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The generalization of the classical Poisson sum formula, by replacing the ordinary Fourier
transform by the canonical transformation, has been derived in the linear canonical transform
sense. Firstly, a new sum formula of Chirp-periodic property has been introduced, and then the
relationship between this new sum and the original signal is derived. Secondly, the generalization
of the classical Poisson sum formula to the linear canonical transform sense has been obtained.

1. Introductions

As a generalization of the classical Fourier transform and the fractional Fourier transform
(FrFT), the linear canonical transform (LCT) receives much interest in recent years [1–3].
Many important transforms, for example, the Fourier transform, the Fresnel transform, and
the scaling operations are all special cases of the LCT. It has been shown to be one of the
most useful tools in several areas [4–6], including optics, quantum physics, and in the signal
processing community. Its relationship with the Fourier transform and the fractional Fourier
transform can be found in [7, 8]. The well-known operations, for example, the Hilbert
transform, the Parseval relationship, the convolution and product operations, and the spectral
analysis, in traditional Fourier domain have been extended to the linear canonical transform
domain by different authors [9–13]. For further properties and applications of LCT in optics
and signal processing community, one can refer to [1, 2]. The classical sampling theorems
associated with the LCT have also been investigated and studied in the LCT domain in
various literatures. The extensions of the classical Shannon sampling theorem for band-
limited or time-limited signals in the LCT domain have been deduced in [13, 14].

However, for the best of our knowledge, none of the research papers throw light on
the study of the traditional Poisson sum formula [15–21] associated with the LCT have been
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reported as yet. The Poisson summation formula is a very useful tool not only in many
branches of the mathematics, but also it finds many applications in various fields, for
example, mechanics, signal processing community, and many scientific fields. It is therefore,
worthwhile as well as interesting to investigate the Poisson sum formula associated with the
LCT.

The objective of this paper is to study and investigate the Poisson formula associated
with the LCT. In other words, we want to generalize the classical Poisson sum formula by
replacing the ordinary Fourier transform by the canonical transform. In order to obtain the
desired results for a signal x(t), we first deduce a new sum formula for the signal x(t) and
then achieve the innovative results in the LCT domain. The paper is organized as follows,
the preliminaries are proposed in Section 2, the main results of the paper are investigated in
Section 3, and the conclusion is given in Section 4.

2. Preliminaries

2.1. The Linear Canonical Transform

The linear canonical transform (LCT) of a signal x(t) with parameter matrix A is defined as
[1–3]

XA(u) =
∫∞

−∞
KA(u, t)x(t)dt, (2.1)

where

KA(u, t) =

√
1

j2πb
ej((a/2b)t

2−(1/b)ut+(d/2b)u2), b /= 0, (2.2)

and XA(u) =
√
dej(cd/2)u

2
x(du), b = 0. The parameter A =

(
a b
c d

)
, and satisfy det(A) = 1, a,

b, c, d ∈ R. In this case, the linear canonical transform is a unitary transform [1], therefore we
can derive the inverse transform of LCT as another LCT transform.

The inverse transform of LCT can be derived by an LCT with the parameter of A−1 as
following:

x(t) =
∫∞

−∞
KA−1(t, u)XA(u)du. (2.3)

The LCT can be looked at as the generalization of the well-known operations in the
science and engineering community [4–6]. The relationship between the LCT and the Fourier
transform, the fractional Fourier transform have been derived in [1–3].

A signal x(t) is said to be band-limitedwith respect toΩA in linear canonical transform
domain, when

XA(u) = 0 for |u| > ΩA, (2.4)
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whereΩA is called the bandwidth of signal x(t) in the linear canonical transform domain. At
the same time, a signal x(t) is called Chirp-periodic with period T and of parameter A if it
satisfies the following equation:

ej((at
2)/2b)x(t) = ej(a(t+T)

2/2b)x(t + T). (2.5)

The following identities will be used in the following sections.

Lemma 2.1. The inverse linear canonical transform of signal ZA(u) =
∑+∞

n=−∞ δ(u − nB)ej(a/2b)u
2

for parameter A =
(
a b
c d

)
is

z(t) =
1
B

√
−1
j2π

e−j(a/2b)t
2

∞∑
n=−∞

δ

(
t

b
− n

B

)
. (2.6)

And the inverse linear canonical transform of signal δ(u − u0) is

s(t) =

√
−1

j2πb
e−j(a/2b)(t

2+u2
0)+ju0tb. (2.7)

Proof. These results can be derived easily by the definition of the LCT and the inverse
transform of LCT.

Assuming a signal x(t) is band-limited toΩA in the linear canonical transform domain,
then from the results derived in [13], x(t) is not band-limited in the traditional Fourier
domain. Therefore, the classical results of bandlimited signal processing method in Fourier
domain can be used in the LCT domain to obtain the novel results associated with the LCT.

2.2. The Poisson Sum Formula

The Poisson sum formula demonstrates that the sum of infinite samples in time domain of a
signal x(t) is equivalent to the sum of infinite samples of X(u) in the Fourier domain.
Mathematically, the Poisson sum formula can be represented as follows:

∞∑
n=−∞

x(t + kτ) =
1
τ

∞∑
n=−∞

X
(n
τ

)
ej(n/τ)t, (2.8)

or

∞∑
k=−∞

x(kτ) =
1
τ

∞∑
n=−∞

X
(n
τ

)
, (2.9)

where X(u) is the traditional Fourier transform of signal x(t). It is well known that it will be
valid only if x(t) and its Fourier transform X(u) are regular enough and only if both series of
(2.9) converge [20].
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In order to obtain the new results associated with the linear canonical transform, a new
summation associated with the signal x(t) is introduced as following:

y(t) =
∞∑

k=−∞
x(t + kτ)ej(a/2b)(2kτt+k

2τ2), (2.10)

where τ is a constant. From (2.10), the function y(t) can be seen as a periodic phase-shift
replica of the original function x(t). The signal y(t) will be used in the following sections to
investigate the Poisson sum formula associate with the linear canonical transform.

3. The Main Results

Suppose a signal x(t) is band-limited to ΩA in linear canonical transform domain of param-
eter A, then, from (2.10) a new function y(t) can be deduced from signal x(t). Firstly, the
properties of the signal y(t) associated with the linear canonical transform can be derived
from Theorem 3.1.

Theorem 3.1. Suppose a signal x(t) is band-limited to ΩA in the linear canonical transform domain
of parameter A, and y(t) =

∑∞
k=−∞ x(t + kτ)ej(a/2b)(2kτt+k

2τ2), then the following results about y(t)
is true.

(a) y(t) is a Chirp-periodic signal with period τ .

(b) x(t) is a band-limited signal in linear canonical transform domain with parameterA, if and
only if y(t) has a finite number of nonzero linear canonical series coefficients for any τ .

Proof. (a) By the definition of the Chirp-periodicity, we obtain

y(t + τ)ej(a/2b)(t+τ)
2
=

∞∑
k=−∞

x(t + τ + kτ)ej(a/2b)[2kτ(t+τ)+k
2τ2]ej(a/2b)(t+τ)

2

= ej(a/2b)t
2

∞∑
k=−∞

x[t + (k + 1)τ]ej(a/2b)[2(k+1)τt+(k+1)
2τ2]

= y(t)ej(a/2b)t
2
.

(3.1)

This proves the Chirp-periodicity of the signal y(t).
(b) To prove the necessary condition, the nth coefficient cn,A of signal y(t) can be

deduced from the linear canonical series definition proposed in [4] as

cn,A =

√(
b − ja

)
τ

∫ τ

0
y(t)ej(a/2b)[(nb2π/τ)

2+t2]−j(n2π/τ)tdt. (3.2)
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Equation (3.2) can be rewritten as

cn,A =

√(
b − ja

)
τ

ej(a/2b)(n2πb/τ)
2
∫ τ

0

∞∑
k=−∞

x(t + kτ)ej(a/2b)(2kτt+k
2τ2)ej(a/2b)t

2−j(n(2π/τ))tdt

=

√(
b − ja

)
τ

ej(a/2b)(n2πb/τ)
2

+∞∑
k=−∞

∫ (k+1)τ

kτ

x(λ)ej(a/2b)λ
2−j(n(2π/τ))(λ−kτ)dλ

=

√(
b − ja

)
/τ

KA(u, t)

∫+∞

−∞
KA(u, t)x(λ)ej(a/2b)(nF

′)2ej(a/2b)λ
2−j(1/b)(nF ′)λdλ

=

√(
b − ja

)
/τ

KA(u, t)
XA

(
n
2π
τ

b

)
.

(3.3)

Since x(t) is a ΩA band-limited signal in linear canonical transform domain of parameter A,
that is to say

XA(u) =
∫+∞

−∞
x(t)KA(u, t)ej(a/2b)(t

2+u2)−j(1/b)utdt = 0, |u| > Ωα. (3.4)

Comparing (3.3) and (3.4), we obtain

cn,A = 0, when n >
τΩA

2πb
. (3.5)

Therefore, the necessary condition is proved.
To prove the sufficient condition, let us assume that cn,A = 0 for n > N, whereN is any

finite integer. From (3.5), the

XA(u) =
∫+∞

−∞
x(t)KA(u, t)dt = 0, |u| > 2πbN

τ
. (3.6)

Hence, x(t) is band-limited signal having bandwidth as following:

ΩA ≤ 2πbN
τ

. (3.7)

This proves the sufficient condition of the theorem.

Based on the derived results of Theorem 3.1, the following Theorem 3.2 can be
deduced.

Theorem 3.2. Suppose a signal x(t) is band-limited to ΩA in the linear canonical transform domain
of parameter A, and y(t) =

∑∞
k=−∞ x(t + kτ)ej(a/2b)(2kτt+k

2τ2) is derived by shifting signal x(t) to left
and right, then the following conclusions can be deduced.
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(a) When 1/τ > ΩA, y(t) can be deduced from the following formula:

y(t) =
(
b

τ

)
XA(0)e−j(a/2b)t

2
. (3.8)

(b) When ΩA/2 < 1/τ < ΩA, y(t) can be deduced from the following formula:

y(t) =
b

τ
e−j(a/2b)t

2
{
XA(0) + e−j(a/2b)(b/τ)

2
[
XA

(
b

τ

)
ejt/τ +XA

(
−b
τ

)
e−jt/τ

]}
. (3.9)

(c) When ΩA/n < 1/τ < ΩA/(n − 1), y(t) can be deduced from the following formula:

y(t) =
b

τ
e−j(a/2b)t

2

{
XA(0) +

n∑
k=1

e−j(a/2b)(k(a/τ))
2
[
XA

(
k
b

τ

)
ejkt/τ +XA

(
−k b

τ

)
e−jkt/τ

]}
. (3.10)

Proof. (1) Proof of (a)

Since x(t) is a ΩA band-limited signal in the linear canonical transform domain, XA(u) if
sampled in the linear canonical transform domain of order A at a rate of B > ΩA, then the
samples can be represented as follows:

Ys,A(u) = XA(u)
+∞∑

n=−∞
δ(u − nB) = XA(0)δ(u), B > ΩA. (3.11)

The first part of (3.11) can be reorganized as

Ys,A(u) = [XA(u)]

[
+∞∑

n=−∞
δ(u − nB)ej(a/2b)u

2

]
e−j(a/2b)u

2
(3.12)

If we let ZA(u) =
∑+∞

n=−∞ δ(u − nB)ej(a/2b)u
2
, then (3.12) can be rewritten as

Ys,A(u) = [XA(u)][ZA(u)]e−j(a/2b)u
2
. (3.13)

Applying the convolution and product theorem proposed in [7] and Lemma 2.1 to (3.13), the
inverse linear canonical transform of formula (3.13) can be represented as

ys(t) =

√
1

j2πb
e−j(a/2b)t

2
(
x(t)e(a/2b)t

2 ∗ z(t)ej(a/2b)t2
)

=

√
1

j2πb
e−j(a/2b)t

2

[
x(t)ej(a/2b)t

2 ∗ 1
B

+∞∑
n=−∞

δ

(
1
b
t − n

B

)]

=

√
1

j2πb

[
1
B

+∞∑
n=−∞

x
(
t − n

B
b
)
ej(a/b)[2(n/B)bt−((n/B)b)

2]

]
.

(3.14)
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From the second part of (3.11), the inverse linear canonical transform of Ys,A(u) can be
derived as

ys(t) =

√
1

j2πb
XA(0)e−j(a/2b)t

2
. (3.15)

If we select τ = b/B, then from (3.14)-(3.15)

y(t) =
b

τ

√
2π(

1 − j(a/b)
) ys(t) =

b

τ
XA(0)e−j(a/2b)t

2
. (3.16)

This proves (a).

(2) Proof of (b)

Similar to the method of proving (a), if XA(u) is sampled in the linear canonical transform
domain of parameter A at a rate of ΩA/2 < B < ΩA, there are essentially three nonzero
samples of XA(u):

Ys,A(u) = XA(u)
+∞∑

n=−∞
δ(u − nB) = Xα(0)δ(u) +Xα(B)δ(u − B) +Xα(−B)δ(u + B). (3.17)

In this condition, (3.14) is also correct, and from (3.13), the relationship between y(t) and
ys(t) can be derived as follows:

y(t) = B
√
j2πb ys(t). (3.18)

While ys(t) can be deduced from (3.18) and Lemma 2.1 as

ys(t) =
√
1/j2πb

[
XA(0)e−j(a/2b)t

2
+XA(B)e−j(a/2b)(t

2+B2)+jBt(1/b)

+XA(−B)e−j(a/2b)(t2+B2)−jBt(1/b)
]
.

(3.19)

If τ = b/B is chosen, then from (3.18)-(3.19).

y(t) = Be−j(a/2b)t
2
[
XA(0) +XA(B)e−j(a/2b)B

2+jBt(1/b) +XA(−B)e−j(a/2b)B2−jBt(1/b)
]

= Be−j(a/2b)t
2
{
XA(0) + e−j(a/2b)B

2
[
XA(B)ejBt/b +XA(−B)e−jBt/b

]}

=
(
b

τ

)
e−j(a/2b)t

2
{
XA(0) + e−j(a/2b)(b/τ)

2
[
XA

(
b

τ

)
ejt/τ +XA

(
−b
τ

)
e−jt/τ

]}
.

(3.20)

Thus, (b) is also proved.
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(3) Proof of (c)

If XA(u) is sampled in linear canonical transform domain of order A at a rate of ΩA/n < B <
ΩA/(n − 1), there are essentially 2n − 1 nonzero samples remaining

Ys,A(u) = XA(u)
+∞∑

n=−∞
δ(u − nB)

= XA(0)δ(u) +XA(B)δ(u ± B) + · · · +XA[(n − 1)B]δ[u ± (n − 1)B].

(3.21)

Again, (3.14) is also correct in this case, and using similar method in proving (a) and (b), y(t)
can be deduced as

y(t) = B
√
j2πb ys(t)

= Be−j(a/2b)t
2
[
XA(0) +XA(B)e−j(a/2b)B

2+jBt/b +XA(−B)e−j(a/2b)B2−jBt/b

+ · · · +XA(nB)e−j(a/2b)(nB)
2+jnBt/b +XA(−nB)e−j(a/2b)(nB)

2−jnBt/b
]

= Be−j(a/2b)t
2

{
XA(0) +

n∑
k=1

e−j(a/2b)(kB)
2
[
XA(kB)ejkBt/b +XA(−kB)e−jkBt/b

]}
.

(3.22)

If we select τ = b/B, then

y(t) =
b

τ
e−j(a/2b)t

2

{
XA(0) +

n∑
k=1

e−j(a/2b)(k(b/τ))
2
[
XA

(
k
b

τ

)
ejkt/τ +XA

(
−k b

τ

)
e−jkt/τ

]}
. (3.23)

Part (c) of Theorem 3.1 is proved.

4. Conclusion

In this paper, the generalization of the classical Poisson sum formula to the linear canonical
transform domain is investigated, by replacing the ordinary Fourier transform by the canon-
ical transform, we firstly derived a new Chirp-periodic sum, and then the classical Poisson
summations are generalized to the linear canonical transform domain based on the rela-
tionship derived. The classical results can be looked at as the special cases of the derived
results. The applications of the derived results in sampling theories, signal analysis will be
investigated in the linear canonical transform domain in the future.
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