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The Sharma-Tasso-Olver (STO) equation is investigated. The Painlevé analysis is efficiently used
for analytic study of this equation. The Bäcklund transformations and some new exact solutions
are formally derived.

1. Introduction

Let α be a constant. We consider the Sharma-Tasso-Olver (STO) equation

ut + α
(
u3
)
x
+
3
2
α
(
u2
)
xx

+ αuxxx = 0. (1.1)

This paper is concerned with the STO equation [1] and [2–17].
Attention has been focused on STO equation (1.1) in [1] and [2–4] and the references

therein due to its appearance in scientific applications. In [1], the tanh method, the extended
tanh method, and other ansatz involving hyperbolic and exponential functions are efficiently
used for the analytic study of this equation. And some new solitons and kinks solutions are
formally derived. The proposed schemes are reliable and manageable. In [2], this equation
was handled by using the Cole-Hopf transformations method. The simple symmetry
reduction procedure is repeatedly used in [3] to obtain exact solutions where soliton fission
and fusion were examined. However, in [4], the soliton fission and fusion were examined
thoroughly by using Hirota’s direct method and the Bäcklund transformations method. In
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[6], the authors show that symmetry constraints do not always yield exact solutions through
analyzing the STO equation. The generalized Kaup-Newell-type hierarchy of nonlinear
evolution equations is explicitly related to STO equation from [9]. Using the improved
tanh function method in [10], the STO equation with its fission and fusion has some exact
solutions. In [11] some exact solution of the STO equation are given by implying a generalized
tanh function method for approximating some solutions which have been known. In [12], the
method of third-order mode coupling is applied to the STO equation. In [13], the same exact
explicit solutions of the STO equation, as this work are derived by using an extension of
the homogeneous balance method and the Bäcklund transformation. Recently in [7, 8], the
authors have introduced some other discussions about new solution techniques, a multiple
exp-function method and linear superposition principle applying to nonlinear equations,
which rely on a close observation on relations between linear objects and nonlinear objects.

Many types of travelling waves are of particular interest in solitary wave theory.
The solitons, which are localized travelling waves, asymptotically zero at large distances,
the periodic solutions, the kink waves which rise or descend from one asymptotic state to
another, are well-known types of travelling waves.

The objectives of this work are twofold. First, we seek to establish new solitons
and kink solutions of distinct physical structures for the nonlinear equation (1.1). Second,
we aim to implement many strategies to achieve our goal, namely, the Painlevé test
[18, 19], hyperbolic functions ansatze, and exponential functions ansatze to obtain new exact
solutions. In what follows, the Painlevé test will be reviewed briefly.

We give the three steps of the test for a single PDE,

F(x, t, u(x, t)) = 0, (1.2)

in two independent variables, x and t. Following [18, 20], the Laurent expansion of the
solution u(x, t),

u(x, t) = φα(x, t)
∞∑
k=0

uk(x, t)φk(x, t), (1.3)

should be single valued in the neighborhood of a noncharacteristic, movable and singular
manifold φ(x, t), which can be viewed as the surface of the movable poles in the complex
plane. In (1.3), u0(x, t)/= 0, α is a negative integer and uk(x, t) are analytic functions in a
neighborhood of φ(x, t).

The Painlevé test have the following steps

Step 1 (leading order analysis). Determine the (negative) integer α and u0 by balancing the
minimal power terms after the substitution of u = u0φα into the given PDE. There may be
several branches for u0, and for each the next two steps must be performed.

Step 2 (determination of the resonances). For selected α and u0, calculate the nonnegative
integers r, called the resonances, at which arbitrary functions ur enter the series (1.3). To do
so, substitute (1.3) into (1.1), and normalize all orders of φ with the minimal power term.
Then we have the cycle formula on uj , through reducing the formula, and the resonance r
can be obtained.

Step 3 (verification of the compatibility conditions). Substituting j = k at which k is not equal
r into the cycle formula, we have nonlinear equation fk(uk · · ·u0, φ · · · ) = 0 (1 < k < r).
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At resonance levels, ur should be arbitrary, and then we are deducing a nonlinear equation
g(ur−1 · · ·u0, φ · · · ) = 0. If the equation f implies g, then the compatibility condition is uncon-
ditionally satisfied.

An equation for which these three steps can be carried out consistently and unambigu-
ously passes the Painlevé test. Equation (1.3) is called the truncated Painlevé expansion.

2. The Compatibility Conditions and Bäcklund Transform

Let

u = φα
∞∑
j=0

ujφ
j , (2.1)

where φ = φ(x, t), uj = uj(x, t) are analytic functions on (x, t) in the neighborhood of the
manifold M = {(x, t) : φ(x, t) = 0}.

Substituting (2.1) into (1.1), we can get the α = −1. Thus, (2.1) becomes

u =
∞∑
j=0

ujφ
j−1. (2.2)

Expressing (1.1), we have that

ut + 3αu2ux + 3αu2
x + 3αuuxx + αuxxx = 0. (2.3)

Differentiating (2.2), we obtain that

ut =
(
j − 1

) ∞∑
j=0

ujφ
j−2φt +

∞∑
j=0

uj,tφ
j−1,

ux =
(
j − 1

) ∞∑
j=0

ujφ
j−2φx +

∞∑
j=0

uj,xφ
j−1,

uxx =
(
j − 1

) ∞∑
j=0

ujφ
j−2φxx + 2

(
j − 1

) ∞∑
j=0

uj,xφ
j−2φx +

(
j − 1

)(
j − 2

) ∞∑
j=0

ujφ
j−3φ2

x +
∞∑
j=0

uj,xxφ
j−1,

uxxx = 3
(
j − 1

) ∞∑
j=0

uj,xφ
j−2φxx +

(
j − 1

) ∞∑
j=0

ujφ
j−2φxxx + 3

(
j − 1

)(
j − 2

) ∞∑
j=0

ujφ
j−3φxφxx

+ 3
(
j − 1

) ∞∑
j=0

uj,xxφ
j−2φx +

∞∑
j=0

uj,xxxφ
j−1 + 3

(
j − 1

)(
j − 2

) ∞∑
j=0

uj,xφ
j−3φ2

x

+
(
j − 1

)(
j − 2

)(
j − 3

) ∞∑
j=0

ujφ
j−4φ3

x.

(2.4)
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Substituting (2.4) into (2.3), we get the cycle formula on uj

(
j − 3

)
uj−2φt + uj−3,t + 3α

j−n∑
m=0

j∑
n=0

uj−m−num

[
(n − 1)unφx + un−1,x

]

+ 3α
j∑

m=0

[(
j −m − 1

)
uj−mφx + uj−m−1,x

][
(m − 1)umφx + um−1,x

]

+ 3α
j∑

m=0

uj−m
[
(m − 2)um−1φxx + 2(m − 2)um−1,xφx + (m − 1)(m − 2)umφ

2
x + um−2,xx

]

+ α
[
3
(
j − 3

)
uj−2,xφxx +

(
j − 3

)
uj−2φxxx + 3

(
j − 2

)(
j − 3

)
uj−1φxφxx

+3
(
j − 2

)(
j − 3

)
uj−1,xφ2

x+uj−3,xxx+3
(
j − 3

)
uj−2,xxφx+

(
j − 1

)(
j − 2

)(
j − 3

)
ujφ

3
x

]
=0.

(2.5)

Taking j = 0 in (2.5), we deduce that u0 = φx or u0 = 2φx.
We will get the Bäcklund transformations, according to the above two cases, respec-

tively.

Case 1 (u0 = φx). Substituting u0 = φx into (2.5), we have the following equation on uj :

(
j + 1

)(
j − 1

)(
j − 3

)
αujφ

3
x = Fj

(
uj−1 · · ·u0, φt, φx, φxx, φxxx · · ·

) (
j = 1, 2, . . .

)
. (2.6)

By (2.6) we see that u−1, u1 and u3 are arbitrary. Hence j = 3 are resonances. Moreover the
compatibility conditions will be deduced by (2.5) or (2.6).

Setting j = 2 and j = 3, we infer that

φt + 3α
(
u2
1φx + u2φ

2
x + u1,xφx + u1φxx

)
+ αφxxx = 0, (2.7)

∂

∂x

[
φt + 3α

(
u2
1φx + u2φ

2
x + u1,xφx + u1φxx

)
+ αφxxx

]
= 0. (2.8)

It is easy to see that (2.8) does so if (2.7) holds. So u3 is arbitrary.
Taking j = 4, u3 = 0 and letting u2 = u4 = 0 in (2.6), we have that

u1,t + 3αu2
1u1,x + 3αu2

1,x + 3αu1u1,xx + αu1,xxx = 0. (2.9)

By (2.6), noting that u2 = 0, u3 = 0 and u4 = 0, we can infer that

uj = 0
(
j ≥ 2

)
. (2.10)
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Thus, we obtain from the Bäckland transformation of the STO equation that

u =
φx

φ
+ u1, (2.11)

where u1 is the seed solution of (1.1), the u1 and φ satisfy the following condition:

φt + 3α
(
u2
1φx + u1,xφx + u1φxx

)
+ αφxxx = 0. (2.12)

Case 2 (u0 = 2φx). Rewrite (2.5) as the following form on uj

(
j + 1

)(
j + 2

)(
j − 3

)
αujφ

3
x = Gj

(
uj−1 · · ·u0, φt, φx, φxx, φxxx · · ·

)
,

(
j = 1, 2, . . .

)
. (2.13)

From (2.13) we know that u3 is arbitrary. That is, j = 3 are resonances.
Taking j = 1, j = 2, and j = 3 in (2.13), we get that

u1 = −φxx

φx
, (2.14)

φt + 6αu2φ2
x − 3αu1φxx − 2αφxxx = 0, (2.15)

∂

∂x

[
φt + 6αu2φ

2
x − 3αu1φxx − 2αφxxx

]
= 0. (2.16)

It is easy to see that (2.15) implies (2.16). So u3 is arbitrary. Equation (1.1) satisfies
Painlevé property.

Taking j = 4, u3 = 0 and letting u2 = u4 = 0 in (2.5) or (2.13), we have that

u1,t + 3αu2
1u1,x + 3αu2

1,x + 3αu1u1,xx + αu1,xxx = 0. (2.17)

Substituting u1 = −φxx/φx into the above equation, we deduce the second condition
below

−φ3
xφxxt + φ2

xφxxφxt + 18αφ4
xx − 30αφxφ

2
xxφxxx + 7αφ2

xφxxφxxxx + 6αφ2
xφ

2
xxx − αφ3

xφxxxxx = 0
(2.18)

By (2.5) or (2.13), noting that u2 = 0, u3 = 0, and u4 = 0, we can easy to have that

uj = 0
(
j ≥ 2

)
. (2.19)

Thus, we obtain from the other Bäckland transformation of the STO equation that

u =
2φx

φ
− φxx

φx
, (2.20)



6 Abstract and Applied Analysis

where φ(x, t) satisfies the following conditions:

φxφt + 3αφ2
xx − 2αφxφxxx = 0,

−φ3
xφxxt + φ2

xφxxφxt + 18αφ4
xx − 30αφxφ

2
xxφxxx + 7αφ2

xφxxφxxxx + 6αφ2
xφ

2
xxx − αφ3

xφxxxxx = 0.
(2.21)

3. New Exact Solutions for STO Equation

As it is well known that the Bäcklund transformation is one of the most effective methods for
finding exact solutions of nonlinear partial differential equations. By (2.11) and (2.20), choose
some seed solutions, and then we can get some new single travelling solitary wave solutions
below, respectively.

Case 1 (for Bäcklund transformation (2.11)). Taking the seed solution u1 = 0 in the Bäcklund
transformation (2.11), (2.12) becomes

φt + αφxxx = 0. (3.1)

The arbitrary multiple solitary wave solution of (1.1) can be easily written down. For
the sake of simplicity, we only give some new single travelling solitary wave solutions here.
Substituting the ansatz φ1 = k1x2 + k2x + r which satisfies (3.1) into (2.11), and leads the new
exact solutions of (1.1)

u1(x, t) =
2k1x + k2

k1x2 + k2x + r
. (3.2)

Substituting the ansatz φ2 = a cosh(kx +ωt + r) + b sinh(kx +ωt + r) + c into (3.1) will
produce the dispersion relation between ω and k,

ω + αk3 = 0, (3.3)

and the new exact solutions are that

u2(x, t) =
ak sinh

(
kx − αk3t + r

)
+ bk cosh

(
kx − αk3t + r

)

a cosh(kx − αk3t + r) + b sinh(kx − αk3t + r) + c
. (3.4)

Taking the seed solution u1 = c for (1.1) will get

φt + 3α
(
c2φx + cφxx

)
+ αφxxx = 0. (3.5)

Observing (3.5), we have φ3 = kx − 3αc2kt + r, φ4 = a + ekx−(3αc
2k+3αck2+αk3)t+r and

φ5 = sinh[kx − (3αc2k + 3αck2 + αk3)t + r] + cosh[kx − (3αc2k + 3αck2 + αk3)t + r] + b.
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Substituting φ3, φ4, φ5 and u1 = c into the Bäcklund transformation (2.11), we obtain
the exact solutions for STO equation (1.1)

u3(x, t) =
k

kx − 3αc2kt + r
+ c,

u4(x, t) =
kekx−(3αc

2k+3αck2+αk3)t+r

a + ekx−(3αc2k+3αck2+αk3)t+r
+ c,

u5(x, t)=
k sinh

[
kx−(3αc2k+3αck2+αk3)t+r]+k cosh[kx−(3αc2k+3αck2+αk3)t + r

]

sinh[kx − (3αc2k+ 3αck2 + αk3)t + r]+cosh[kx − (3αc2k +3αck2 +αk3)t + r] + b
+c.

(3.6)

Taking the seed solution u1 = 1/x for STO equation (1.1), (2.12) becomes

φt + 3α
φxx

x
+ αφxxx = 0. (3.7)

Substitute the ansatz φ6 = k1x3 + k3x − 24αk1t + b into (2.11), yielding the solutions for
the STO equation (1.1)

u6(x, t) =
3k1x2 + k3

k1x3 + k3x − 24αk1t + b
+
1
x
. (3.8)

Remark 3.1. When a = 0 or b = 0, the solution u2(x, t) is obtained in [1] by tanhmethod. In [4],
the authors have obtained the u4(x, t). As for the case u0 = 2φx, the authors of [4, page 238]
said that no new meaningful results can be obtained; we could here obtain some meaningful
results.

Case 2 (for Bäcklund transformation (2.20)). Observe, (2.21), we have ansatz φ1 = sinh(kx +
ωt + r) + cosh(kx + ωt + r). Substituting φ1 into (2.21) and seting the coefficients to be equal
to zero, we have the dispersion relation between ω and k,

ω = −αk3. (3.9)

Thus, (2.20) yields the new exact solutions for the STO equation (1.1)

u7 = 2
k sinh

[
kx − αk3t + r

]
+ k cosh

[
kx − αk3t + r

]

sinh[kx − αk3t + r] + cosh[kx − αk3t + r] + b
− k. (3.10)

Substituting ansatz φ2 = ekx+ωt+r + b into (2.21) and balancing the coefficients, we have
the new exact solutions for the STO equation (1.1)

u7(x, t) =
2kekx−αk

3t+r

ekx−αk3t+r + b
− k. (3.11)
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