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A new system of generalized mixed quasivariational inclusions (for short, SGMQVI) with relaxed
cocoercive operators, which develop some preexisting variational inequalities, is introduced and
investigated in Banach spaces. Next, the existence and uniqueness of solutions to the problem
(SGMQVI) are established in real Banach spaces. From fixed point perspective, we propose some
new iterative algorithms for solving the system of generalized mixed quasivariational inclusion
problem (SGMQVI). Moreover, strong convergence theorems of these iterative sequences gener-
ated by the corresponding algorithms are proved under suitable conditions. As an application,
the strong convergence theorem for a class of bilevel variational inequalities is derived in Hilbert
space. The main results in this paper develop, improve, and unify some well-known results in the
literature.

1. Introduction

Generalized mixed quasivariational inclusion problems, which are extensions of variational
inequalities introduced by Stampacchia [1] in the early sixties, are among the most interesting
and extensively investigated classes of mathematics problems and havemany applications in
the fields of optimization and control, abstract economics, electrical networks, game theory,
auction, engineering science, and transportation equilibria (see, e.g., [2–5] and the references
therein). For the past few decades, existence results and iterative algorithms for variational
inequality and variational inclusion problems have been obtained (see, e.g., [6–14] and the
references cited therein). Recently, some new problems, which are called to be the system
of variational inequality and equilibrium problems, received many attentions. Ansari et al.
[2] considered a system of vector variational inequalities and obtained its existence results.
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In [3], Pang stated that the traffic equilibrium problem, the spatial equilibrium problem, the
Nash equilibrium, and the general equilibrium programming problem can be modeled as a
system of variational inequalities. Verma [15] and J. K. Kim and D. S. Kim [16] investigated
a system of nonlinear variational inequalities. Cho et al. [17] introduced and studied a new
system of nonlinear variational inequalities in Hilbert spaces and obtained the existence and
uniqueness properties of solutions for the system of nonlinear variational inequalities. In [18],
Peng and Zhu introduced a new system of generalized mixed quasivariational inclusions
involving (H, η)-monotone operators. Very recently, Qin et al. [19] studied the approximation
of solutions to a system of variational inclusions in Banach spaces and established a strong
convergence theorem in uniformly convex and 2 uniformly smooth Banach spaces. In [20],
Kamraksa and Wangkeeree gave a general iterative method for a general system of varia-
tional inclusions and proved a strong convergence theorem in strictly convex and 2 uniformly
smooth Banach spaces. Further, Wangkeeree and Kamraksa [21] introduced an iterative
algorithm for finding a common element of the set of solutions of a mixed equilibrium
problem, the set of fixed points of an infinite family of nonexpansive mappings and the
set of solutions of a general system of variational inequalities and then obtained the strong
convergence of the iterative in Hilbert spaces. Petrot [22] applied the resolvent operator
technique to find the common solutions for a generalized system of relaxed cocoercive mixed
variational inequality problems and fixed point problems for Lipschitz mappings in Hilbert
spaces. Zhao et al. [23] obtained some existence results for a system of variational inequalities
by Brouwer’s fixed point theory and proved the convergence of an iterative algorithm in
finite Euclidean spaces. Chen and Wan [24] also proved the existence of solutions and
convergence analysis for a system of quasivariational inclusions in Banach spaces, proposed
some iterative methods for finding the common element of the solutions set for the system of
quasivariational inclusions and the fixed point set for Lipschitz mapping, and obtained the
convergent rates of corresponding iterative sequences. On the other hand, various bilevel
programming problems, bilevel decision problems, and mathematical program problems
with equilibrium (variational inequalities) constraints have been wildly investigated (see,
e.g., [25, 26]). To the best of our knowledge, there is few results concerning the algorithms
and convergence analysis of solutions to bilevel variational inequalities in Hilbert spaces.

The aim of this paper is to introduce and study a new system of generalized mixed
quasivariational inclusion problem (SGMQVI) in uniformly smooth Banach spaces which
includes some previous variational inequalities as special cases. Furthermore, the existence
and uniqueness theorems of solutions for the problem (SGMQVI) are established by using
resolvent techniques. Thirdly, we also propose some new iterative algorithms for solving
the problem (SGMQVI). Strong convergence of the iterative sequences generated by the
corresponding iterative algorithms are proved under suitable conditions. As an application,
we study the properties for the lower-level variational inequalities of a class of bilevel
variational inequalities (for short, (BVI)) in Hilbert spaces and then suggest a reasonable
iterative algorithm for (BVI). Finally, the strong convergence theorem for (BVI) are derived
under appropriate assumptions. The results presented in this paper improve, develop, and
extend the results of [8, 23, 24, 27].

2. Preliminaries

Throughout this paper, let E be a real q-uniformly Banach spacewith its dual E∗, q > 1, denote
the duality between E and E∗ by 〈·, ·〉 and the norm of E by ‖ · ‖, and let T : E → E be
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a nonlinear mapping. If {xn} is a sequence in E, we denote strong convergence of {xn} to
x ∈ E by xn → x. A Banach space E is called smooth if limt→ 0(‖x + ty‖ − ‖x‖)/t exists for all
x, y ∈ E with ‖x‖ = ‖y‖ = 1. It is called uniformly smooth if the limit is attained uniformly
for ‖x‖ = ‖y‖ = 1. The function

ρE(t) = sup

{∥∥x + y
∥∥ +

∥∥x − y
∥∥

2
− 1 : ‖x‖ = 1,

∥∥y∥∥ ≤ t

}
(2.1)

is called the modulus of smoothness of E. E is called q-uniformly smooth if there exists a
constant cq > 0 such that ρE(t) ≤ cqtq.

Example 2.1 (see [4]). All Hilbert spaces, Lp(or lp), and the Sobolev spaces W
p
m, (p ≥ 2)

are 2-uniformly smooth, while Lp(or lp) and W
p
m spaces (1 < p ≤ 2) are p-uniformly

smooth.
The generalized duality mapping Jq : E → 2E

∗
defined as follows:

Jq(x) =
{
f∗ ∈ E∗ :

〈
f∗, x

〉
=
∥∥f∗∥∥‖x‖ = ‖x‖q, ∥∥f∗∥∥ = ‖x‖q−1

}
, (2.2)

for all x ∈ E. As we know that J = J2 is the usual normalized duality mapping, and
Jq(x) = ‖x‖q−2J(x) for x /= 0, Jq(tx) = tq−1Jq(x), and Jq(−x) = −Jq(x) for all x ∈ E and
t ∈ [0,+∞), and Jq is single-valued if E is smooth (see, e.g., [28]). If E is a Hilbert space, then
J = I, where I is the identity operator. Let gj : E → E, let Aj : E × E → E be single-valued
mappings, and let Mj : E → 2E be set-valued mappings for all j ∈ {1, 2, . . . , n}. We consider
the system of generalized mixed quasivariational inclusions problem (for short, (SGMQVI))
as follows: find (x∗

1, x
∗
2, . . . , x

∗
n−1, x

∗
n) ∈ En such that

0 ∈ x∗
1 − g1

(
x∗
2

)
+ ρ1

(
A1
(
x∗
2, x

∗
1

)
+M1

(
x∗
1

))
,

0 ∈ x∗
2 − g2

(
x∗
3

)
+ ρ2

(
A2
(
x∗
3, x

∗
2

)
+M2

(
x∗
2

))
,

...

0 ∈ x∗
n−1 − gn−1(x∗

n) + ρn−1
(
An−1

(
x∗
n, x

∗
n−1
)
+Mn−1

(
x∗
n−1
))
,

0 ∈ x∗
n − gn

(
x∗
1

)
+ ρn

(
An

(
x∗
1, x

∗
n

)
+Mn(x∗

n)
)
,

(2.3)

where ρi (i = 1, 2, . . . , n) are positive constants. Denote the set of solutions to (SGMQVI)
by Ξ.
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Special cases are as follows:
(I) If gj(x) = x and Aj(x, y) = Tj(x) + Sj(x) for all x, y ∈ E and j = 1, 2, . . . , n, where

Tj , Sj : E → E are single-valued mappings, then the problem (SGMQVI) is equivalent to find
(x∗

1, x
∗
2, . . . , x

∗
n−1, x

∗
n) ∈ En such that

0 ∈ x∗
1 − x∗

2 + ρ1
(
T1
(
x∗
2
)
+ S1

(
x∗
2
)
+M1

(
x∗
1

))
,

0 ∈ x∗
2 − x∗

3 + ρ2
(
T2
(
x∗
3

)
+ S2

(
x∗
3

)
+M2

(
x∗
2

))
,

...

0 ∈ x∗
n−1 − x∗

n + ρn−1
(
Tn−1(x∗

n) + Sn−1(x∗
n) +Mn−1

(
x∗
n−1
))
,

0 ∈ x∗
n − x∗

1 + ρn
(
Tn
(
x∗
1

)
+ Sn

(
x∗
1

)
+Mn(x∗

n)
)
,

(2.4)

where ρi (i = 1, 2, . . . , n) are positive constants, which is called the system of generalized
nonlinear mixed variational inclusions problem [8].

(II) If n = 2, A1 = A2 = A, E = H is a Hilbert space, g1(x) = g2(x) = x and
M1(x) = M2(x) = ∂φ(x) for all x ∈ E, where φ : E → R ∪ {+∞} is a proper, convex,
and lower semicontinuous functional, and ∂φ denotes the subdifferential operator of φ, then
the problem (SGMQVI) is equivalent to find (x∗, y∗) ∈ E × E such that

〈
ρ1A

(
y∗, x∗) + x∗ − y∗, x − x∗〉 + φ(x) − φ(x∗) ≥ 0, ∀x ∈ E,〈

ρ2A
(
x∗, y∗) + y∗ − x∗, x − y∗〉 + φ(x) − φ

(
y∗) ≥ 0, ∀x ∈ E,

(2.5)

where ρi (i = 1, 2) are positive constants, which is called the generalized system of relaxed
cocoercive mixed variational inequality problem [29].

(III) If n = 2, E = H is a Hilbert space, and K is a closed convex subset of E, and
φ(x) = δK(x) for all x ∈ K, where δK is the indicator function ofK defined by

φ(x) = δK(x) =

⎧⎨
⎩
0, if x ∈ K,

+∞, otherwise,
(2.6)

then the problem (SGMQVI) is equivalent to find (x∗, y∗) ∈ K ×K such that

〈
ρ1A1

(
y∗, x∗) + x∗ − g1

(
y∗), g1(x) − x∗〉 ≥ 0, ∀x ∈ K,〈

ρ2A2
(
x∗, y∗) + y∗ − g2(x∗), g2(x) − y∗〉 ≥ 0, ∀x ∈ K,

(2.7)

where ρi (i = 1, 2) are positive constants, which is called the system of general variational
inequalities problem [27].
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(IV) If n = 2, A1 = A2 = A,E = H is a Hilbert space, andK is a closed convex subset of
E, g1(y) = g2(y) = y, and φ(x) = δK(x) for all x ∈ K, y ∈ E, where δK is the indicator function
of K defined by

φ(x) = δK(x) =

⎧⎨
⎩
0, if x ∈ K,

+∞, otherwise,
(2.8)

then the problem (SGMQVI) is equivalent to find (x∗, y∗) ∈ K ×K such that

〈
ρ1A

(
y∗, x∗) + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ K,〈

ρ2A
(
x∗, y∗) + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ K,

(2.9)

where ρi (i = 1, 2) are positive constants, which is called the generalized system of relaxed
cocoercive variational inequality problem [30].

(V) If for each i ∈ {1, 2}, z ∈ E,Ai(x, z) = Ψi(x), and gi(x) = x for all x ∈ E, where
Ψi : E → E, then the problem (SGMQVI) is equivalent to find (x∗, y∗) ∈ E × E such that

0 ∈ x∗ − y∗ + ρ1
(
Ψ1
(
y∗) +M1(x∗)

)
,

0 ∈ y∗ − x∗ + ρ2
(
Ψ2(x∗) +M2

(
y∗)), (2.10)

where ρi (i = 1, 2) are positive constants, which is called the system of quasivariational
inclusion [19, 20].

(VI) If n = 2, for each i ∈ {1, 2}, z ∈ E,Ai(x, z) = Ψ(x), and gi(x) = x for all x ∈ E,
where Ψ : E → E and M1(x) = M2(x) = M, then the problem (SGMQVI) is equivalent to
find (x∗, y∗) ∈ E × E such that

0 ∈ x∗ − y∗ + ρ1
(
Ψ
(
y∗) +M(x∗)

)
,

0 ∈ y∗ − x∗ + ρ2
(
Ψ(x∗) +M

(
y∗)), (2.11)

where ρi (i = 1, 2) are positive constants, which is called the system of quasivariational inclu-
sion [20].

We first recall some definitions and lemmas which are needed in our main results.

Definition 2.2. Let M : dom(M) ⊂ E → 2E be a set-valued mapping, where dom(M) is the
effective domain of the mapping M. M is said to be

(i) accretive if, for any x, y ∈ dom(M), u ∈ M(x) and v ∈ M(y), there exists jq(x−y) ∈
Jq(x − y) such that

〈
u − v, jq

(
x − y

)〉 ≥ 0, (2.12)

(ii) m-accretive (maximal-accretive) ifM is accretive and (I + ρM)dom(M) = E holds
for every ρ > 0, where I is the identity operator on E.
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Remark 2.3. If E is a Hilbert space, then accretive operator and m-accretive operator are
reduced to monotone operator and maximal monotone operator, respectively.

Definition 2.4 (see [24, 31]). Let T : E → E be a single-valued mapping. T is said to be

(i) γ -Lipschitz continuous mapping if there exists a constant γ > 0 such that

∥∥Tx − Ty
∥∥ ≤ γ

∥∥x − y
∥∥, ∀x, y ∈ E, (2.13)

(ii) (a, b)-relaxed cocoercive if there exist two constants a ≥ 0 and b > 0 such that

〈
T(x) − T(x̃), Jq(x − x̃)

〉 ≥ (−a)‖T(x) − T(x̃)‖q + b‖x − x̃‖q, ∀x, x̃ ∈ E. (2.14)

Remark 2.5 (see [24]). (1) If γ = 1, then a γ -Lipschitz continuous mapping reduces to a non-
expansive mapping.

(2) If γ ∈ (0, 1), then a γ -Lipschitz continuous mapping reduces to a contractive
mapping.

(3) It is easy to see that the identity operator I : E → E is (0, 1) relaxed cocoercive,
where I(x) = x for all x ∈ E.

Definition 2.6 (see [24]). LetA : E × E → E be a mapping. A is said to be

(i) τ-Lipschitz continuous in the first variable if there exists a constant τ > 0 such that,
for x, x̃ ∈ E,

∥∥A(x, y) −A
(
x̃, ỹ

)∥∥ ≤ τ‖x − x̃‖, ∀y, ỹ ∈ E (2.15)

(ii) α-strongly accretive if there exists a constant α > 0 such that

〈
A
(
x, y

) −A
(
x̃, ỹ

)
, Jq(x − x̃)

〉 ≥ α‖x − x̃‖q, ∀(x, y), (x̃, ỹ) ∈ E × E, (2.16)

or equivalently,

〈
A
(
x, y

) −A
(
x̃, ỹ

)
, J(x − x̃)

〉 ≥ α‖x − x̃‖, ∀(x, y), (x̃, ỹ) ∈ E × E, (2.17)

(iii) (μ, ν) relaxed cocoercive if there exist two constants μ ≥ 0 and ν > 0 such that

〈
A
(
x, y

) −A
(
x̃, ỹ

)
, Jq(x − x̃)

〉 ≥ (−μ)∥∥A(x, y) −A
(
x̃, ỹ

)∥∥q + ν‖x − x̃‖q,
∀(x, y), (x̃, ỹ) ∈ E × E.

(2.18)

Remark 2.7. (1) Every α-strongly accretive mapping is a (μ, α) relaxed cocoercive for any
positive constant μ. But the converse is not true in general.
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(2) The conception of the cocoercivity is applied in several directions, especially for
solving variational inequality problems by using the auxiliary problem principle and pro-
jection methods [14]. Several classes of relaxed cocoercive variational inequalities have been
investigated in [5, 22, 28, 30].

Definition 2.8 (see [9, 32]). Let the set-valued mapping M : dom(M) ⊂ E → 2E be m-
accretive. For any positive number ρ > 0, the mapping RM

ρ : E → dom(M) defined by

RM
ρ (x) =

(
I + ρM

)−1(x), x ∈ E, (2.19)

is called the resolvent operator associated with M and ρ, where I is the identity operator
on E.

Remark 2.9. Let C ⊂ E be a nonempty closed convex set. If E is a Hilbert space and M = ∂φ,
the subdifferential of the indicator function φ, that is,

φ(x) = δC(x) =

⎧⎨
⎩
0, if x ∈ C,

+∞, otherwise,
(2.20)

then R(ρ,M) = PC, the metric projection operator from E onto C.

Lemma 2.10 (see [9, 32]). Let the set-valued mapping M : dom(M) ⊂ E → 2E be m-accretive.
Then the resolvent operator RM

ρ is single-valued and nonexpansive for all ρ > 0.

Lemma 2.11 (see [33]). Let {Bn}, {Cn}, and {Dn} be three nonnegative real sequences satisfying
the following conditions:

Bn+1 ≤ (1 − λn)Bn +Cn +Dn, ∀n ≥ n0, (2.21)

for some n0 ∈ N, {λn} ⊂ (0, 1) with
∑∞

n=0 λn = ∞, Cn = 0(λn) and
∑∞

n=0 Dn < +∞. Then
limn→∞Bn = 0.

Lemma 2.12 (see [34]). Let E be a real q-uniformly Banach space. Then there exists a constant cq > 0
such that

∥∥x + y
∥∥q ≤ ‖x‖q + q

〈
y, Jq(x)

〉
+ cq

∥∥y∥∥q, ∀x, y ∈ E. (2.22)

3. Existence Theorems

In this section, we will investigate the existence and uniqueness of solutions for the problem
(SGMQVI) in q-uniformly smooth Banach space under some suitable conditions.
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Theorem 3.1. Let (x∗
1, x

∗
2, . . . , x

∗
n−1, x

∗
n) ∈ En, Mi : E → 2E (i = 1, 2, . . . , n) be maximal accretive.

Then (x∗
1, x

∗
2, . . . , x

∗
n−1, x

∗
n) is a solution of the problem (SGMQVI) if and only if

x∗
1 = RM1

ρ1

(
g1
(
x∗
2

) − ρ1A1
(
x∗
2, x

∗
1

))
,

x∗
2 = RM2

ρ2

(
g2
(
x∗
3
) − ρ2A2

(
x∗
3, x

∗
2
))
,

...

x∗
n−1 = RMn−1

ρn−1
(
gn−1(x∗

n) − ρn−1An−1
(
x∗
n, x

∗
n−1
))
,

x∗
n = RMn

ρn

(
gn
(
x∗
1

) − ρnAn

(
x∗
1, x

∗
n

))
,

(3.1)

where ρi (i = 1, 2, . . . , n) are positive constants.

Proof. Let (x∗
1, x

∗
2, . . . , x

∗
n−1, x

∗
n) ∈ En be a solution of the problem (SGMQVI). Then, for any

given positive constants ρi (i = 1, 2, . . . , n), the problem (SGMQVI) is equivalent to

g1
(
x∗
2
) − ρ1A1

(
x∗
2, x

∗
1

) ∈ x∗
1 + ρ1M1

(
x∗
1

)
,

g2
(
x∗
3

) − ρ2A2
(
x∗
3, x

∗
2

) ∈ x∗
2 + ρ2M2

(
x∗
2

)
,

...

gn−1(x∗
n) − ρn−1An−1

(
x∗
n, x

∗
n−1
) ∈ x∗

n−1 + ρn−1Mn−1
(
x∗
n−1
)
,

gn
(
x∗
1

) − ρnAn

(
x∗
1, x

∗
n

) ∈ x∗
n + ρnMn(x∗

n).

(3.2)

From Definition 2.8 and Lemma 2.10, it yields that (3.2) is equivalent to (3.1). This completes
the proof.

Theorem 3.2. Let E be a real q-uniformly smooth Banach space. Let j ∈ {1, 2, . . . , n},Mj : E → 2E

be m-accretive mapping, Let Aj : E × E → E be (μj , νj)-relaxed cocoercive and Lipschitz continuous
in the first variable with constant τj , and Let gj : E → E be (aj , bj)-relaxed cocoercive and Lipschitz

continuous with constant ιj . Then, for each j ∈ {1, 2, . . . , n}, x ∈ E, the mapping R
Mj

ρj (gj(x) −
ρjAj(x, ·)) : E → E has at most one fixed point. If

min
{
1 + qaj ι

q

j + cqι
q

j − qbj , 1 + qρjμjτ
q

j + cqρ
q

j τ
q

j − qρjνj
}
≥ 0, (3.3)

then the implicit function yj(x) determined by

yj(x) = R
Mj

ρj

(
gj(x) − ρjAj

(
x, yj(x)

))
(3.4)

is continuous on E.
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Proof. Let x ∈ E. We show by contradiction that R
Mj

ρj (gj(x) − ρjAj(x, ·)) : E → E has at most
one fixed point. Suppose to the contrary that y, ỹ ∈ E and y /= ỹ such that

y = R
Mj

ρj

(
gj(x) − ρjAj

(
x, y

))
,

ỹ = R
Mj

ρj

(
gj(x) − ρjAj

(
x, ỹ

))
.

(3.5)

Since Aj is Lipschitz continuous in the first variable with constant τj , then

∥∥y − ỹ
∥∥ =

∥∥∥RMj

ρj

(
gj(x) − ρjAj

(
x, y

)) − R
Mj

ρj

(
gj(x) − ρjAj

(
x, ỹ

))∥∥∥
≤ ∥∥gj(x) − ρjAj

(
x, y

) − (gj(x) − ρjAj

(
x, ỹ

))∥∥
= ρj

∥∥Aj

(
x, y

) −Aj

(
x, ỹ

)∥∥
≤ ρjτj‖x − x‖

= 0,

(3.6)

which is a contradiction. Therefore, the mapping R
Mj

ρj (gj(x) − ρjAj(x, ·)) : E → E has at most
one fixed point.

Next, we show that the implicit function yj(x) is continuous on E. For any sequence,
{xn} ⊂ E, x0 ∈ E, xn → x0 as n → ∞. Since Aj : E × E → E is (μj , νj)-relaxed cocoercive and
Lipschitz continuous in the first variable with constant τj and gj : E → E is (aj , bj)-relaxed
cocoercive and Lipschitz continuous with constant ιj , one has

L̃Aj =
∥∥xn − x0 − ρj

[
Aj

(
xn, y(xn)

) −Aj

(
x0, y(x0)

)]∥∥q
≤ ‖xn − x0‖q − qρj

〈
Aj

(
xn, y(xn)

) −Aj

(
x0, y(x0)

)
, Jq(xn − x0)

〉
+ cqρ

q

j

∥∥Aj

(
xn, y(xn)

) −Aj

(
x0, y(x0)

)∥∥q
≤ qρj

(
μj

∥∥Aj

(
xn, y(xn)

) −Aj

(
x0, y(x0)

)∥∥q − νj‖xn − x0‖q
)

+
(
1 + cqρ

q

j τ
q

j

)
‖xn − x0‖q

≤ qρj
(
μjτ

q

j − νj
)
‖xn − x0‖q +

(
1 + cqρ

q

j τ
q

j

)
‖xn − x0‖q

=
(
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj
)
‖xn − x0‖q,
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L̃gj =
∥∥xn − x0 −

(
gj(xn) − gj(x0)

)∥∥q
≤ ‖xn − x0‖q − q

〈
gj(xn) − gj(x0), Jq(xn − x0)

〉
+ cq

∥∥gj(xn) − gj(x0)
∥∥q

≤
(
1 + cqι

q

j

)
‖xn − x0‖q + q

(
aj

∥∥gj(xn) − gj(x0)
∥∥q − bj‖xn − x0‖q

)
≤
(
1 + cqι

q

j

)
‖xn − x0‖q + q

(
aj ι

q

j − bj
)
‖xn − x0‖q

=
(
1 + qaj ι

q

j + cqι
q
j − qbj

)
‖xn − x0‖q.

(3.7)

Therefore, from Lemma 2.10, we get

∥∥yj(xn) − yj(x0)
∥∥ =

∥∥∥RMj

ρj

(
gj(xn) − ρjAj

(
xn, yj(xn)

)) − R
Mj

ρj

(
gj(x0) − ρjAj

(
x0, yj(x0)

))∥∥∥
≤ ∥∥gj(xn) − ρjAj

(
xn, yj(xn)

) − (gj(x0) − ρjAj

(
x0, yj(x0)

))∥∥
=
∥∥(gj(xn) − gj(x0)

) − ρj
(
Aj

(
xn, yj(xn)

) −Aj

(
x0, yj(x0)

))∥∥
≤ ∥∥xn − x0 −

(
gj(xn) − gj(x0)

)∥∥
+
∥∥xn − x0 − ρj

(
Aj

(
xn, yj(xn)

) −Aj

(
x0, yj(x0)

))∥∥
≤ q

√
L̃Aj +

q

√
L̃gj

≤
(

q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj + q

√
1 + qaj ι

q

j + cqι
q

j − qbj
)
‖xn − x0‖.

(3.8)

From (3.3), it follows that the implicit function yj(x) is continuous on E. This completes the
proof.

If j = 2 and g(x) = x for all x ∈ E, then Theorem 3.2 is reduced to the following result.

Corollary 3.3 (see [24]). Let E be a real q-uniformly smooth Banach space. Let M2 : E → 2E be
m-accretive mapping; Let A2 : E ×E → E be (μ2, ν2)-relaxed cocoercive and Lipschitz continuous in
the first variable with constant τ2. Then, for each x ∈ E, the mapping RM2

ρ2 (x − ρ2A2(x, ·)) : E → E
has at most one fixed point. If

1 + qρ2μ2τ
q
2 + cqρ

q
2τ

q
2 − qρ2ν2 ≥ 0, (3.9)

then the implicit function y(x) determined by

y(x) = RM2
ρ2

(
x − ρ2A2

(
x, y2(x)

))
(3.10)

is continuous on E.
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Theorem 3.4. Let E be a real q-uniformly smooth Banach space. Let Mj : E → 2E be m-accretive
mapping, Let Aj : E × E → E be (μj , νj)-relaxed cocoercive and Lipschitz continuous in the first
variable with constant τj , and let gj : E → E be (aj , bj)-relaxed cocoercive and Lipschitz continuous
with constant ιj for j ∈ {1, 2, . . . , n}. Assume that

min
{
1 + qaj ι

q

j + cqι
q

j − qbj , 1 + qρjμjτ
q

j + cqρ
q

j τ
q

j − qρjνj
}
≥ 0, j = 1, 2, . . . , n, (3.11)

0 ≤
n∏
j=1

(
q

√
1 + qaj ι

q
j + cqι

q
j − qbj + q

√
1 + qρjμjτ

q
j + cqρ

q
j τ

q
j − qρjνj

)
< 1. (3.12)

Then the problem (SGMQVI) has a solution.Moreover, the solutions set Ξ of (SGMQVI) is a singleton.

Proof. By Theorem 3.1, the problem (SGMQVI) has a solution if and only if (3.1) holds. For
the convenience, we define a mapping F : E → E by

F(x) = RM1
ρ1

(
g1
(
y2(x)

) − ρ1A1
(
y2(x), x

))
,

y2(x) = RM2
ρ2

(
g2
(
y3(x)

) − ρ2A2
(
y3(x), y2(x)

))
,

...

yn−1(x) = RMn−1
ρn−1

(
gn−1

(
yn(x)

) − ρn−1An−1
(
yn(x), yn−1(x)

))
,

yn(x) = RMn
ρn

(
gn(x) − ρnAn

(
x, yn(x)

))
, x ∈ E.

(3.13)

Since Aj : E × E → E are (μj , νj)-relaxed cocoercive and Lipschitz continuous in the first
variable with constant τj and gj : E → E are (aj , bj)-relaxed cocoercive and Lipschitz
continuous with constant ιj for j ∈ {1, 2, . . . , n}, by Theorem 3.2, we know that F(x) and
yi(x)(i = 2, 3, . . . , n) are continuous on E. For any x, z ∈ E,

LAj =
∥∥yj+1(x) − yj+1(z) − ρj

[
Aj

(
yj+1(x), yj(x)

) −Aj

(
yj+1(z), yj(z)

)]∥∥q
≤ −qρj

〈
Aj

(
yj+1(x), yj(x)

) −Aj

(
yj+1(z), yj(z)

)
, Jq
(
yj+1(x) − yj+1(z)

)〉
+
∥∥yj+1(x) − yj+1(z)

∥∥q + cqρ
q
j

∥∥Aj

(
yj+1(x), yj(x)

) −Aj

(
yj+1(z), yj(z)

)∥∥q
≤ qρj

(
μj

∥∥Aj

(
yj+1(x), yj(x)

) −Aj

(
yj+1(z), yj(z)

)∥∥q − νj
∥∥yj+1(x) − yj+1(z)

∥∥q)
+
(
1 + cqρ

q

j τ
q

j

)∥∥yj+1(x) − yj+1(z)
∥∥q
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≤
(
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj
)∥∥yj+1(x) − yj+1(z)

∥∥q, j = 2, 3, . . . , n − 1,

Lgj =
∥∥yj+1(x) − yj+1(z) −

(
gj
(
yj+1(x)

) − gj
(
yj+1(z)

))∥∥q
≤ ∥∥yj+1(x) − yj+1(z)

∥∥q − q
〈
gj
(
yj+1(x)

) − gj
(
yj+1(z)

)
, Jq
(
yj+1(x) − yj+1(z)

)〉
+ cq

∥∥gj(yj+1(x)
) − gj

(
yj+1(z)

)∥∥q
≤
(
1 + qaj ι

q

j + cqι
q

j − qbj
)∥∥yj+1(x) − yj+1(z)

∥∥q, j = 2, 3, . . . , n − 1,

LAn =
∥∥x − z − ρn

[
An

(
x, yn(x)

) −An

(
z, yn(z)

)]∥∥q
≤ ‖x − z‖q − qρn

〈
An

(
x, yn(x)

) −An

(
z, yn(z)

)
, Jq(x − z)

〉
+ cqρ

q
n

∥∥An

(
x, yn(x)

) −An

(
z, yn(z)

)∥∥q
≤
(
1 + qρnμnτ

q
n + cqρ

q
nτ

q
n − qρnνn

)
‖x − z‖q,

Lgn =
∥∥x − z − (gn(x) − gn(z)

)∥∥q
≤ ‖x − z‖q − q

〈
gn(x) − gn(z), Jq(x − z)

〉
+ cq

∥∥gn(x) − gn(z)
∥∥q

≤
(
1 + qanι

q
n + cqι

q
n − qbn

)
‖x − z‖q,

LA1 =
∥∥y2(x) − y2(z) − ρ1

[
A1
(
y2(x), x

) −A1
(
y2(z), z

)]∥∥q
≤
(
1 + qρ1μ1τ

q

1 + cqρ
q

1τ
q

1 − qρ1ν1
)∥∥y2(x) − y2(z)

∥∥q,
Lg1 =

∥∥y2(x) − y2(z) −
(
g1
(
y2(x)

) − g1
(
y2(z)

))∥∥q
≤
(
1 + qa1ι

q

1 + cqι
q

1 − qb1
)∥∥y2(x) − y2(z)

∥∥q.
(3.14)

From Lemma 2.10, it yields that

‖F(x) − F(z)‖

=
∥∥∥RM1

ρ1

(
g1
(
y2(x)

) − ρ1A1
(
y2(x), x

)) − RM1
ρ1

(
g1
(
y2(z)

) − ρ1A1
(
y2(z), z

))∥∥∥
≤ ∥∥(g1(y2(x)

) − ρ1A1
(
y2(x), x

)) − (g1(y2(z)
) − ρ1A1

(
y2(z), z

))∥∥
=
∥∥(g1(y2(x)

) − g1
(
y2(z)

)) − ρ1
(
A1
(
y2(x), x

) −A1
(
y2(z), z

))∥∥
≤ ∥∥(y2(x) − y2(z)

) − ρ1
(
A1
(
y2(x), x

) −A1
(
y2(z), z

))∥∥
+
∥∥(y2(x) − y2(z)

) − (g1(y2(x)
) − g1

(
y2(z)

))∥∥
≤
(

q

√
1 + qa1ι

q

1 + cqι
q

1 − qb1 +
q

√
1 + qρ1μ1τ

q

1 + cqρ
q

1τ
q

1 − qρ1ν1

)∥∥y2(x) − y2(z)
∥∥.

(3.15)
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Note that, for each j ∈ {2, 3, . . . , n − 1},
∥∥yj(x) − yj(z)

∥∥
=
∥∥∥RMj

ρj

(
gj
(
yj+1(x)

) − ρjAj

(
yj+1(x), yj(x)

)) − R
Mj

ρj

(
gj
(
yj+1(z)

) − ρjAj

(
yj+1(z), yj(z)

))∥∥∥
≤ ∥∥(gj(yj+1(x)

) − ρjAj

(
yj+1(x), yj(x)

)) − (gj(yj+1(z)
) − ρjAj

(
yj+1(z), yj(z)

))∥∥
=
∥∥(gj(yj+1(x)

) − gj
(
yj+1(z)

)) − ρj
(
Aj

(
yj+1(x), yj(x)

) −Aj

(
yj+1(z), yj(z)

))∥∥
≤ ∥∥(yj+1(x) − yj+1(z)

) − ρj
(
Aj

(
yj+1(x), yj(x)

) −Aj

(
yj+1(z), yj(z)

))∥∥
+
∥∥(yj+1(x) − yj+1(z)

) − (gj(yj+1(x)
) − gj

(
yj+1(z)

))∥∥
≤
(

q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj + q

√
1 + qaj ι

q

j + cqι
q

j − qbj
)∥∥yj+1(x) − yj+1(z)

∥∥,
∥∥yn(x) − yn(z)

∥∥
=
∥∥∥RMn

ρn

(
gn(x) − ρnAn

(
x, yn(x)

)) − RMn
ρn

(
gn(z) − ρnAn

(
z, yn(z)

))∥∥∥
≤ ∥∥(gn(x) − gn(z)

) − ρn
(
An

(
x, yn(x)

) −An

(
z, yn(z)

))∥∥
≤ ∥∥x − z − ρn

(
An

(
x, yn(x)

) −An

(
z, yn(z)

))∥∥ +
∥∥x − z − (gn(x) − gn(z)

)∥∥
≤
(

q

√
1 + qρnμnτ

q
n + cqρ

q
nτ

q
n − qρnνn +

q

√
1 + qanι

q
n + cqι

q
n − qbn

)
‖x − z‖.

(3.16)

Therefore, we obtain

‖F(x) − F(z)‖ ≤
n∏
j=1

(
q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj + q

√
1 + qaj ι

q

j + cqι
q

j − qbj
)
‖x − z‖.

(3.17)

It follows from (3.12) that the mapping F is contractive. By banach’s contraction principle,
there exists a unique x∗

1 ∈ E such that F(x∗
1) = x∗

1. Therefore, by Theorem 3.2, there exists an
unique (x∗

1, x
∗
2, . . . , x

∗
n) ∈ En such that (x∗

1, x
∗
2, . . . , x

∗
n) is a solution of the problem (SGMQVI),

where x∗
i = yi(x∗

1) for i = 2, 3, . . . , n, that is,Ξ = {(x∗
1, x

∗
2, . . . , x

∗
n)}. This completes the proof.

4. Convergence Analysis

In this section, we introduce several implicit algorithms with errors and explicit algorithms
without errors for solving the system of generalized mixed quasivariational inclusions
problem (SGMQVI) and then explore the convergence analysis of the iterative sequences
generated by the corresponding algorithms.

From Section 3, we know that the system of generalized mixed quasivariational
inclusions problem (SGMQVI) is equivalent to the fixed point problem (3.1). This equivalent
formulation is crucial from the numerical analysis point of view. As we know, this fixed
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point formulation has been used to suggest and analyze some iterative methods for solving
variational inequalities and related optimization problems. By using the relations between the
problem (SGMQVI) and the fixed point problem (3.1), we construct the following iterative
algorithms for solving the system of generalized mixed quasivariational inclusions problem
(2.3).

Algorithm 4.1. Let ρj be positive constants for all j = 1, 2, . . . , n. For any given points x1,0 ∈ E,
define sequences {xj,k}j = 1, 2, . . . , n in E by the following implicit algorithm:

xn,k = RMn
ρn

(
gn(x1,k) − ρnAn(x1,k, xn,k)

)
,

xn−1,k = RMn−1
ρn−1

(
gn−1(xn,k) − ρn−1An−1(xn,k, xn−1,k)

)
,

...

x2,k = RM2
ρ2

(
g2(x3,k) − ρ2A2(x3,k, x2,k)

)
,

x1,k+1 = (1 − αk)x1,k + αkR
M1
ρ1

(
g1(x2,k) − ρ1A1(x2,k, x1,k)

)
+ ek, k = 0, 1, 2, . . . ,

(4.1)

where {ek} ⊂ E and {αk} is a real sequence in [0, 1].

If ek ≡ 0 for all k ≥ 0, then Algorithm 4.1 is reduced to the following result.

Algorithm 4.2. Let ρj be positive constants for all j = 1, 2, . . . , n. For any given points x1,0 ∈ E,
define sequences {xj,k}j = 1, 2, . . . , n in E by the following implicit algorithm

xn,k = RMn
ρn

(
gn(x1,k) − ρnAn(x1,k, xn,k)

)
,

xn−1,k = RMn−1
ρn−1

(
gn−1(xn,k) − ρn−1An−1(xn,k, xn−1,k)

)
,

...

x2,k = RM2
ρ2

(
g2(x3,k) − ρ2A2(x3,k, x2,k)

)
,

x1,k+1 = (1 − αk)x1,k + αkR
M1
ρ1

(
g1(x2,k) − ρ1A1(x2,k, x1,k)

)
, k = 0, 1, 2, ...,

(4.2)

where {αk} is a real sequence in [0, 1].

Now we construct an explicit algorithms for solving the system of generalized mixed
quasivariational inclusions problem (SGMQVI).
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Algorithm 4.3. Let ρj be positive constants for all j = 1, 2, . . . , n. For any given points (x1,0, x2,0,
. . . , xn−1,0, xn,0) ∈ En, define sequences {xj,k}(j = 1, 2, . . . , n) in E by the following explicit
algorithm

xn,k+1 = RMn
ρn

(
gn(x1,k) − ρnAn(x1,k, xn,k)

)
,

xn−1,k+1 = RMn−1
ρn−1

(
gn−1(xn,k+1) − ρn−1An−1(xn,k+1, xn−1,k)

)
,

...

x2,k+1 = RM2
ρ2

(
g2(x3,k+1) − ρ2A2(x3,k+1, x2,k)

)
,

x1,k+1 = (1 − αk)x1,k + αkR
M1
ρ1

(
g1(x2,k+1) − ρ1A1(x2,k+1, x1,k)

)
, k = 0, 1, 2, . . . ,

(4.3)

where {αk} is a real sequence in [0, 1].

Remark 4.4. If n = 2, E = H is a Hilbert space, and K is a closed convex subset of E, φ(x) =
δK(x) for all x ∈ K, and M1(x) = M2(x) = ∂φ(x) for all x ∈ E, where δK is the indicator
function of K, and ∂φ denotes the subdifferential operator of φ, then, from Remark 2.9,
Algorithms 4.1 and 4.3 are reduced to the Algorithms 4.5 and 4.6 for solving the system of
general variational inequalities problem (2.7).

Algorithm 4.5. Let ρj be positive constants for all j = 1, 2. For any given points x1,0 ∈ E, define
sequences {xj,k}j = 1, 2 in E by the following implicit algorithm:

x2,k = PK

(
g2(x1,k) − ρ2A2(x1,k, x2,k)

)
,

x1,k+1 = (1 − αk)x1,k + αkPK

(
g1(x2,k) − ρ1A1(x2,k, x1,k)

)
+ ek, k = 0, 1, 2, . . . ,

(4.4)

where {ek} ⊂ E and {αk} is a real sequence in [0, 1].

Algorithm 4.6. Let ρj be positive constants for all j = 1, 2. For any given points (x1,0, x2,0) ∈ E2,
define sequences {xj,k}(j = 1, 2) in E by the following explicit algorithm:

x2,k+1 = PK

(
g2(x1,k) − ρ2A2(x1,k, x2,k)

)
,

x1,k+1 = (1 − αk)x1,k + αkPK

(
g1(x2,k+1) − ρ1A1(x2,k+1, x1,k)

)
, k = 0, 1, 2, . . . ,

(4.5)

where {αk} is a real sequence in [0, 1].

Theorem 4.7. Let E be a real q-uniformly smooth Banach space, and let Mj,Aj , and gj (j =
1, 2, . . . , n) be the same as in Theorem 3.4. Assume that {αn} is a real sequence in (0, 1] and satisfy
the following conditions:

(i)
∑∞

k=0 αk = ∞;

(ii)
∑∞

k=0 ‖ek‖ < +∞;
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(iii) min{1 + qaj ι
q

j + cqι
q

j − qbj , 1 + qρjμjτ
q

j + cqρ
q

j τ
q

j − qρjνj} ≥ 0, j = 1, 2, . . . , n;

(iv) 0 <
∏n

j=1( q

√
1 + qaj ι

q

j + cqι
q

j − qbj + q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj) < 1.

Then the sequences {xj,k}(j = 1, 2, . . . , n) generated by Algorithm 4.1 converge strongly to x∗
j (j =

1, 2, . . . , n), respectively, such that (x∗
1, x

∗
2, . . . , x

∗
n) ∈ Ξ.

Proof. By Theorem 3.4, we know that there exist an unique point (x∗
1, x

∗
2, . . . , x

∗
n) ∈ En such

that (x∗
1, x

∗
2, . . . , x

∗
n) ∈ Ξ. Then, from Theorem 3.1, one has

x∗
1 = RM1

ρ1

(
g1
(
x∗
2

) − ρ1A1
(
x∗
2, x

∗
1

))
,

x∗
2 = RM2

ρ2

(
g2
(
x∗
3
) − ρ2A2

(
x∗
3, x

∗
2
))
,

...

x∗
n−1 = RMn−1

ρn−1
(
gn−1(x∗

n) − ρn−1An−1
(
x∗
n, x

∗
n−1
))
,

x∗
n = RMn

ρn

(
gn
(
x∗
1

) − ρnAn

(
x∗
1, x

∗
n

))
.

(4.6)

Therefore, from both (4.1) and (4.6), we have

∥∥x1,k+1 − x∗
1

∥∥ =
∥∥∥(1 − αk)x1,k + αkR

M1
ρ1

(
g1(x2,k) − ρ1A1(x2,k, x1,k)

)
+ ek − x∗

1

∥∥∥
=
∥∥∥(1 − αk)

(
x1,k − x∗

1

)
+ αk

(
RM1
ρ1

(
g1(x2,k) − ρ1A1(x2,k, x1,k)

) − x∗
1

)
+ ek

∥∥∥
=
∥∥∥αk

(
RM1
ρ1

(
g1(x2,k) − ρ1A1(x2,k, x1,k)

) − RM1
ρ1

(
g1
(
x∗
2
) − ρ1A1

(
x∗
2, x

∗
1

)))

+(1 − αk)
(
x1,k − x∗

1

)
+ ek

∥∥∥
≤ αk

∥∥∥RM1
ρ1

(
g1(x2,k) − ρ1A1(x2,k, x1,k)

) − RM1
ρ1

(
g1
(
x∗
2

) − ρ1A1
(
x∗
2, x

∗
1

))∥∥∥
+ (1 − αk)

∥∥x1,k − x∗
1

∥∥ + ‖ek‖
≤ αk
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2
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∗
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1
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(
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∗
1
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∥∥x1,k − x∗
1

∥∥ + ‖ek‖
≤ (1 − αk)

∥∥x1,k − x∗
1

∥∥ + ‖ek‖ + αk

∥∥(x2,k − x∗
2
) − (g1(x2,k) − g1

(
x∗
2
))∥∥

+ αk

∥∥(x2,k − x∗
2
) − ρ1

(
A1(x2,k, x1,k) −A1

(
x∗
2, x

∗
1

))∥∥.
(4.7)
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Since Aj : E × E → E are (μj , νj)-relaxed cocoercive and Lipschitz continuous in the first
variable with constant τj and gj : E → E are (aj , bj)-relaxed cocoercive and Lipschitz
continuous with constant ιj for j ∈ {1, 2, . . . , n}, we can conclude

L∗
Ai

=
∥∥xi+1,k − x∗

i+1 − ρi
[
Ai(xi+1,k, xi,k) −Ai

(
x∗
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)
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i
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∗
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)∥∥q
≤ qρi
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∗
i

)∥∥q − νi
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∥∥q)
+
(
1 + cqρ

q

i τ
q

i

)∥∥xi+1,k − x∗
i+1

∥∥q
≤
(
1 + qρiμiτ

q

i + cqρ
q

i τ
q

i − qρiνi
)∥∥xi+1,k − x∗

i+1

∥∥q, i = 1, 2, . . . , n − 1,

L∗
gi =

∥∥xi+1,k − x∗
i+1 −

(
gi(xi+1,k) − gi

(
x∗
i+1

))∥∥q
≤ −q〈gi(xi+1,k) − gi

(
x∗
i+1

)
, Jq
(
xi+1,k − x∗

i+1

)〉
+
∥∥xi+1,k − x∗

i+1

∥∥q + cq
∥∥gi(xi+1,k) − gi

(
x∗
i+1

)∥∥q
≤
(
1 + qaiι

q

i + cqι
q

i − qbi
)∥∥xi+1,k − x∗

i+1

∥∥q, i = 1, 2, . . . , n − 1,

L∗
An

=
∥∥x1,k − x∗

1 − ρn
[
An(x1,k, xn,k) −An

(
x∗
1, x

∗
n

)]∥∥q
≤ ∥∥x1,k − x∗

1

∥∥q − qρn
〈
An(x1,k, xn,k) −An

(
x∗
1, x

∗
n

)
, Jq
(
x1,k − x∗

1

)〉
+ cqρ

q
n

∥∥An(x1,k, xn,k) −An

(
x∗
1, x

∗
n

)∥∥q
≤
(
1 + qρnμnτ

q
n + cqρ

q
nτ

q
n − qρnνn

)∥∥x1,k − x∗
1

∥∥q,
L∗
gn =

∥∥x1,k − x∗
1 −
(
gn(x1,k) − gn

(
x∗
1

))∥∥q
≤ ∥∥x1,k − x∗

1

∥∥q − q
〈
gn(x1,k) − gn

(
x∗
1

)
, Jq
(
x1,k − x∗

1

)〉
+ cq

∥∥gn(x1,k) − gn
(
x∗
1

)∥∥q
≤
(
1 + qanι

q
n + cqι

q
n − qbn

)∥∥x1,k − x∗
1

∥∥q.
(4.8)

Noticing that, for each i ∈ {1, 2, . . . , n − 2},

∥∥xi+1,k − x∗
i+1

∥∥ =
∥∥∥RMi+1

ρi+1

(
gi+1(xi+2,k) − ρi+1Ai+1(xi+2,k, xi+1,k)

)

−RMi+1
ρi+1

(
gi+1

(
x∗
i+2
) − ρi+1Ai+1

(
x∗
i+2, x

∗
i+1

))∥∥∥
≤ ∥∥(gi+1(xi+2,k) − ρi+1Ai+1(xi+2,k, xi+1,k)

)
−(gi+1(x∗

i+2

) − ρi+1Ai+1
(
x∗
i+2, x

∗
i+1

))∥∥
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=
∥∥(gi+1(xi+2,k) − gi+1

(
x∗
i+2

)) − ρi+1
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(
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∗
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(
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(
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∗
i+1

))∥∥
+
∥∥(xi+2,k − x∗

i+2

) − (gi+1(xi+2,k) − gi+1
(
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i+2

))∥∥
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q

√
1 + qρi+1μi+1τ

q
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q

i+1τ
q
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+ q

√
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q

i+1 − qbi+1

)∥∥xi+2,k − x∗
i+2

∥∥,
‖xn,k − x∗

n‖ =
∥∥∥RMn

ρn

(
gn(x1,k) − ρnAn(x1,k, xn,k)

) − RMn
ρn

(
gn
(
x∗
1

) − ρnAn

(
x∗
1, x

∗
n

))∥∥∥
≤ ∥∥(gn(x1,k) − ρnAn(x1,k, xn,k)

) − (gn(x∗
1

) − ρnAn

(
x∗
1, x

∗
n

))∥∥
=
∥∥(gn(x1,k) − gn

(
x∗
1

)) − ρn
(
An(x1,k, xn,k) −An

(
x∗
1, x

∗
n

))∥∥
≤ ∥∥(x1,k − x∗

1

) − (ρnAn(x1,k, xn,k) − ρnAn

(
x∗
1, x

∗
n

))∥∥
+
∥∥(x1,k − x∗

1

) − (gn(x1,k) − gn
(
x∗
1

))∥∥
≤
(

q

√
1 + qρnμnτ

q
n + cqρ

q
nτ

q
n − qρnνn +

q

√
1 + qanι

q
n + cqι

q
n − qbn

)

× ∥∥x1,k − x∗
1

∥∥.
(4.9)

As a consequence, we have

∥∥x1,k+1 − x∗
1

∥∥ ≤ αk

n∏
j=1

(
q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj + q

√
1 + qaj ι

q

j + cqι
q

j − qbj
)∥∥x1,k − x∗

1

∥∥
+ (1 − αk)

∥∥x1,k − x∗
1

∥∥ + ‖ek‖

=

⎡
⎣1 − αk

⎛
⎝1 −

n∏
j=1

(
q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj + q

√
1 + qaj ι

q

j + cqι
q

j − qbj
)⎞⎠

⎤
⎦

× ∥∥x1,k − x∗
1

∥∥ + ‖ek‖.
(4.10)

Putting λk = αk(1 − ∏n
j=1( q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj + q

√
1 + qaj ι

q

j + cqι
q

j − qbj)), Ck =
0, Bk = ‖x1,k −x∗

1‖, andDk = ‖ek‖. Then Bk+1 ≤ (1−λk)Bk +Ck +Dk. From the conditions (i)–
(iv), it follows that

∞∑
k=0

λk = ∞, Ck = 0(λk),
∞∑
k=0

Dk < ∞, 0 < λk < 1, ∀k ∈ N. (4.11)
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Therefore, by Lemma 2.11 and (4.11), one has

lim
k→∞

Bk = 0, (4.12)

that is, limk→∞x1,k = x∗
1. Again from (iii), this shows that

q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj + q

√
1 + qaj ι

q

j + cqι
q

j − qbj ≥ 0, j = 2, 3, . . . , n, (4.13)

and so,

lim
k→∞

∥∥∥xj,k − x∗
j

∥∥∥ = 0, (4.14)

That is, xj,k → x∗
j as k → ∞ for j = 2, 3, . . . , n. Thus, (x1,k, x2,k, . . . , xn,k) converges strongly to

(x∗
1, x

∗
2, . . . , x

∗
n). This completes the proof.

Theorem 4.8. Let E be a real q-uniformly smooth Banach space, and let Mj,Aj and gj (j = 1, 2, . . . ,
n) be the same as in Theorem 3.4. Assume that {αn} is a real sequence in (0, 1] and satisfies the fol-
lowing conditions:

(i)
∑∞

k=0 αk = ∞;

(ii) min{1 + qaj ι
q

j + cqι
q

j − qbj , 1 + qρjμjτ
q

j + cqρ
q

j τ
q

j − qρjνj} ≥ 0, j = 1, 2, . . . , n;

(iii) 0 <
∏n

j=1( q
√
1 + qaj ι

q

j + cqι
q

j − qbj + q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj) < 1.

Then the sequences {xj,k} (j = 1, 2, . . . , n) generated by Algorithm 4.2 converge strongly to x∗
j (j =

1, 2, . . . , n), respectively, such that (x∗
1, x

∗
2, . . . , x

∗
n) ∈ Ξ.

Proof. It directly follows from Theorem 4.7, and so the proof is omitted. This completes the
proof.

Theorem 4.9. Let E be a real q-uniformly smooth Banach space, and let Mj,Aj and gj(j = 1, 2, . . . ,
n) be the same as in Theorem 3.4. Assume that {αn} is a real sequence in (0, 1] and satisfy the following
conditions:

(i)
∑∞

k=0 αk = ∞;

(ii) min{1 + qaj ι
q

j + cqι
q

j − qbj , 1 + qρjμjτ
q

j + cqρ
q

j τ
q

j − qρjνj} ≥ 0, j = 1, 2, . . . , n;

(iii) 0 <
∏n

j=1( q

√
1 + qaj ι

q

j + cqι
q

j − qbj + q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj) < 1.
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Then the sequences {xj,k}(j = 1, 2, . . . , n) generated by Algorithm 4.3 converge strongly to x∗
j (j =

1, 2, . . . , n), respectively, such that (x∗
1, x

∗
2, . . . , x

∗
n) ∈ Ξ.

Proof. As in the proof of Theorem 4.7, we know that there exists an unique point (x∗
1, x

∗
2, . . . ,

x∗
n) ∈ En such that (x∗

1, x
∗
2, . . . , x

∗
n) ∈ Ξ, and so

x∗
1 = RM1

ρ1

(
g1
(
x∗
2

) − ρ1A1
(
x∗
2, x

∗
1

))
,

x∗
2 = RM2

ρ2

(
g2
(
x∗
3
) − ρ2A2

(
x∗
3, x

∗
2
))
,

...

x∗
n−1 = RMn−1

ρn−1
(
gn−1(x∗

n) − ρn−1An−1
(
x∗
n, x

∗
n−1
))
,

x∗
n = RMn

ρn

(
gn
(
x∗
1

) − ρnAn

(
x∗
1, x

∗
n

))
,

(4.15)

Note that

∥∥x1,k+1 − x∗
1

∥∥ =
∥∥∥(1 − αk)x1,k + αkR

M1
ρ1

(
g1(x2,k+1) − ρ1A1(x2,k+1, x1,k)

) − x∗
1

∥∥∥
=
∥∥∥(1 − αk)

(
x1,k − x∗

1

)
+ αk

[
RM1
ρ1

(
g1(x2,k+1) − ρ1A1(x2,k+1, x1,k)

) − x∗
1

]∥∥∥
=
∥∥∥αk

[
RM1
ρ1

(
g1(x2,k+1) − ρ1A1(x2,k+1, x1,k)

) − RM1
ρ1

(
g1
(
x∗
2
) − ρ1A1

(
x∗
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∗
1

))]

+(1 − αk)
(
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(
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2
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(
x∗
2
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(
A1(x2,k+1, x1,k) −A1

(
x∗
2, x

∗
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∥∥x1,k − x∗
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1
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2
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2
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∗
1

))∥∥.
(4.16)
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Since Aj : E × E → E are (μj , νj)-relaxed cocoercive and Lipschitz continuous in the first
variable with constant τj and gj : E → E are (aj , bj)-relaxed cocoercive and Lipschitz
continuous with constant ιj for j ∈ {1, 2, . . . , n}, we can conclude that

L̂∗
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=
∥∥xi+1,k+1 − x∗
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))∥∥q
≤ −q〈gi(xi+1,k+1) − gi

(
x∗
i+1

)
, Jq
(
xi+1,k+1 − x∗

i+1

)〉
+
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(4.17)

Noticing that, for each i ∈ {1, 2, . . . , n − 2},

∥∥xi+1,k+1 − x∗
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∥∥ =
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× ∥∥x1,k − x∗
1

∥∥.
(4.18)

Consequently, we have

‖x1,k+1 − x∗‖

≤ αk

n∏
j=1

(
q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj + q

√
1 + qaj ι

q

j + cqι
q

j − qbj
)∥∥x1,k − x∗

1

∥∥
+ (1 − αk)‖x1,k − x∗‖

=

⎡
⎣1 − αk

⎛
⎝1 −

n∏
j=1

(
q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj + q

√
1 + qaj ι

q

j + cqι
q

j − qbj
)⎞⎠

⎤
⎦∥∥x1,k − x∗

1

∥∥.
(4.19)

Taking λk = αk(1−
∏n

j=1( q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj+ q

√
1 + qaj ι

q

j + cqι
q

j − qbj)),Ck = Dk = 0,
and Bk = ‖x1,k − x∗

1‖, then Bk+1 ≤ (1 − λk)Bk + Ck +Dk. It follows from the conditions (i)–(iii)
that

∞∑
k=0

λk = ∞, Ck = 0(λk),
∞∑
k=0

Dk < ∞, 0 < λk < 1, ∀k ∈ N. (4.20)
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Therefore, by Lemma 2.11 and (4.20), one has limk→∞Bk = 0. By the same argument of
Theorem 4.7, we get

lim
k→∞

∥∥∥xj,k − x∗
j

∥∥∥ = 0, j = 1, 2, . . . , n, (4.21)

that is, xj,k → x∗
j as k → ∞ for j = 1, 2, . . . , n. Thus, (x1,k, x2,k, . . . , xn,k) converges strongly to

(x∗
1, x

∗
2, . . . , x

∗
n). This completes the proof.

By Remark 4.4, we have the following strong convergence theorems for the system of
general variational inequalities problem (2.7).

Corollary 4.10. LetK be a closed convex subset of a real Hilbert space E, and letAj and gj (j = 1, 2)
be the same as in Theorem 3.4. Assume that {αn} is a real sequence in (0, 1] and satisfies the following
conditions:

(i)
∑∞

k=0 αk = ∞;

(ii)
∑∞

k=0 ‖ek‖ < +∞;

(iii) min{1 + 2ajι
2
j + ι2j − 2bj, 1 + 2ρjμjτ

2
j + ρ2j τ

2
j − 2ρjνj} ≥ 0, j = 1, 2;

(iv) 0 <
∏n

j=1(
√
1 + 2ajι

2
j + ι2j − 2bj +

√
1 + 2ρjμjτ

2
j + ρ2j τ

2
j − 2ρjνj) < 1.

Then the sequences {xj,k} (j = 1, 2) generated by Algorithm 4.5 converge strongly to x∗
j (j = 1, 2),

respectively, such that (x∗
1, x

∗
2) is the unique solution of the system of general variational inequalities

problem (2.7).

Corollary 4.11. LetK be a closed convex subset of a real Hilbert space E, and let Aj and gj (j = 1, 2)
be the same as in Theorem 3.4. Assume that {αn} is a real sequence in (0, 1] and satisfies the following
conditions:

(i)
∑∞

k=0 αk = ∞;

(ii) min{1 + 2ajι
2
j + ι2j − 2bj, 1 + 2ρjμjτ

2
j + ρ2j τ

2
j − 2ρjνj} ≥ 0, j = 1, 2;

(iii) 0 <
∏n

j=1(
√
1 + 2ajι

2
j + ι2j − 2bj +

√
1 + 2ρjμjτ

2
j + ρ2j τ

2
j − 2ρjνj) < 1.

Then the sequences {xj,k} (j = 1, 2) generated by Algorithm 4.6 converge strongly to x∗
j (j = 1, 2),

respectively, such that (x∗
1, x

∗
2) is the unique solution of the system of general variational inequalities

problem (2.7).

5. An Application

In this section, we applied the obtained results to study a class of bilevel variational inequal-
ities in Hilbert space, which includes some bilevel programming as special cases and widely
used in many practical problems. Moreover, an iterative algorithm and convergence theorem
for solutions to the bilevel variational inequalities are given in Hilbert space.

Let K1 and K2 be nonempty closed convex subsets of a Hilbert space E, and let g, h :
E → E and A : E × E → E be single-valued mappings. We consider the following bilevel
variational inequalities (for short, (BVI)): find (x∗, y∗) ∈ K1 ×K2 such that

〈
x∗ + h

(
y∗), h(x) − x∗〉 ≥ 0, ∀x ∈ K1, y∗ ∈ Ψ(x∗), (5.1)
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where Ψ(x∗) is the solutions set of the following parametric variational inequalities with
respect to the parametric variable x∗:

〈
ρA
(
x∗, y∗) + y∗ − g(x∗), g

(
y
) − y∗〉 ≥ 0, ∀y ∈ K2, (5.2)

where ρ is a positive constant. Equations (5.1) and (5.2) are called the upper-level variation
inequality (for short, (UVI)) and the lower-level variation inequality (for short, LVI),
respectively. Denote the set of solutions to the (BVI) by Θ. An important question for the
(BVI) is how to solve the bilevel variational inequalities.

From Remark 2.9 and Theorem 3.1, one can easily conclude the following result.

Lemma 5.1. Let (x∗, y∗) ∈ K1 × K2. Then (x∗, y∗) is a solution of the problem (BVI) if and only if
x∗ = PK1(−h(y∗)), where y∗ = PK2(g(x

∗) − ρA(x∗, y∗)) and ρ is a positive constant.

Lemma 5.2. LetK1 andK2 be nonempty closed convex subsets of a Hilbert space E. LetA : E×E →
E be (μ, ν)-relaxed cocoercive and Lipschitz continuous in the first variable with constant τ , and let
g : E → E be (a2, b2)-relaxed cocoercive and Lipschitz continuous with constant c2. Assume that
{1 + 2a2c

2
2 + c22 − 2b2, 1 + 2ρμτ2 + ρ2τ2 − 2ρν} ≥ 0 and

0 ≤
√
1 + 2a2c

2
2 + c22 − 2b2 +

√
1 + 2ρμτ2 + ρ2τ2 − 2ρν < 1. (5.3)

Then, for each x ∈ K1, the parametric variational inequalities (5.2) have a uniquely solution. Further,
the solution mapping y(x) of the parametric variational inequalities (5.2) is continuous on K1.

Proof. It directly follows from Theorems 3.2 and 3.4. This completes the proof.

Theorem 5.3. LetK1 andK2 be nonempty closed convex subsets of a Hilbert spaceE. LetA : E×E →
E be (μ, ν)-relaxed cocoercive and Lipschitz continuous in the first variable with constant τ , h : E →
E a (a1, b1)-relaxed cocoercive and Lipschitz continuous with constant c1, and let g : E → E be
a (a2, b2)-relaxed cocoercive and Lipschitz continuous with constant c2. Assume that {αk} is a real
sequence in (0, 1] and satisfies the following conditions:

(i)
∑∞

k=0 αk = ∞;

(ii) min{1 + 2ajc
2
j + c2j − 2bj , 1 + 2ρμτ2 + ρ2τ2 − 2ρν, j = 1, 2} ≥ 0;

(iii) 0 <
∏n

j=1( q

√
1 + qaj ι

q

j + cqι
q

j − qbj + q

√
1 + qρjμjτ

q

j + cqρ
q

j τ
q

j − qρjνj) < 1.

The sequences {xk} and {yk} generated by the following algorithm:

x0 ∈ K1,

yk = PK2

(
g(xk) − ρA

(
xk, yk

))
,

xk+1 = (1 − αk)xk + αkPK1

(−h(yk

))
, k = 0, 1, 2, . . . ,

(5.4)

where ρ is a positive constant. Then the sequences {xk} and {yk} converge strongly to x∗ and y∗,
respectively, such that (x∗, y∗) is a solution of the (BVI).
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Proof. The proof is similar to Remark 2.9 and Theorem 4.7, and so the proof is omitted. This
completes the proof.
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