radiation potential
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φP will be axially symmetric and so it will include only the m = 0 angular mode, that is, it
holds:

φP (r, θ, z) =
pin0
iωρ

ΨP,0(r, z). (2.12)

In the functions Ψj,m of (2.8)–(2.12) the first subscript j = D, 1, 3, 5, P denotes the respective
boundary value problem each time considered, whereas the second one indicates the value
of m which must be taken into account for the solution of the corresponding problem. Thus
the functions ΨD,m, (m = 0, 1, 2, . . .), Ψ1,1, Ψ3,0, Ψ5,1, and ΨP,0 remain the principal unknowns
of the problem.

The velocity potentials φj, (j = D, 1, 3, 5, P), have to satisfy the Laplace equation

∇2φj =
∂2φj

∂r2
+
1
r

∂φj

∂r
+

1
r2

∂2φj

∂θ2
+
∂2φj

∂z2
= 0 (2.13)

within the entire fluid domain, the linearized boundary condition at the outer and inner free
sea surface (z = d), that is,

ω2φj − g
∂φj

∂z
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 for r ≥ a, j = D, 1, 3, 5, P,
0 for 0 ≤ r ≤ b, j = D, 1, 3, 5,

− iω
ρ
pin0 for 0 ≤ r ≤ b, j = P,

(2.14)

and the zero normal velocity on the sea bed, that is,

[
∂φj(r, θ, z)

dz

]

z=0

= 0, j = 1, 3, 5, 7, P. (2.15)

Furthermore, the velocity potentials φj, (j = D, 1, 3, 5, P), have to fulfill following kinematic
conditions on the mean device’s wetted surface S0:

∂φi

∂	n
= 0, i = D,P,

∂φj

∂	n
= nj, j = 1, 3, 5, (2.16)

where in (2.16) ∂( )/∂	n denotes the derivative in the direction of the outward unit normal
vector 	n, to the wetted surface S0 of the device and nj are its generalized components defined
as (n1, n2, n3) = 	n and (n4, n5, n6) = 	r × 	n, where 	r is the position vector with respect to the
origin of the coordinate system.

We also require the scattered potential to satisfy an appropriate radiation condition as
r → ∞, which has the form:

lim
r→∞

√
kr

(
∂φj

∂r
− ikφj

)
= 0, j = 1, 3, 5, 7, P. (2.17)
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Moreover, the velocity potentials, φj , and their derivatives, ∂φj/∂r, (j = D, 1, 3, 5, P) must be
continuous at the vertical boundaries of neighbouring fluid regions (Figure 1). This results
in:

ΨIII
j,m(b, z) = ΨM

j,m(b, z) for 0 ≤ z ≤ h, (2.18)

∂ΨIII
j,m

∂r

∣∣∣∣∣∣
r=b

=
∂ΨM

j,m

∂r

∣∣∣∣∣∣
r=b

for 0 ≤ z ≤ h, (2.19)

ΨI
j,m(a, z) = ΨIII

j,m(a, z) for 0 ≤ z ≤ h, (2.20)

∂ΨI
j,m

∂r

∣∣∣∣∣∣
r=a

=
∂ΨIII

j,m

∂r

∣∣∣∣∣∣
r=a

for 0 ≤ z ≤ h. (2.21)

The superscripts I, III, M imply quantities corresponding to respective types of ring
elements.

Starting with the method of separation of variables for the Laplace differential
equation, appropriate expressions for the velocity potentials, Ψi

j,m, in each fluid domain
(Figure 1; i = I, III,M) can be established [14, 16, 21]. These expressions satisfy the
corresponding conditions at the horizontal boundaries of each fluid region and, in addition,
the radiation condition at infinity in the outer fluid domain. As a result, the velocity potentials
in each fluid domain fulfil a priori the kinematical boundary conditions at the horizontal
walls of the device, the linearized condition at the free surface, the kinematical one on the sea
bed, and the radiation condition at infinity.

3. Diffraction and Radiation Potentials for Various Fluid Regions

For each type of fluid domain the following expressions for the functions Ψi
j,m involved in

(2.8)–(2.12) can be derived.

(a) Infinite Fluid Domain. Type I (r ≥ a, 0 ≤ z ≤ d)

One has

1
δj

ΨI
j,m(r, z) = gI

jm(r, z) + FI
j,m,0

Hm(kr)
Hm(ka)

Z0(z) +
∞∑
i=1

FI
j,m,i

Km(air)
Km(aia)

Zi(z), (3.1)

where j = D, 1, 3, 5, P and

gI
Dm(r, z) =

{
Jm(kr) − Jm(ka)

Hm(ka)
Hm(kr)

}
Z0(z)
dZ′

0(d)
,

gI
11(r, z) = gI

30(r, z) = gI
51(r, z) = gI

P0(r, z) = 0,

δD = δ1 = δ3 = d, δ5 = d2, δP = 1.

(3.2)
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Hm and Km are the mth order Hankel function of the first kind and the modified Bessel
function of the second type, respectively, and FI

j,m,i are unknown Fourier coefficients to be
determined by the solution procedure. Moreover, Zi(z) are orthonormal functions in [0, d]
defined by (2.5) for i = 0 and by

Zi(z) =
[
1
2

[
1 +

sin(2aid)
2aid

]]−1/2
cos(aiz), i ≥ 1. (3.3)

The eigenvalues αi are roots of the transcendental equation:

ω2 + g · ai · tan(aid) = 0, (3.4)

which possesses one imaginary, a0 = −ik, k > 0, and infinite number of real roots. Substituting
the value of a0 in (3.3) and (3.4), (2.5) and (2.6) can directly be obtained.

(b) Fluid Region of Type III (b ≤ r ≤ a, 0 ≤ z ≤ h)

One has

1
δj

ΨIII
j,m(r, z) = gIII

jm (r, z) +
∞∑
q=0

εq
[
RIII

mq(r)F
III
j,m,q + R∗III

mq(r)F
∗III
j,m,q

]
cos

(
qπz

h

)
, (3.5)

where j = D, 1, 3, 5, P and

gIII
Dm(r, z) = gIII

11 (r, z) = gIII
P0 (r, z) = 0, (3.6)

gIII
30 (r, z) =

z2 − (1/2)r2

2hd
, gIII

51 (r, z) =
−r[z2 − (1/4)r2

]

2hd2
,

RIII
mq(r) =

Km

(
qπb/h

)
Im
(
qπr/h

) − Im
(
qπb/h

)
Km

(
qπr/h

)

Im
(
qπa/h

)
Km

(
qπb/h

) − Im
(
qπb/h

)
Km

(
qπa/h

) , m, q /= 0,

(3.7)

RIII
m0(r) =

(r/b)m − (b/r)m

(a/b)m − (b/a)m
, m/= 0, q = 0, RIII

00 (r) =
ln(r/b)
ln(a/b)

, m, q = 0,

R∗III
mq(r) =

Im
(
qπa/h

)
Km

(
qπr/h

) −Km

(
qπa/h

)
Im
(
qπr/h

)

Im
(
qπa/h

)
Km

(
qπb/h

) − Im
(
qπb/h

)
Km

(
qπa/h

) , m, q /= 0,

(3.8)

R∗III
m0 (r) =

(a/r)m − (r/a)m

(a/b)m − (b/a)m
, m/= 0, q = 0, R∗III

00 (r) =
ln(a/r)
ln(a/b)

, m, q = 0. (3.9)

Im is the mth order modified Bessel function of the first kind and FIII
j,m,q, F

∗III
j,m,q are Fourier

coefficients to be determined by the solution procedure. The functions gIII
jm (r, z) in (3.6) and

(3.7) above represent harmonic particular solutions for the surge, heave, and pitch modes of
motion [15, 17, 18] that fulfill the inhomogeneous boundary condition (2.16) for the heave
and pitch motions at the bottom surface of the OWC device.
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(c) Interior Fluid Region of Type M (r ≤ b, 0 ≤ z ≤ d)

One has

1
δj

ΨM
j,m(r, z) = gM

jm(r, z) +
∞∑
i=0

FM
j,m,i

Im(air)
Im(aib)

Zi(z), (3.10)

where j = D, 1, 3, 5, P and

gM
Dm(r, z) = gM

11 (r, z) = gM
30 (r, z) = gM

51 (r, z) = 0, gM
P0(r, z) = 1. (3.11)

Here, the orthonormal functions Zi(z) are defined by (2.5) and (3.3), for i = 0 and i ≥ 1,
respectively, and ai are given by (3.4). Moreover, FM

j,m,i are unknown Fourier coefficients in
the Mth fluid region. The function gM

P0(r, z) has been introduced in (3.10) in order for the
inhomogeneous boundary condition on the water surface in the interior fluid region, (2.14)
to be fulfilled in the case of the pressure radiation problem.

The solutions for the potential functions Ψi
j,m, (i = I, III,M and j = D, 1, 3, 5, P),

expressed through (3.1), (3.5), and (3.10), are constructed in such a way that the conditions at
all the horizontal boundaries of each fluid region and, in addition, the radiation condition at
infinity in the outer fluid domain are a priori satisfied. Moreover, the potential functionsΨi

j,m

have been constructed in such a way that their homogeneous parts can be reduced to simple
Fourier series at the vertical boundaries of the various fluid regions, that is, r = a, b. This
feature of the velocity potential representations facilitates essentially the solution procedure.
The kinematic conditions at the body’s vertical walls, (2.16), as well as the requirement for
continuity of the potential and its radial derivative, (2.18)–(2.21), at the vertical boundaries
of neighboring fluid domains remain to be fulfilled. Expressing these conditions, the system
of equations for the unknown Fourier coefficients is obtained. Once these coefficients have
been calculated, the functions Ψi

j,m and hence the velocity potential for all fluid regions can
be evaluated. Methods for the solution of the diffraction and the radiation problem originated
from the forced body motion in otherwise still water have been extensively reported in
previous works [16, 17] and, so, they are no further elaborated here. Only the solution
procedure for the pressure radiation problem will be outlined in the next section.

4. Solution Procedure for the Pressure Radiation Problem

The condition for continuity of the potential function at r = b and r = a is expressed by
(2.18) and (2.20), respectively. Multiplying both sides of equations by (1/h) cos(νπz/h) and
integrating over their region of validity, that is, 0 ≤ z ≤ h the following set of equations can
be obtained:

∞∑
q=0

F∗III
P,0,q = Q∗

P,0,q +
∞∑
i=0

Lq,iF
M
P,0,i, for 0 ≤ z ≤ h, r = b, (4.1)

∞∑
q=0

FIII
P,0,q =

∞∑
i=0

Lq,iF
I
P,0,i, for 0 ≤ z ≤ h, r = a, (4.2)



Journal of Applied Mathematics 9

where

Lq,i =
1
h

∫h

0
Zi(z) cos

(
qπz

h

)
dz, (4.3)

Q∗
P,0,q =

1
h

∫h

0
gM
P0(b, z) cos

(
qπz

h

)
dz, (4.4)

are defined in Appendix A.
Now, the condition for the continuity of the first derivative of the potential at r = b and

r = a as expressed by (2.19) and (2.21), respectively, as well as the kinematic condition on the
vertical boundaries of the device as described by (2.16) must be fulfilled too. Multiplying
both sides of (2.19), (2.21), and (2.16) with the weight function (1/d)Zμ(z), integrating over
the region of their validity, that is, h ≤ z ≤ d and 0 ≤ z ≤ d, respectively, and adding the
resulting expressions, the following set of equations is obtained:

∞∑
i=0

FM
P,0,iA

M
0,i =

h

d

∞∑
q=0

εqLq,iD
III
0q FIII

P,0,q +
h

d

∞∑
q=0

εqLq,iD
∗III
0q F∗III

P,0,q, at r = b, (4.5)

∞∑
i=0

FI
P,0,iA

I
0,i =

h

d

∞∑
q=0

εqLq,i

(
AIII

0q F
III
P,0,q +A∗III

0q F∗III
P,0,q

)
, at r = a, (4.6)

where

AM
0,i = aib

∂I0(air)
∂r

∣∣∣∣
r=b

1
I0(aib)

, AI
0,i = aia

∂K0(air)
∂r

∣∣∣∣
r=a

1
K0(aia)

, (4.7)

DIII
0q = b

∂RIII
q

∂r

∣∣∣∣∣
r=b

, D∗III
0q = b

∂R∗III
0q

∂r

∣∣∣∣∣∣
r=b

, AIII
0q = a

∂RIII
0q

∂r

∣∣∣∣∣∣
r=a

, A∗III
0q = a

∂R∗III
0q

∂r

∣∣∣∣∣∣
r=a

,

(4.8)

and RIII
0q , R

∗III
0q are defined in (3.8) and (3.9), respectively. For the numerical implementation

of the method, series (3.1), (3.5), and (3.10) expressing the potential in I, III, M fluid region
will be truncated after Q,M, and N terms, respectively.

Substituting (4.1) into (4.5)will provide the unknown Fourier coefficients, FM
P,0,i, in the

M fluid domain in relation with the Fourier coefficients, FIII
P,0,q, in the III fluid domain, in the

following matrix form, that is,

⎛
⎝[

AM
0,i

]
− h

d

∞∑
q=0

[
LM,III
i,q

]
· [εq

] ·
[
D∗III

0q

]
·
[
LIII,M
q,i

]
⎞
⎠ ·

{
FM
P,0,i

}

=
h

d

[
LM,III
i,q

]
· [εq

] ·
[
DIII

0q

]
·
{
FIII
P,0,q

}
+
h

d

[
LM,III
i,q

]
· [εq

] ·
[
D∗III

0q

]
·
{
Q∗

P,0,q

}
,

(4.9)
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where, {FM
P,0,i} and {FIII

P,0,q} are both complex vectors, the elements of which are the unknown
Fourier coefficients in the Mth and IIIth fluid domain, respectively, [AM

0,i] is a (N × N)

diagonal matrix given by (4.7), [LM,III
i,q ] is a (N × M) matrix given by (4.3), [εq] is the

Neumann’s symbol (M × M) diagonal matrix with ε11 = 1 and εkk = 2 for k ≥ 2, [DIII
0q ]

and [D∗III
0q ] are (M × M) diagonal matrices defined in (4.8), and {Q∗

P,0,q} is a column vector
(M × 1) defined in (4.4).

From (4.9) and (4.1), the Fourier coefficients, FIII
P,0,q and F∗III

P,0,q, in the IIIth fluid domain
are connected with the bellow relation:

{
F∗III
P,0,q

}
=

h

d

[
LIII,M
q,i

]
· [Gi,i]−1 ·

[
LM,III
i,q

]
· [εq

] ·
[
DIII

0q

]
·
{
FIII
P,0,q

}

+
(
[I] +

h

d

[
LIII,M
q,i

]
· [Gi,i]−1 ·

[
LM,III
i,q

]
· [εq

] ·
[
D∗III

0q

])
·
{
Q∗

P,0,q

}
,

(4.10)

where [I] is the unit matrix and

[Gi,i] =
[
AM

0,i

]
− h

d

∞∑
q=0

[
LM,III
i,q

]
· [εq

] ·
[
D∗III

0q

]
·
[
LIII,M
q,i

]
, (4.11)

where, {F∗III
P,0,q} is a complex vector, the elements of which are the unknown Fourier

coefficients in the IIIth region.
Substituting (4.2) into (4.6)will provide the unknown Fourier coefficients, FI

P,0,i, in the
Ith fluid domain in relation with the Fourier coefficients, FIII

P,0,q, F
∗III
P,0,q, in the III fluid domain,

in the following matrix form, that is,

[
AI

0,i

]
·
{
FI
P,0,i

}
=

h

d

[
LI,III
i,q

]
· [εq

] ·
[
AIII

0q

]
·
{
FIII
P,0,q

}
+
h

d

[
LI,III
i,q

]
· [εq

] ·
[
A∗III

0q

]
·
{
F∗III
P,0,q

}
,

(4.12)

where, {FI
P,0,i} is a complex vector, the elements of which are the unknown Fourier coefficients

in the I fluid domain, [AI
0,i] is a (Q×Q) diagonal matrix given by (4.7), and [LI,III

i,q ] is a (Q×M)
matrix given by (4.3).

After determining the Fourier coefficients for the pressure radiation problem in all
fluid domains, by solving the system equations (4.9), (4.10), and (4.12), and the Fourier
coefficients for the diffraction and motion radiation problem from previous work [16, 17]
and substituting them into (3.1), (3.5), (3.10), the velocity potential of the flow field in each
fluid region around the free floating body can be determined.

5. Volume Flow

During the water oscillation inside the chamber the dry air above the free surface is being
pushed through a Wells turbine. The volume flow produced by the oscillating internal water
surface is denoted by Q(t) = Re{q · e−iωt}where

q =
∫∫

Si

uzdSi =
∫∫

Si

u(r, θ, z = d)rdr dθ =
∫∫

Si

∂φ

∂z
rdr dθ. (5.1)
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Here uz denotes the vertical velocity of the water surface, and Si the cross-sectional area of
the inner water surface.

By substituting (2.2) into (5.1) it proves convenient to decompose the total volume
flow, q, into three terms associated with the diffraction, qD, the motion-dependent-, qR, and
the pressure-dependent-radiation problems, qP , as follows:

q = qD + qR + qP . (5.2)

Assuming uniform pressure distribution inside the chamber, only the pumping mode
for m = 0 affects the volumetric oscillations in evaluating qP . Moreover, by substituting (2.8)
into (5.1) it can be shown that only modes with m = 0 contribute to qD. Finally, the volume
flow rate due to motion-dependent radiation potentials qR can be expressed on the basis of
the relative displacement between the internal free surface elevation and the motions of the
device. Due to the fact that the motions in the horizontal plane (surge) and the pitch mode
for a vertical axisymmetric OWC device do not affect the volume of air in its chamber, only
the velocity potential due to the vertical displacement x30 of the device will contribute to the
volume flow rate, that is,

qR = q3 − ẋ30Si. (5.3)

By accounting (5.2), (5.1), and (5.3) it can be obtained that

qD =
∫∫

Si

∂

∂z

(
φ0 + φ7

)
dSi,

qP =
∫∫

Si

∂φP

∂z
dSi,

qR =
∫∫

Si

ẋ30
∂φ3

∂z
dSi − ẋ30Si.

(5.4)

Next, by substituting (3.10) into (2.8), (2.10), and (2.12), we have, respectively,

qD = (−iω)2
ω2

g

H

2
dπb

⎛
⎝FM

D,0,0
J1(kb)
kJ0(kb)

N−1/2
0 cosh(kd) +

∞∑
j=1

FM
D,0,j

I1
(
ajb

)

ajI0
(
ajb

)N−1/2
j cos

(
ajd

)
⎞
⎠,

(5.5)

qp = (−iω)2
pin0
gρ

πb

⎛
⎝FM

P,0,0
J1(kb)
kJ0(kb)

N−1/2
0 cosh(kd) +

∞∑
j=1

FM
P,0,j

I1
(
ajb

)

ajI0
(
ajb

)N−1/2
j cos

(
ajd

)
⎞
⎠,

(5.6)

q3 = ẋ302
ω2

g
dπb

⎛
⎝FM

3,0,0
J1(kb)
kJ0(kb)

N−1/2
0 cosh(kd) +

∞∑
j=1

FM
3,0,j

I1
(
ajb

)

ajI0
(
ajb

)N−1/2
j cos

(
ajd

)
⎞
⎠.

(5.7)
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The volume flow q3, induced by the heave mode forced oscillation, can be written as

q3 = (−e3P + iωd3P ) · ẋ30, (5.8)

where e3P , d3P are the real and imaginary part of (5.7). The volume flow associated with the
pressure radiation problem qP , (5.6), can be decomposed into real and imaginary part, fPP ,
gPP , respectively, as

qP = −(fPP − igPP
) · pin0, (5.9)

where gPP is in phase with the flow acceleration and amounts to the added hydrodynamic
inertia (i.e., radiation susceptance) and fPP is in phase with the flow velocity amounting to
radiation damping (i.e., radiation conductance) [7, 11].

We assume that the Wells turbine is placed in a duct between the chamber and the
outer atmosphere and the total volume flow Q is proportional to the chamber air pressure
[7, 22]:

Q(t) = Λ · Pin(t), (5.10)

Λ representing a pneumatic complex admittance.
The mass flow rate of air though the turbine can be written as [5]

ṁ(t) = −d
(
ρin(t) · Vin(t)

)

dt
. (5.11)

Here Vin is the air chamber volume, ρin is the air density, which can be related to the
atmospheric density ρa, by assuming isentropic density-pressure relations, small air density
variation and linearization with respect to the pressure [5], that is,

ρin(t) = ρa

[
1 +

Pin(t)
γ · Pa

]
. (5.12)

whith γ = 1.4 being the adiabatic constant and Pa the atmospheric pressure. By inserting
(5.11), (5.12) into (5.10), the air volume flow rate through the turbine is [5]

ṁ

ρa
= Q(t) − V0

γ · Pa

dPin(t)
dt

, (5.13)

where V0 is the value of Vin in undisturbed conditions. The turbine aerodynamic performance
can be written in dimensionless form as [23, 24]

Φ =
ṁ

ρaND3
, Ψ =

Pin

ρaN2D2
, Π =

E

ρaN3D5
, (5.14)
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whereN is the rotational speed (radians per unit time) of turbine blades, E the turbine power
output, and D the turbine rotor diameter. It was found [25] that for the Wells turbine:

Φ = K ·Ψ, (5.15)

where K is constant for a given turbine geometry (independent of turbine size or rotational
speed). Substitution of (5.14), (5.15) into (5.13) gives [26]

q =
[
KD

ρaN
+ (−iω)

V0

γPa

]
pin0. (5.16)

From (5.10) and (5.16):

Λ = gT + (−iω)
V0

γPa
, (5.17)

where gT = KD/ρaN.

6. Wave Forces

The various forces on the oscillating water column device can be calculated from the pressure
distribution given by the linearised Bernoulli’s equation:

P(r, θ, z; t) = −ρ∂Φ
∂t

= (−iω)ρφ · e−iωt, (6.1)

where φ is the velocity potential in each fluid domain I, III,M.
The horizontal wave force, Fx = Re(fx · e−iωt), on the device is given by

fx = fxOut − fxIn = −iωρa

∫z=d

z=h

∫θ=2π

0
φI cos θdθ dz + iωρb

∫z=d

z=h

∫θ=2π

0
φM cos θdθ dz, (6.2)

where fxOut is the horizontal force on the device’s external wall, and fxIn is the horizontal force
on the chamber’s wall.

The oscillating pressure inside the chamber does not affect the horizontal exciting force
on the floating device since the radiation potential includes only them = 0 angular mode. So,
the horizontal force on the OWC device is the same as on an open vertical axisymmetric
bottomless duct with finite wall thickness [16].

On the contrary, the oscillating pressure inside the chamber does affect the vertical
force due to unit internal pressure head, on the floating device. The total vertical force on
the OWC device, Fz = Re(fz · e−iωt), is equal to the sum of the vertical wave exciting force,
Fzopen = Re(fzopen · e−iωt), on the device when the duct is open to the atmosphere (diffraction
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load) and the vertical force, Fzclose = Re(fzclose · e−iωt), due to the internal pressure head when
the duct is closed:

fz = fzopen + fzclose = −iωρ

∫ r=a

r=b

∫θ=2π

0
φIII(−1)rdθ dr

= − iωρ

∫ r=a

r=b

∫θ=2π

0

(
φIII
D + φIII

P

)
(−1)rdθ dr.

(6.3)

Substituting (2.8) and (2.12) into (6.3)we extract

fzopen
B

= 2kd tanh(kd)

{
1
2
FIII
D,0,0

(
1 − 1 − (b/a)2

2 ln(a/b)

)
− 1
2
F∗III
D,0,0

(
b2

a2
− 1 − (b/a)2

2 ln(a/b)

)

+2
∞∑
n=1

(−1)n
(

h

nπa

)2[
FIII
D,0,n

(
AIII

0n −DIII
0n

)
+ F∗III

D,0,n

(
A∗III

0n −D∗III
0n

)]}
,

(6.4)

fzclose
πa2pin0

= 2

{
1
2
FIII
P,0,0

(
1 − 1 − (b/a)2

2 ln(a/b)

)
− 1
2
F∗III
P,0,0

(
b2

a2
− 1 − (b/a)2

2 ln(a/b)

)

+2
∞∑
n=1

(−1)n
(

h

nπa

)2[
FIII
P,0,n

(
AIII

0n −DIII
0n

)
+ F∗III

P,0,n

(
A∗III

0n −D∗III
0n

)]}
,

(6.5)

where B = πρga2(H/2) and FIII
D,0,n, F

∗III
D,0,n, F

III
P,0,n, and F∗III

P,0,n are the diffraction and pressure
radiation Fourier coefficients for the IIIth type of ring element and AIII

0n , A
∗III
0n , DIII

0n , and
D∗III

0n are defined at (4.8).
The vertical force fzclose induced by the oscillating pressure head pin0 is related [8, 22]

to the volume flow q3, induced by the heave mode forced oscillation, (see (5.8)). The above
force, fzclose , can be written as

fzclose = (−eP3 + iωdP3)pin0 = (e3P − iωd3P )pin0, (6.6)

where e3P , d3P are the real and imaginary part of (6.5)
The moment on the device about a horizontal axis lying at an arbitrary distance z = e

from the sea bed is the real part ofM · e−iωt, whereM is made up ofMs andMb arising from
the pressure distribution on the device’s vertical walls and on its bottom, respectively, [16]:

Ms = −iωρa

∫z=d

z=h

∫θ=2π

0
φI(z − e) cos θdθ dz + iωρb

∫z=d

z=h

∫θ=2π

0
φM(z − e) cos θdθ dz,

Mb = −iωρ

∫ r=a

r=b

∫θ=2π

0
φIII(−1)r2dθ dr = −iωρ

∫ r=a

r=b

∫θ=2π

0

(
φIII
D + φIII

P

)
(−1)r2dθ dr.

(6.7)
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7. Added Mass and Damping Coefficients

The hydrodynamic reaction forces and pitching moment Fi,j acting on the oscillating water
column device in the ith direction due to its sinusoidal motion with frequency ω and unit
amplitude in the jth direction can be obtained as the real part of fi,j · e−iωt, from (6.1):

fi,j = −ρω2
∫∫

S
Ψj,m(r, z) cos(mθ)ni dS. (7.1)

Herein ni is defined at (2.16) and Ψj,m is obtained from (3.1), (3.5), and (3.10) in each fluid
domain I, III,M.

The complex force fi,j may be written in the form [27]:

fij = ω2aij + iωbij , (7.2)

where aij and bij are the added mass and damping coefficients, respectively, both real and
dependent on frequency ω. Substituting the appropriate expressions for Ψj,m in (7.1) and
using (7.2), the relations for nondimensionalized hydrodynamic coefficients can be found
[17].

8. Motion and Air Pressure Calculation

Assuming that the waves and the device oscillations are described by small amplitude
motions, the hydrodynamic problem is well characterized by a linear approach. The 6 degrees
of freedom system of motion equations, in the frequency domain, are written as

6∑
j=1

(
mkj + akj

) ..
xj + bkj ẋj + ckjxj = Fk(t), k = 1, 2, . . . , 6, (8.1)

where xj is the 6-degree displacement vector, mkj is the mass matrix, akj is the frequency-
dependent added mass matrix, bkj is the frequency-dependent damping matrix, ckj is the
stiffness matrix, and Fk represent the total force (diffraction and pressure induced radiation)
on the device.

Under the assumption of symmetrical mass distribution, a vertical body of revolution
performs under the action of a regular incident wave three degrees of freedommotion, that is,
two translations (x1: surge, x3: heave) and one rotation (x5: pitch). So the (8.1) can be reduced
to

(m + a33)
..
x30 + b33ẋ30 + c33x30 = f3, (8.2)

(m + a11)
..
x10 + b11̇̇x10 + c11x10 +

(
mX

(0)
g3 + a15

)
..
x50 + b15ẋ50 + c15x50 = f1, (8.3)

(I55 + a55)
..
x50 + b55ẋ50 + c55x50 +

(
mX

(0)
g3 + a51

)
..
x10 + b51ẋ10 + c51x10 = f5, (8.4)
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where

c11 = c15 = c51 = 0, c33 = ρgAwp, c55 = ρgV
(
GM

)
. (8.5)

Also, Awp is the water plane area, GM is the metacentric height, X(0)
g3 is the vertical distance

of the centre of gravity from the reference point of motions, and I55 is the pitch mass moment
of inertia of the device.

Since the oscillating pressure inside the chamber does affect only the vertical exciting
force on the floating device, (8.2) can be recast as follows:

(
−iω(m + a33) + b33 +

i

ω
c33

)
ẋ30 = fzopen + fzclose + fMP (8.6)

with fMP being the force on the chamber’s wall due to inner pressure; it is equal to

fMP = Si · pin0. (8.7)

Combining (8.7), (8.6)we obtain

(
−iω(m + a33) + b33 +

i

ω
c33

)
ẋ30 +

(
−fzclose
pin0

− πb2
)
pin0 = fzopen . (8.8)

From (5.16) and (5.2) it is obtained that

[
gT + (−iω)

V0

γPa

]
pin0 = qD + qR + qP (8.9)

which in turn by considering (5.3) is reduced to

[
− q3
ẋ30

+ πb2
]
ẋ30 +

[
gT + (−iω)

V0

γPa
− qP
pin0

]
pin0 = qD. (8.10)

Solving the system of (8.3), (8.4), (8.8), and (8.10), we calculate the unknown motion
components of the device xj0 j = 1, 3, 5 and the internal chamber’s pressure pin0. When the
body is considered restrained in the waves, the air chamber pressure is deduced from (8.10)
for ẋ30 = 0.
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9. Wave Runup

The free surface elevation outside and inside the device is given by the linearized boundary
condition at the outer and inner free sea surface. It holds:

Z(r, θ, d; t) = Re
{
ζ(r, θ, d) · e−iωt

}
= Re

{(
iω

g
ϕI(r, θ, d)

)
(cos(ωt) − i sin(ωt))

}
, (9.1)

Z(r, θ, d; t) = Re
{
ζ(r, θ, d)e−iωt

}
= Re

{(
iω

g
ϕM(r, θ, d) − pin0

ρg

)
(cos(ωt) − i sin(ωt))

}
, (9.2)

for the outer and inner fluid domains, respectively.

10. Drift Forces

The time-independent part of the second-order wave forces (drift forces) on the floatingOWC
device, has been evaluated using the direct integration of all pressure terms contributing to
second-order loads components over the instantaneous body’s wetted surface. It holds [28]:

Fx
T
= −

∫

WL

1
2
· ρ · g · ζr

T
nxd� +m · R ·

..

Xg

T

+
∫∫

S0

1
2
· ρ · |∇Φ|2

T

nxdS0+
∫∫

S0

ρ ·X · ∇Φt

T

nxdS0,

(10.1)

Fz
T
= m · R ·

..

Xg

T

+
∫∫

S0

1
2
· ρ · |∇Φ|2

T

nzdS0 +
∫∫

S0

ρ ·X · ∇Φt

T

nzdS0, (10.2)

where m is the device’s mass, R is the transformation matrix, containing only first-order
angular displacement (see, Appendix B),

..

Xg is the acceleration matrix of the body’s centre of
gravity (see, Appendix B), ρ is the water density, g is the acceleration due to gravity, ζr is the
relative wave height (see, Appendix B), Φ is the time harmonic complex velocity potential of
the flow field around the structure, and X is the displacement vector of a point on the device
(see, Appendix B).

11. Absorbed Power

The time-averaged power absorbed by the device from the waves, Pout, is obtained from [11]

Pout =
1
2
Re
[
Λ · ∣∣pin0

∣∣2], (11.1)

where Λ is the turbine’s pneumatic admittance, (5.17). By inserting (5.2), (5.16), and (5.17),
into (11.1), we obtain

Pout =
KD

2ρaN
∣∣pin0

∣∣2 = KD

2ρaN
Re
[(
qD + qR

) · (qD + qR
)]

(
fPP +KD/ρaN

)2 + (ωV0/γPa + gPP
)2 . (11.2)
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Alternatively, (11.1) can be expressed as:

Pout =
1
2
Re
[(
qD + qR

)
pin0

] − 1
2
fPP

∣∣pin0
∣∣2 =

∣∣qD + qR
∣∣2

8 · fPP − fPP
2

∣∣∣∣pin0 −
qD + qR
2 · fPP

∣∣∣∣
2

, (11.3)

where fPP , gPP are defined in (5.9). Using (11.3), the maximum absorbed power can be
obtained as

Pmax =

∣∣qD + qR
∣∣2

8 · fPP
(11.4)

corresponding to an optimum inner pressure head pin0opt , equal to

pin0opt =
qD + qR
2 · fPP . (11.5)

The capture width � [7, 11] is the ratio of the power absorbed by the device to the available
power per unit crest length of the incident wave, that is,

� =
2 · Pout

ρ · g · (H/2)2 · Cg

. (11.6)

where Cg is the group velocity of the incident wave, given by

Cg =
1
2
ω

k

(
1 +

2kd
sinh(2kd)

)
, (11.7)

and k is the wave number.
In order to achieve maximum capture width, it is not always practical to change the

device’s geometry, but it is likely easier to control the rotational speed N and the turbines
diameter D. The optimum value of gT , (5.17), is obtained from ∂�/∂gT = 0 and from (11.6) it
is equal to

gTopt =

√
f2
PP +

(
gPP +

ωV0

γPa

)2

. (11.8)

When gT takes the above optimum value, the maximum value of the absorbed power can be
written in the bellow form:

Pmax =

∣∣qD + qR
∣∣2

8 · fPP

⎧
⎪⎪⎨
⎪⎪⎩
1 −

2 · gTopt ·
(
gTopt − fPP

)

2 · gTopt ·
(
gTopt + fPP

)
− 4 · ωV0

γPa
· gPP

⎫
⎪⎪⎬
⎪⎪⎭
. (11.9)
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Figure 2: Horizontal and vertical exciting force on the OWC device for different cases of wall thickness.

12. Numerical Results

The calculation of the Fourier coefficients FI
j,m,i, F

III
j,m,n, F

∗III
j,m,n, F

M
j,m,i, j = D, 1, 3, 5, and P is the

most significant part of the numerical procedure, because of their influence on the accuracy
of solution. For the case of the first and the Mth ring element, i = 20, terms were used, while
for the third ring elementN = 50, since it was found that the results obtained for those values
were correct to an accuracy of within 1%.

Since the pressure contribution inside the chamber affects only the vertical forces
exerted on the device, the horizontal exciting force coincides with the one computed by
Mavrakos [16] for a device open to the atmosphere. So, at first for the sake of computer
code’s verification, a geometric configuration investigated in [16] has been chosen. It is a
body with immersion h/b = 3.46 and water depth d/b = 4 for three cases of wall thickness
a/b = 4, a/b = 2, and a/b = 1.5. In Figure 2 the horizontal and vertical exciting force on the
OWC device is compared with the results by Mavrakos [16] for the moon pool body when
the inner pressure is equal to the atmospheric.

Then, a three-dimensional oscillating water column device is investigated, which is
floating in a water depth d = 15m with chamber’s draught equal to 5m. The OWC’s internal
and external radii are 2m and 4m, respectively. The vertical force on the restrained device
due to a unit inner pressure head, expressed though (6.5), is plotted in Figure 3.

Next, we examine how the results’ accuracy is affected by the number of terms
considered in the potentials’ series expansions. In Figures 4 and 5 the values of fxN −fx10/fx10

and fzN − fz10/fz10 are plotted for various numbers of series terms N. Here, fxN and fzN are
the modulus of the horizontal and the total vertical exciting force, respectively, exerted on the
same as the above OWC device with a turbine parameter gT = 1m5/(N·s).

In Tables 1 and 2, the module of the air pressure trapped in the OWC chamber is
presented for the various values of gT and ka. The same geometry of the OWC is assumed as
the one previously examined. In Table 1 results for the restrained device, while in Table 2 for
the free floating one, are given. It is worthwhile to mention that when gT 	 0, the device’s
chamber is approximating the open condition, so the inner pressure head tends to zero. On
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Figure 3: Vertical exciting force on the OWC device due to a unit inner pressure head.
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the contrary, by letting gT → 0 the turbine at the top of the chamber is approximating the
closed condition, thus the air chamber pressure is increased.

Next, comparisons are presented with the results given by Martins-Rivas and Mei
[11]. To this end, we assume a vertical cylindrical oscillating water column device, having
a wall thickness (a − b)/d = 0.005, external radius a/d = 0.5 and floating with a draught
(d − h)/d = 0.2. Figure 6 concerns the conductance, B, and susceptance, C, as defined by
B = Re[(qp/pin0)/(a/ωρ)] and C = Im[(qp/pin0)/(a/ωρ)], respectively, while in Figure 7 the
nondimensional optimum turbine parameter gT · ρ/a is plotted against the wave number
parameter kd. In calculating the optimum turbine parameter though (11.8) since isentropy
is assumed γPa = c2a, ca being the sound velocity in air. The comparisons with the results of
Martins-Rivas and Mei [11] are excellent.

Next, in Table 3 the RAOs of the heave motion are given against ω2b/g for an OWC
device with dimensions d/b = 2, d − h/b = 1/3 and a/b = 1.8, a/b = 1.2, and a/b = 1.034.
The results are compared with those by Mavrakos and Bardis [29] that correspond to the
open moon pool case. For the present calculations, a value of gT = 1000m5/(N·s) is assumed
in order to approximate the open chamber case.

Further comparisons concerning the free surface elevation inside and outside of the
device are presented in Figures 8 and 9 when gT 	 0. The results are compared to those of
Mavrakos [16] for an open moonpool cylinder. The device’s immersion is h = 10m, inner
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Table 1: Modulus of the inner pressure pin0/(H/2) for various values of gT andka, for a restrained OWC
device.

gT = 0.5 gT = 1 gT = 2 gT = 3 gT = 6 gT = 10
k · a = 0.4 4.94E + 00 4.71E + 00 4.05E + 00 3.39E + 00 2.11E + 00 1.35E + 00
k · a = 1.0 1.30E + 00 1.26E + 00 1.12E + 00 9.71E − 01 6.33E − 01 4.15E − 01
k · a = 1.5 4.85E − 01 4.36E − 01 3.30E − 01 2.50E − 01 1.39E − 01 8.60E − 02
k · a = 2.0 1.93E − 01 1.62E − 01 1.11E − 01 7.98E − 02 4.24E − 02 2.61E − 02

Table 2: Modulus of the inner pressure pin0/(H/2) for various values of gT and ka, for a floating OWC
device with mass moment of inertia I = 1738.87 tn ·m2.

gT = 0.5 gT = 1 gT = 2 gT = 3 gT = 6 gT = 10
k · a = 0.4 5.87E − 01 5.68E − 01 5.07E − 01 4.38E − 01 2.85E − 01 1.85E − 01
k · a = 1.0 4.02E − 01 3.98E − 01 3.84E − 01 3.63E − 01 2.82E − 01 2.13E − 01
k · a = 1.5 1.52E − 01 1.45E − 01 1.26E − 01 1.06E − 01 6.37E − 02 4.18E − 02
k · a = 2.0 6.73E − 02 6.21E − 02 4.91E − 02 3.86E − 02 2.13E − 02 1.36E − 02
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Figure 11: Horizontal mean second-order wave drift forces against k · a for various turbine parameters
gT = 1,10, 1000 (m5/(N·s)).

and outer radius are b = 2m, a = 20m, respectively, and the water depth is d = 20m. In
Figures 8 and 9 the wave profile inside and outside of the structure is being presented for
wave periods T = 6.3 s and T = 6.0 s, wave lengths λ = 59.8m and λ = 54.8m, respectively,
and gT = 100m5/(N·s). The angle of wave attack is θ = 0◦.

Next, the OWC device examined in Figure 3 is further investigated here with the
aid of Table 4 as far the wave runup (see (9.2) and (9.1)) inside and outside the structure
is concerned. For the calculations three values of turbine parameter Λ = gT = 1, 10, 100
(m5/(N·s)) are assumed for t = 0 s.

We can observe that thewave runup on the structure’s external wall tends to almost the
same values independent of whether the duct is closed or open to the atmosphere (expressed
though the various gT values of turbine parameters; values of gT tending to zero correspond
to almost closed chamber, while large values to the open duct case). Contrary, the wave runup
on the inner wall is affected by the gT values.
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Table 3:RAOs of heavemotion x30/(H/2) versusω2b/g for a floatingOWCdevice with turbine parameter
gT = 1000m5/(N · s). Comparisons with an open moon pool cylinder.

ω2b/g
Open moon pool cylinder [29] OWC device with gT = 1000m5/(N · s)

a/b = 1.8 a/b = 1.2 a/b = 1.034 a/b = 1.8 a/b = 1.2 a/b = 1.034

0.037 0.9549 0.9733 0.9716 0.9548 0.9733 0.9718
0.883 0.6458 0.9582 0.9462 0.6440 0.9576 0.9489
1.223 0.0124 0.5061 0.7706 0.0191 0.5038 0.7864
1.348 0.2244 0.2075 0.5358 0.2201 0.2094 0.5665
1.761 0.6407 0.3720 0.1550 0.6118 0.3639 0.2022
1.926 0.3234 0.6149 0.2998 0.3196 0.5862 0.3011

Table 4:Wave runup inside and outside an OWC device versus ka. Angle of wave attack ϑ = 0.

k · a Wave runup on the outer OWC’s surface Wave runup on the inner OWC’s surface

gT = 1 gT = 10 gT = 100 gT = 1 gT = 10 gT = 100

0.4 0.8313 0.8305 0.8313 1.5166 1.6172 1.6361
0.8 0.3555 0.3507 0.3502 −0.4638 −0.4492 −0.0742
1.0 0.0825 0.0811 0.0821 −0.1741 −0.1374 −0.0988
1.3 −0.4048 −0.4061 −0.4049 −0.0814 −0.0691 −0.0622
1.6 −0.8494 −0.8507 −0.8494 −0.0807 −0.0765 −0.0740
2.0 −1.3019 −1.3029 −1.3019 −0.1256 −0.1249 −0.1238

The maximum absorbed energy (see (11.4)) for the same as the above OWC device is
presented in Table 5 versus ka.

Next, in Figure 10 the maximum capture width is plotted for a restrained OWC device
with various external radius to water depth ratios a/d = 1/8, 1/4, 1/2, and 1, wall thickness
(a − b)/d = 0.005, and floating in a water depth d/h = 2. These results are compared very
well with the ones given in Evans and Porter [7]work.

Finally, in Figure 11 results concerning the horizontal mean second-order wave drift
forces exerted on the OWC device that was investigated in Figure 3 of the present work are
given for three different values of the turbine admittance characteristics gT .

13. Conclusion

An analytical method has been developed to solve the diffraction and radiation problems
around a floating vertical axisymmetric OWC device. This method provides an efficient tool
for the complete hydrodynamic analysis of this important type of wave energy conversion
devices, including the evaluation of the first-order wave exciting forces, the mean second-
order wave drift forces, the hydrodynamic parameters, the pressure head inside the chamber,
the air flow flux, and the maximum absorbed power. The results of this analysis are of
particular importance for the design of such types of wave energy converters, for which the
hydrodynamic parameters and the turbine characteristics have to be combined in order to
improve the wave energy conversion.
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Table 5: Comparison between the maximum energy Pmax/(H/2)2 of a restrained and a floating OWC
device versus ka. The mass moment of inertia I = 1738.87 tn ·m2.

k · a Restrained OWC device Floating OWC device
0.2 956.983 0.3219
0.4 308.105 5.7967
0.6 147.688 139.779
0.8 90.6602 31.8176
1.0 63.7096 16.7789
1.5 34.5299 8.1777
2.0 22.5046 6.1624
2.5 16.1687 5.2424
3.0 12.3529 4.6839

Appendices

A. Values of the Coefficients Lq,i

The defining equations for Lq,j are (4.1), (4.2), (4.5), and (4.6).
One has

Lq,i =
1
h

∫h

0
Zi(z) cos

(
qπz

h

)
dz = (−1)q

[
1
2

[
1 +

sin(2aid)
2aid

]]−1/2 aih

a2
i h

2 − q2π2
sin(aih), (A.1)

when i ≥ 1, ai /= qπ/h

Lq,0 = (−1)q
[
1
2

[
1 +

sinh(2kd)
2kd

]]−1/2 kh

k2h2 + q2π2
sinh(kh), (A.2)

when i = 0

Lq,i =
1
2

[
1
2

[
1 +

sin(2aid)
2aid

]]−1/2
(A.3)

when i ≥ 1, ai = qπ/h/= 0.
Values of Q∗

P,0,q (see (4.4))

Q∗
P,0,q =

{
0, q /= 0,
1, q = 0.

(A.4)

B. Matrix of the Body’s Rotational Motions and
Relative Wave Height Elevation

For the description of the fluid flow around the floating OWC device, an inertial cylindrical
coordinate system (r, θ, z) with origin on the sea bottom (see Figure 1) has been used. Next,
in order to describe the kinematics of a point on the instantaneous wetted surface of the
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body, as it is required for the wave drift forces calculations, see (10.1) and (10.2), a body-
fixed coordinate system G − xyzwith origin at the body’s centre of gravity, G, is additionally
introduced. The surface of the body is defined relative to this system of axes and a point on
the surface has as a position the vector x. The matrix of first-order rotations R in (10.1) and
(10.2) is given by

R =

⎡
⎣

0 −x6 x5

x6 0 −x4

−x5 x4 0

⎤
⎦ (B.1)

and the acceleration matrix for the body’s centre of gravity
..

Xg is

..

Xg=

⎡
⎣
−ω2 · x1

0
−ω2 · x3

⎤
⎦. (B.2)

The relative wave height in (10.1) is equal to

ζr = ζ − x3WL = − 1
g

∂Φ
∂t

− (x3 − x5 · r · cos θ) (B.3)

and the displacement vector of a point on the device, X, is

X = Xg + R · x. (B.4)
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