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We study the heat equation in n dimensional by Diamond Bessel operator. We find the solution by
method of convolution and Fourier transform in distribution theory and also obtain an interesting
kernel related to the spectrum and the kernel which is called Bessel heat kernel.

1. Introduction

The operator♦k has been first introduced byKananthai [1], is named as the diamond operator
iterated k times, and is defined by

♦k =

⎛
⎜⎝
(

p∑
i=1

∂2

∂x2
i

)2

−
⎛
⎝

p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠

2
⎞
⎟⎠

k

, (1.1)

p+q = n, n is the dimension of the spaceR
n for x = (x1, x2, . . . , xn) ∈ R

n, and k is a nonnegative
integer. The operator ♦k can be expressed in the following form:

♦k = �k�k = �k0�k, (1.2)

where �k is the Laplacian operator iterated k-times defined by

� =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
n

, (1.3)
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and �k is the ultrahyperbolic operator iterated k-times defined by

�k =

⎛
⎝ ∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

⎞
⎠

k

. (1.4)

Kananthai [1, Theorem 1.3] has shown that the convolution (−1)kRe
2k(x) ∗ RH

2k(x) is an
elementary of the operator ♦k. That is

♦k
(
(−1)kRe

2k(x) ∗ RH
2k(x)

)
= δ(x), (1.5)

where Re
2k(x) is defined by

Re
α(x) =

|x|α−n
Wn(α)

,

Wn(α) =
πn/22αΓ(α/2)
Γ((n − α)/2)

,

(1.6)

α is a complex parameter, n is the dimension of R
n, and the generalized function RH

α (υ) is
defined by

RH
α (υ) =

⎧⎪⎨
⎪⎩

υ(α−n)/2

Kn(α)
, for x ∈ Γ+,

0, for x /∈ Γ+,
(1.7)

and the constant Kn(α) is given by the formula

Kn(α) =
π(n−1)/2Γ((2 + α − n)/2)Γ((1 − α)/2)Γ(α)

Γ
((
2 + α − p

)
/2
)
Γ
((
p − α

)
/2
) . (1.8)

The function RH
α (υ) is called the ultrahyperbolic kernel of Marcel Riesz and was introduced

by Nozaki (see [2, page 72]).
Next, Yildirim et al. (see [3]) first introduced the Bessel diamond operator ♦k

B iterated
k-times, defined by

♦k
B =

⎛
⎜⎝
(

p∑
i=1

Bxi

)2

−
⎛
⎝

p+q∑
j=p+1

Bxj

⎞
⎠

2
⎞
⎟⎠

k

, (1.9)
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where Bxi = ∂2/∂x2
i + (2υi/xi)(∂/∂xi), 2υi = 2αi + 1, αi > −1/2, xi > 0. The operator ♦k

B can be
expressed by ♦k

B = �k
B�k

B = �k
B�k

B, where

�k
B =

(
p∑
i=1

Bxi

)k

, (1.10)

�k
B =

⎛
⎝

p∑
i=1

Bxi −
p+q∑
j=p+1

Bxj

⎞
⎠

k

. (1.11)

And Yildirim (see [4]) have shown that the solution of the convolution form u(x) =
(−1)kS2k(x) ∗ R2k(x) is a unique elementary solution of ♦k

B, that is,

♦k
B

(
(−1)kS2k(x) ∗ R2k(x)

)
= δ, (1.12)

where S2k(x) is defined by (2.8)with α = 2k and R2k(x) is defined by (2.9)with γ = 2k.
It is well known that for the heat equation

∂

∂t
u(x, t) = c2�u(x, t) (1.13)

with the initial condition

u(x, 0) = f(x), (1.14)

where � is the Laplace operator and is defined by (1.3) and (x, t) = (x1, x2, . . . , xn, t) ∈ R
n ×

(0,∞), we obtain

u(x, t) =
1

(4c2πt)n/2

∫

Rn

exp

(
−
∣∣x − y

∣∣2
4c2t

)
f
(
y
)
dy (1.15)

as the solution of (1.13). Now, (1.15) can be written in the classical form

u(x, t) = E(x, t) ∗ f(x), (1.16)

where

E(x, t) =
1

(4c2πt)n/2
exp

(
− |x|2
4c2t

)
. (1.17)

E(x, t) is called the heat kernel, where |x|2 = x2
1 + x2

2 + · · · + x2
n and t > 0, see [5, pages 208-209].

Moreover, we obtain E(x, t) → δ as t → 0, where δ is the Dirac delta distribution.
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Next, Saglam et al. (see [6]) have study the following equation,

∂

∂t
u(x, t) = c2�k

Bu(x, t) (1.18)

with the initial condition

u(x, 0) = f(x), for x ∈ R+
n, (1.19)

where the operator �k
B is named the Bessel ultrahyperbolic operator iterated k-times and is

defined by (1.4), k is a positive integer, u(x, t) is an unknown function, f(x) is the given
generalized function, and c is a constant, and p + q = n is the dimension of the R+

n = {x : x =
(x1, x2, . . . , xn, t), xi > 0, i = 1, 2, 3, . . . , n}.

They obtain the solution in the classical convolution form

u(x, t) = E(x, t) ∗ f(x), (1.20)

where the symbol ∗ is the B-convolution in (2.3), as a solution of (1.18), which satisfies (1.19),
where

E(x, t) = Cv

∫

Ω+
ec

2t[(y2
1+···+y2

p)−(y2
p+1+···+y2

p+q)]
k n∏
i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy, (1.21)

and Ω+ ⊂ R+
n is the spectrum of E(x, t) for any fixed t > 0, and Jvi−1/2(xi, yi) is the normalized

Bessel function.
Now, the purpose of this work is to study the equation

∂

∂t
�Bu(x, t) = c2♦Bu(x, t) (1.22)

with the initial condition

�Bu(x, 0) = f(x), (1.23)

where (x, t) = (x1, . . . , xn, t) ∈ R
n × (0,∞), t is a time, c is a positive constant, u(x, t) is an

unknown function, and f(x) is a given generalized function for x ∈ R
n. We obtain

u(x, t) = RH
2 (x) ∗ E(x, t) ∗ f(x) (1.24)

as a solution of (1.7), where

E(x, t) = Cv

∫

Ω+
e−c

2t(y2
1+y

2
2+y

2
3+···+y2

n)
n∏
i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy, (1.25)
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and Ω ⊂ R
n is the spectrum of E(x, t) for any fixed t > 0, and RH

2 (x) is defined by (2.6)
with α = 2. The convolution RH

2 (x) ∗ E(x, t) is called the Diamond Bessel Heat Kernel, and
all properties will be studied in details. Before proceeding, the following definitions and
concepts are needed.

2. Preliminaries

The shift operator according to the law remarks that this shift operator connected to the Bessel
differential operator (see [3, 5, 7, 8]):

T
y
x ϕ(x) = C∗

v

∫π

0
· · ·
∫π

0
ϕ

(√
x2
1 + y2

1 − 2x1y1 cos θ1, . . . ,
√
x2
n + y2

n − 2xnyn cos θn
)

×
(

n∏
i=1

sin2vi−1θi

)
dθ1 · · ·dθn,

(2.1)

where x, y ∈ R+
n, C

∗
v =
∏n

i=1Γ(vi + 1)/Γ(1/2)Γ(vi). We remark that this shift operator is closely
connected to the Bessel differential operator (see [3, 5, 7, 8]),

d2U

dx2
+
2v
x

dU

dx
=

d2U

dy2
+
2v
y

dU

dy
,

U(x, 0) = f(x), Uy(x, 0) = 0.

(2.2)

The convolution operator determined by the Ty
x is as follows:

(
f ∗ ϕ)(y) =

∫

R+
n

f
(
y
)
T
y
x ϕ(x)

(
n∏
i=1

y2vi

i

)
dy. (2.3)

Convolution (2.3) is known as a B-convolution. We note the following properties of the B-
convolution and the generalized shift operator.

(1) Ty
x · 1 = 1,

(2) T0
x · f(x) = f(x),

(3) If f(x), g(x) ∈ C(R+
n), g(x) is a bounded function for all x > 0,

and
∫∞
0 |f(x)|(∏n

i=1x
2vi

i )dx < ∞, then
∫
R+
n
T
y
x f(x)g(y)(

∏n
i=1y

2vi

i )dy =∫
R+
n
f(y)Ty

x g(x)(
∏n

i=1y
2vi

i )dy.

(4) From (3), we have the following equality for g(x) = 1:
∫
R+
n
T
y
x f(x)(

∏n
i=1y

2vi

i )dy =∫
R+
n
f(y)(

∏n
i=1y

2vi

i )dy.

(5) (f ∗ g)(x) = (g ∗ f)(x).
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The Fourier-Bessel transformation and its inverse transformation are defined as follows:

(FBf
)
(x) = Cv

∫

R+
n

f
(
y
)( n∏

i=1

Jvi−1/2
(
xi, yi

)
y2υi

i

)
dy, (2.4)

(
F−1

B f
)
(x) =

(FBf
)
(−x), Cv =

(
n∏
i=1

2υi−1/2Γ
(
υi +

1
2

))−1
, (2.5)

where Jvi−1/2(xi, yi) is the normalized Bessel function which is the eigenfunction of the Bessel
differential operator. The following equalities for Fourier-Bessel transformation are true (see
[3, 5, 7, 8]):

FBδ(x) = 1, (2.6)

FB

(
f ∗ g)(x) = FBf(x) · FBg(x). (2.7)

Definition 2.1. Let x = (x1, x2, . . . , xn), ν = (ν1, ν2, . . . , νn) ∈ R
+
n. For any complex number α,

we define the function Sα(x) by

Sα(x) =
2n+2|ν|−2αΓ((n + 2|ν| − α)/2)|x|α−n−2|ν|∏n

i=12νi−1/2Γ(νi + 1/2)
. (2.8)

Definition 2.2. Let x = (x1, x2, . . . , xn), ν = (ν1, ν2, . . . , νn) ∈ R
+
n, and denote by V = x2

1 + x2
2 +

· · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q the nondegenerated quadratic form. Denote the interior of
the forward cone by Γ+ = {x ∈ R

+
n : x1 > 0, x2 > 0, . . . , xn > 0, V > 0}. The function Rβ(x) is

defined by

Rγ(x) =
V (γ−n−2|ν|)/2

Kn

(
γ
) , (2.9)

where

Kn

(
γ
)
=

π(n+2|ν|−1)/2Γ
((
2 + γ − n − 2|ν|)/2)Γ((1 − γ

)
/2
)
Γ
(
γ
)

Γ
((
2 + γ − p − 2|ν|)/2)Γ((p − 2|ν| − γ

)
/2
) , (2.10)

and γ is a complex number.
By putting p = 1 in R2k(x) and taking into account Legendre’s duplication formula for

Γ(z):

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
, (2.11)
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we obtain

Iγ(x) =
υ(γ−n−2|ν|)/2

Mn

(
γ
) (2.12)

and υ = x2
1 − x2

2 − · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q, where

Mn(2k) = π(n+2|ν|−1)/222k−1Γ
(
2 + 2k − n − 2|ν|

2

)
Γ(k). (2.13)

Definition 2.3. The spectrum of the kernel E(x, t) of (1.21) is the bounded support of the
Fourier Bessel transform FBE(y, t) for any fixed t > 0.

Definition 2.4. Let x = (x1, x2, . . . , xn) be a point in R
+
n, and denote by

Γ+ =
{
x ∈ R

+
n : x2

1 + x2
2 + · · · + x2

p − x2
p+1 − x2

p+2 − · · · − x2
p+q > 0, ξ1 > 0

}
(2.14)

the set of an interior of the forward cone, and Γ+ denotes the closure of Γ+.
Let Ω+ be spectrum of E(x, t) defined by (1.21) for any fixed t > 0 and Ω ⊂ Γ+. Let

FBE(y, t) be the Fourier Bessel transform of E(x, t), which is defined by

FBE
(
y, t
)
=

⎧
⎨
⎩
e−c

2t(y2
1+y

2
2+y

2
3+···+y2

p), for ξ ∈ Ω+,

0, for ξ /∈ Ω+.
(2.15)

Lemma 2.5. Given the equation �k
Bu(x) = δ(x) for x ∈ R

+
n, where �k

B is defined by (1.10). Then,

u(x) = (−1)kS2k(x), (2.16)

where S2k(x) is defined by (2.3), with α = 2k. We obtain that (−1)kRe
2k(x) is an elementary solution

of the operator �k
B. That is

�k
B(−1)kS2k(x) = δ(x). (2.17)

Proof. (See [3, page 379]).

Lemma 2.6. Given the equation �k
Bu(x) = δ(x) for x ∈ R

+
n, where �k

B is defined by (1.11). Then,

u(x) = R2k(x), (2.18)

where R2k(x) is defined by (2.4), with γ = 2k. We obtain that R2k(x) is an elementary solution of the
operator �k

B. That is

�k
BR2k(x) = δ(x). (2.19)
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Proof (see [3, Page 379]). From (2.8) with k = 1, we obtain u(x) = RH
2 (x) as an elementary

solution of the equation

�u(x) = δ. (2.20)

Now, from (2.17),

RH
2 (υ) =

⎧⎪⎨
⎪⎩

υ(2−n−2|ν|)/2

Kn(2)
, for x ∈ Γ+,

0, for x /∈ Γ+,
(2.21)

We can compute Kn(2) from (2.7) as

Kn(2) =
π(n+2|ν|−1)/2Γ((4 − n − 2|ν|)/2)Γ(−1/2)Γ(2)
Γ
((
4 − p − 2|ν|)/2)Γ((p + 2|ν| − 2

)
/2
) . (2.22)

By using the formula

Γ(z)Γ(1 − z) =
π

sinπz
, (2.23)

we obtain Γ(−1/2) = −2√π , Γ(2) = 1 and

Γ
(
p + 2|ν| − 2

2

)
Γ
(
4 − p − 2|ν|

2

)
= Γ
(
p + 2|ν| − 2

2

)
Γ
(
1 − p + 2|ν| − 2

2

)

=
π

sin
(
π
(
p + 2|ν| − 2

)
/2
) .

(2.24)

Then, we obtain

Kn(2) =
π(n+2|ν|−1)/2Γ((4 − n)/2)

(−2√π
)
sin
(
π
((
p + 2|ν| − 2

)
/2
))

π

= −2π(n+2|ν|−2)/2Γ
(
4 − n − 2|ν|

2

)
sin
(
π

(
p + 2|ν| − 2

2

))
.

(2.25)

Thus,

RH
2 (υ) =

⎧
⎪⎨
⎪⎩

υ(2−n−2|ν|)/2

−2π(n+2|ν|−2)/2Γ((4 − n − 2|ν|)/2) sin(π((p + 2|ν| − 2
)
/2
)) , for x ∈ Γ+,

0, for x /∈ Γ+,
(2.26)

where υ = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q.
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Lemma 2.7. Let Sα(x) and Rβ(x) be the functions defined by (2.8) and (2.9), respectively. Then

Sα(x) ∗ Sβ(x) = Sα+β(x),

Rβ(x) ∗ Rα(x) = Rβ+α(x),
(2.27)

where α and β are a positive even number.

Proof . (See [3, pages 171–190]).

Lemma 2.8 (Fourier Bessel transform of �k
B operator). Consider

FB�k
Bu(x) = (−1)kV k

1 (x)FBu(x), (2.28)

where

V k
1 (x) =

⎛
⎝

p∑
i=1

x2
i −

p+q∑
j=p+1

x2
j

⎞
⎠

k

. (2.29)

Proof. (See [4]).

Lemma 2.9 (Fourier Bessel transform of �k
B operator). Consider

FB�k
Bu(x) = (−1)k|x|2kFBu(x), (2.30)

where

|x|2k =
(
x2
1 + x2

2 + · · · + x2
n

)k
. (2.31)

Proof. (see [4, 9]).

Lemma 2.10. For t, v > 0, and x, y ∈ R
n, we have

∫∞

0
e−c

2x2tx2υdx =
Γ(υ)

2c2υ+1tυ+1/2
,

∫∞

0
e−c

2x2tJυ−1/2
(
xy
)
x2υdx =

Γ(υ + 1/2)

2(c2t)υ+1/2
e−y

2/4c2t,

(2.32)

where c is a positive constant.

Proof. (See [6, Lemma 3.1.1] and [10]).

Lemma 2.11. Let the operator L be defined by

L =
∂

∂t
− c2�B, (2.33)
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where �B is the Laplace Bessel operator defined by

�B = Bx1 + Bx2 + Bx3 + · · · + Bxn,

Bxi =
∂2

∂x2
i

+
2vi

xi

∂

∂xi

(2.34)

p + q = n is the dimension R
+
n, k is a positive integer, (x1, x2, . . . + xn) ∈ R

+
n, and c is a positive

constant. Then,

E(x, t) = Cv

∫

Ω+
e−c

2t(y2
1+y

2
2+···+y2

n)
n∏
i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy (2.35)

is the elementary solution of (2.15) in the spectrum Ω+ ⊂ R+
n for t > 0.

Proof. Let LE(x, t) = δ(x, t), where E(x, t) is the elementary solution of L and δ is the Dirac-
delta distribution. Thus,

∂

∂t
E(x, t) − c2(Bx1 + Bx2 + Bx3 + · · · + Bxn)E(x, t) = δ(x)δ(t). (2.36)

Applying the Fourier Bessel transform, which is defined by (2.4) to the both sides of the above
equation and using Lemma 2.7 by considering FBδ(x) = 1, we obtain

∂

∂t
FBE(x, t) + c2

(
x2
1 + x2

2 + x2
3 + · · · + x2

n

)
FBE(x, t) = δ(t). (2.37)

Thus, we get

FBE(x, t) = H(t)e−c
2t(x2

1+x
2
2+x

2
3+···+x2

n), (2.38)

where H(t) is the Heaviside function, because H(t) = 1 holds for t ≥ 0.
Therefore,

FBE(x, t) = e−c
2t(x2

1+x
2
2+x

2
3+···+x2

n), (2.39)

which has been already given by (2.7). Thus, from (2.5), we have

E(x, t) = Cv

∫

R
+
n

e−c
2t(y2

1+y
2
2+y

2
3+···+y2

n)
n∏
i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy, (2.40)

where Ω+ is the spectrum of E(x, t). Thus, we obtain

E(x, t) = Cv

∫

Ω+
e−c

2t(y2
1+y

2
2+y

2
3+···+y2

p)
n∏
i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy (2.41)
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as an elementary solution of (2.15) in the spectrum Ω+ ⊂ R+
n for t > 0.

Definition 2.12. We can extend E(x, t) to R
n × R by setting

E(x, t) =

⎧⎪⎨
⎪⎩

1
(2π)n

∫

Ω
exp
(−c2t(ξ2i + ξ22 + ξ23 + · · · + ξ2n

))
, for t > 0,

0, for t ≤ 0.
(2.42)

Lemma 2.13. Let us consider the equation

∂

∂t
u(x, t) − c2�Bu(x, t) = 0 (2.43)

with the initial condition

u(x, 0) = f(x), (2.44)

where �B is the operator iterated k-times and is defined by

�B = (Bx1 + Bx2 + Bx3 + · · · + B),

Bxi =
∂2

∂x2
i

+
2vi

xi

∂

∂xi
,

(2.45)

p + q = n is the dimension R
+
n, k is a positive integer, u(x, t) is an unknown function for (x, t) =

(x1, x2, . . . , xn, t) ∈ R
+
n × (0,∞), f(x) is the given generalized function, and c is a positive constant.

Then,

u(x, t) = E(x, t) ∗ f(x) (2.46)

is a solution of (2.43), which satisfies (2.44), where E(x, t) is given by (2.35).

Proof. Taking the Fourier Bessel transform, the both sides of (2.43), for x ∈ R
+
n and using

Lemma 2.9, we obtain

∂

∂t
FBu(x, t) = −c2

(
x2
1 + x2

2 + x2
3 + · · · + x2

n

)
FBu(x, t). (2.47)

Thus, we consider the initial condition (2.44), then we have the following equality for (2.47):

u(x, t) = f(x) ∗ F−1
B e−c

2t(x2
1+x

2
2+x

2
3+···+x2

n). (2.48)
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Here, if we use (2.4) and (2.5), then we have

u(x, t) = f(x) ∗ F−1
B e−c

2t(y2
1+y

2
2+y

2
3+···+y2

n)

=
∫

R
+
n

F−1
B e−c

2t(y2
1+···+y2

n)T
y
x f(x)

(
n∏
i=1

y2υi

i

)
dy

=
∫

R
+
n

(
Cv

∫

R
+
n

e−c
2tV k(z)

n∏
i=1

Jυi−1/2
(
yi, zi

)
z2υi

i dz

)
T
y
x f(x)

(
n∏
i=1

y2υi

i

)
dy,

(2.49)

where V (z) = (z21 + z22 + z23 + · · · + z2n). Set

E(x, t) = Cv

∫

R
+
n

e−c
2t(y2

1+y
2
2+y

2
3+···+y2

n)
n∏
i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy. (2.50)

We choose Ω+ ⊂ R
+
n, to be the spectrum of E(x, t), and, by (2.35), we have

E(x, t) = Cv

∫

R
+
n

e−c
2t(y2

1+y
2
2+y

2
3+···+y2

n)
n∏
i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy

= Cv

∫

Ω+
e−c

2t(y2
1+y

2
2+y

2
3+···+y2

n)
n∏
i=1

Jvi−1/2
(
xi, yi

)
y2υi

i dy.

(2.51)

Thus, (2.49) can be written in the convolution form

u(x, t) = E(x, t) ∗ f(x). (2.52)

Moreover, since E(x, t) exists, we can see that

lim
t→ 0

E(x, t) = Cv

∫

Ω+

n∏
i=1

Jvi−1/2
(
xi, yi

)
y2vi

i dy

= Cv

∫

R
+
n

n∏
i=1

Jvi−1/2
(
xi, yi

)
y2vi

i dy

= δ(x), for x ∈ R
+
n.

(2.53)

Thus, for the solution u(x, t) = E(x, t) ∗ f(x) of (2.43), we have

lim
t→ 0

u(x, t) = u(x, 0) = δ ∗ f(x) = f(x), (2.54)

which satisfies (2.44). This completes the proof.
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3. Main Results

Theorem 3.1. Given the equation

∂

∂t
(�Bu(x, t)) = c2♦Bu(x, t) (3.1)

with the initial condition

�Bu(x, 0) = f(x), (3.2)

where f(x) is a given generalized function for R
n, �B is an ultrahyperbolic Bessel operator, and ♦B is

the Diamond Bessel operator defined by (1.11) and (1.9), respectively. Then, we obtain

u(x, t) = RH
2 (x) ∗ E(x, t) ∗ f(x) (3.3)

as a solution of (3.1), where RH
2 (x) is given by (2.9) with γ = 2 and E(x, t) is given by (2.35).

Proof. Equation (3.1) can be written in the form

∂

∂t
(�Bu(x, t)) = c2�B(�Bu(x, t)). (3.4)

Let w(x, t) = �Bu(x, t). Thus, the above equation can be written as

∂

∂t
(w(x, t)) = c2(�Bw(x, t)). (3.5)

We can solve the above equation by applying the n-dimensional Fourier Bessel
transform to both sides of (3.5). By Lemma 2.7, we obtain

w(x, t) = �Bu(x, t) = E(x, t) ∗ f(x). (3.6)

By convolving both sides of (3.6) by function RH
2 (x), we obtain

RH
2 (x) ∗ �Bu(x, t) = RH

2 (x) ∗ E(x, t) ∗ f(x). (3.7)

By properties of convolution,

�RH
2 (x) ∗ u(x, t) = RH

2 (x) ∗ E(x, t) ∗ f(x). (3.8)

By Lemma 2.5, we obtain

δ ∗ u(x, t) = RH
2 (x) ∗ E(x, t) ∗ f(x), (3.9)
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or

u(x, t) = RH
2 (x) ∗ E(x, t) ∗ f(x) (3.10)

is a solution of (3.1). As shown in (3.5) and by the continuity of convolution,

lim
t→ 0

�Bu(x, t) = lim
t→ 0

(
E(x, t) ∗ f(x)) = δ ∗ f(x) = f(x). (3.11)

Theorem 3.2 (The properties of the Diamond Bessel Heat Kernel RH
2 (x)∗E(x, t)). (1) RH

2 (x)∗
E(x, t) exists and is tempered distribution.

(2) RH
2 (x) ∗ E(x, t) ∈ C

∞ the space of continuous function and infinitely differentiable.
(3) limt→ 0(RH

2 (x) ∗ E(x, t)) = RH
2 (x).

(4) (∂/∂t)�B(RH
2 (x) ∗ E(x, t)) − c2♦B(RH

2 (x) ∗ E(x, t)) = 0.

Proof. (1) Since E(x, t) and RH
2 (x) are tempered distribution with compact support. Thus,

RH
2 (x) ∗ E(x, t) exists and is a tempered distribution.

(2)We have

∂n

∂xn

(
RH

2 (x) ∗ E(x, t)
)
= RH

2 (x) ∗ ∂n

∂xn
E(x, t), (3.12)

since E(x, t) is infinitely differentiable and RH
2 (x) ∗ E(x, t) ∈ C

∞.
(3) By the continuity of the convolution,

RH
2 (x) ∗ E(x, t) −→ RH

2 (x) ∗ δ as t −→ 0. (3.13)

Thus,

lim
t→ 0

(
RH

2 (x) ∗ E(x, t)
)
= RH

2 (x). (3.14)

(4) Since

�B

(
RH

2 (x) ∗ E(x, t)
)
= �BR

H
2 (x) ∗ E(x, t) = δ ∗ E(x, t) = E(x, t),

♦B

(
RH

2 (x) ∗ E(x, t)
)
= �B

(
�BR

H
2 (x) ∗ E(x, t)

)
= �B(δ ∗ E(x, t)) = �BE(x, t).

(3.15)

thus

∂

∂t
�B

(
RH

2 (x) ∗ E(x, t)
)
− c2♦B

(
RH

2 (x) ∗ E(x, t)
)

=
∂

∂t
E(x, t) − c2�BE(x, t) =

(
∂

∂t
− c2�B

)
E(x, t) = 0,

(3.16)

where E(x, t) is defined by (2.35).
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