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A Lie group acting on finite-dimensional space is generated by its infinitesimal transformations
and conversely, any Lie algebra of vector fields in finite dimension generates a Lie group (the
first fundamental theorem). This classical result is adjusted for the infinite-dimensional case. We
prove that the (local, C∞ smooth) action of a Lie group on infinite-dimensional space (a manifold
modelled on �

∞) may be regarded as a limit of finite-dimensional approximations and the
corresponding Lie algebra of vector fields may be characterized by certain finiteness requirements.
The result is applied to the theory of generalized (or higher-order) infinitesimal symmetries of
differential equations.

1. Preface

In the symmetry theory of differential equations, the generalized (or: higher-order, Lie-Bäcklund)
infinitesimal symmetries

Z =
∑

zi
∂

∂xi
+
∑

z
j

I

∂

∂w
j

I

(
i = 1, . . . , n; j = 1, . . . , m; I = i1 · · · in; i1, . . . , in = 1, . . . , n

)
, (1.1)

where the coefficients

zi = zi
(
. . . , xi′ , w

j ′

I ′ , . . .
)
, z

j

I = z
j

I

(
. . . , xi′ , w

j ′

I ′ , . . .
)

(1.2)

are functions of independent variables xi, dependent variables wj and a finite number of jet
variables wj

I = ∂nwj/∂xi1 · · ·∂xin belong to well-established concepts. However, in spite of
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Figure 1

this matter of fact, they cause an unpleasant feeling. Indeed, such vector fields as a rule do
not generate any one-parameter group of transformations

xi = Gi

(
λ; . . . , xi′ , w

j ′

I ′ , . . .
)
, w

j

I = G
j

I

(
λ; . . . , xi′ , w

j ′

I ′ , . . .
)

(1.3)

in the underlying infinite-order jet space since the relevant Lie system

∂Gi

∂λ
= zi
(
. . . , Gi′ , G

j ′

I ′ , . . .
)
,

∂G
j

I

∂λ
= zjI

(
. . . , Gi′ , G

j ′

I ′ , . . .
) (

Gi|λ=0 = xi, G
j

I

∣∣∣
λ=0

= wj

I

)
(1.4)

need not have any reasonable (locally unique) solution. Then Z is a mere formal concept
[1–7] not related to any true transformations and the term “infinitesimal symmetry Z” is
misleading, no Z-symmetries of differential equations in reality appear.

In order to clarify the situation, we consider one-parameter groups of local
transformations in �∞ . We will see that they admit “finite-dimensional approximations”
and as a byproduct, the relevant infinitesimal transformations may be exactly characterized
by certain “finiteness requirements” of purely algebraical nature. With a little effort, the
multidimensional groups can be easily involved, too. This result was briefly discussed in
[8, page 243] and systematically mentioned at several places in monograph [9], but our aim
is to make some details more explicit in order to prepare the necessary tools for systematic
investigation of groups of generalized symmetries. We intend to continue our previous articles
[10–13] where the algorithm for determination of all individual generalized symmetries was
already proposed.

For the convenience of reader, let us transparently describe the crucial approximation
result. We consider transformations (2.1) of a local one-parameter group in the space �∞

with coordinates h1, h2, . . .. Equations (2.1) of transformations m(λ) can be schematically
represented by Figure 1(a).

We prove that in appropriate new coordinate system F1, F2, . . . on �∞ , the same trans-
formations m(λ) become block triangular as in Figure 1(b). It follows that a certain hierarchy
of finite-dimensional subspaces of �∞ is preserved which provides the “approximation”
of m(λ). The infinitesimal transformation Z = dm(λ)/dλ|λ=0 clearly preserves the same
hierarchy which provides certain algebraical “finiteness” of Z.
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If the primary space �∞ is moreover equipped with an appropriate structure, for
example, the contact forms, it turns into the jet space and the results concerning the
transformation groups on �

∞ become the theory of higher-order symmetries of differential
equations. Unlike the common point symmetries which occupy a number of voluminous
monographs (see, e.g., [14, 15] and extensive references therein) this higher-order theory
was not systematically investigated yet. We can mention only the isolated article [16]
which involves a direct proof of the “finiteness requirements” for one-parameter groups
(namely, the result (ι) of Lemma 5.4 below) with two particular examples and monograph
[7] involving a theory of generalized infinitesimal symmetries in the formal sense.

Let us finally mention the intentions of this paper. In the classical theory of point or Lie’s
contact-symmetries of differential equations, the order of derivatives is preserved (Figure 2(a)).
Then the common Lie’s and Cartan’s methods acting in finite dimensional spaces given
ahead of calculations can be applied. On the other extremity, the generalized symmetries need
not preserve the order (Figure 2(c)) and even any finite-dimensional space and then the
common classical methods fail. For the favourable intermediate case of groups of generalized
symmetries, the invariant finite-dimensional subspaces exist, however, they are not known in
advance (Figure 2(b)). We believe that the classical methods can be appropriately adapted for
the latter case, and this paper should be regarded as a modest preparation for this task.

2. Fundamental Approximation Results

Our reasonings will be carried out in the space �
∞ with coordinates h1, h2, . . . [9] and we

introduce the structural family F of all real-valued, locally defined and C∞-smooth functions
f = f(h1, . . . , hm(f)) depending on a finite number of coordinates. In future, such functions
will contain certain C∞-smooth real parameters, too.

We are interested in (local) groups of transformations m(λ) in �∞ defined by formulae

m(λ)∗hi = Hi
(
λ;h1, . . . , hm(i)

)
, −εi < λ < εi, εi > 0 (i = 1, 2, . . .), (2.1)

where Hi ∈ F if the parameter λ is kept fixed. We suppose

m(0) = id., m
(
λ + μ

)
= m(λ)m

(
μ
)

(2.2)
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whenever it makes a sense. An open and common definition domain for all functions Hi is
tacitly supposed. (In more generality, a common definition domain for every finite number of
functions Hi is quite enough and the germ and sheaf terminology would be more adequate
for our reasonings, alas, it looks rather clumsy.)

Definition 2.1. For every I = 1, 2, . . . and 0 < ε < min{ε1, . . . , εI}, let F(I, ε) ⊂ F be the subset
of all composed functions

F = F
(
. . . ,m

(
λj
)∗
hi, . . .

)
= F
(
. . . ,Hi

(
λj ;h1, . . . , hm(i)

)
, . . .
)
, (2.3)

where i = 1, . . . , I; −ε < λj < ε; j = 1, . . . , J = J(I) = max{m(1), . . . , m(I)} and F is
arbitrary C∞-smooth function (of IJ variables). In functions F ∈ F(I, ε), variables λ1, . . . , λJ
are regarded as mere parameters.

Functions (2.3) will be considered on open subsets of �∞ where the rank of the Jacobi
(IJ × J)-matrix

(
∂

∂hj
′H

i
(
λj ;h1, . . . , hm(i)

)) (
i = 1, . . . , I; j, j ′ = 1, . . . , J

)
(2.4)

of functions Hi(λj ;h1, . . . , hm(i)) locally attains the maximum (for appropriate choice of
parameters). This rank and therefore the subset F(I, ε) ⊂ F does not depend on ε as soon
as ε = ε(I) is close enough to zero. This is supposed from now on and we may abbreviate
F(I) = F(I, ε).

We deal with highly nonlinear topics. Then the definition domains cannot be kept
fixed in advance. Our results will be true locally, near generic points, on certain open everywhere
dense subsets of the underlying space �∞ . With a little effort, the subsets can be exactly
characterized, for example, by locally constant rank of matrices, functional independence,
existence of implicit function, and so like. We follow the common practice and as a rule omit
such routine details from now on.

Lemma 2.2 (approximation lemma). The following inclusion is true:

m(λ)∗F(I) ⊂ F(I). (2.5)

Proof. Clearly

m(λ)∗Hi(λj ; . . .
)
= m(λ)∗m

(
λj
)∗
hi = m

(
λ + λj

)∗
hi = Hi(λ + λj ; . . .

)
(2.6)

and therefore

m(λ)∗F = F
(
. . . ,Hi

(
λ + λj ;h1, . . . , hm(i)

)
, . . .
)
∈ F(I). (2.7)
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Denoting by K(I) the rank of matrix (2.4), there exist basical functions

Fk = Fk
(
. . . ,Hi

(
λj ;h1, . . . , hm(i)

)
, . . .
)
∈ F(I) (k = 1, . . . , K(I)) (2.8)

such that rank(∂Fk/∂hj
′
) = K(I). Then a function f ∈ F lies in F(I) if and only if f =

f(F1, . . . , FK(I)) is a composed function. In more detail

F = F
(
λ1, . . . , λJ ;F1, . . . , FK(I)

)
∈ F(I) (2.9)

is such a composed function if we choose f = F given by (2.3). Parameters λ1, . . . , λJ occurring
in (2.3) are taken into account here. It follows that

∂F

∂λj
=
∂F

∂λj

(
λ1, . . . , λJ ;F1, . . . , FK(I)

)
∈ F(I)

(
j = 1, . . . , J

)
(2.10)

and analogously for the higher derivatives.
In particular, we also have

Hi
(
λ;h1, . . . , hm(i)

)
= H

i(
λ;F1, . . . , FK(I)

)
∈ F(I) (i = 1, . . . , I) (2.11)

for the choice F = Hi(λ; . . .) in (2.9) whence

∂rHi

∂λr
=
∂rH

i

∂λr

(
λ;F1, . . . , FK(I)

)
∈ F(I) (i = 1, . . . , I; r = 0, 1, . . .). (2.12)

The basical functions can be taken from the family of functions Hi(λ; . . .) (i = 1, . . . , I) for
appropriate choice of various values of λ. Functions (2.12) are enough as well even for a fixed
value λ, for example, for λ = 0, see Theorem 3.2 below.

Lemma 2.3. For any basical function, one has

m(λ)∗Fk = F
k(
λ;F1, . . . , FK(I)

)
(k = 1, . . . , K(I)). (2.13)

Proof. Fk ∈ F(I) implies m(λ)∗Fk ∈ F(I) and (2.9) may be applied with the choice F =
m(λ)∗Fk and λ1 = · · · = λJ = λ.

Summary 1. Coordinates hi = Hi(0; . . .) (i = 1, . . . , I) were included into the subfamily F(I) ⊂
F which is transformed into itself by virtue of (2.13). So we have a one-parameter group
acting on F(I). One can even choose F1 = h1, . . . , FI = hI here and then, if I is large enough,
formulae (2.13) provide a “finite-dimensional approximation” of the primary mapping m(λ).
The block-triangular structure of the infinite matrix of transformations m(λ) mentioned in
Section 1 appears if I → ∞ and the system of functions F1, F2, . . . is succesively completed.
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3. The Infinitesimal Approach

We introduce the vector field

Z =
∑

zi
∂

∂hi
=

dm(λ)
dλ

∣∣∣∣
λ=0

(
zi =

∂Hi

∂λ

(
0;h1, . . . , hm(i)

)
; i = 1, 2, . . .

)
, (3.1)

the infinitesimal transformation (IT) of group m(λ). Let us recall the celebrated Lie system

∂

∂λ
m(λ)∗hi =

∂Hi

∂λ
(λ; . . .) =

∂Hi

∂μ

(
λ + μ; . . .

)
∣∣∣∣∣
μ=0

=
∂

∂μ
m
(
λ + μ

)∗
hi
∣∣∣∣
μ=0

= m(λ)∗
∂

∂μ
m
(
μ
)∗
h
i
∣∣∣∣∣
μ=0

= m(λ)∗Zhi = m(λ)∗zi.

(3.2)

In more explicit (and classical) transcription

∂Hi

∂λ

(
λ;h1, . . . , hm(i)

)
= zi
(
H1
(
λ;h1, . . . , hm(1)

)
, . . . ,Hm(i)

(
λ;h1, . . . , hm(m(i))

))
. (3.3)

One can also check the general identity

∂r

∂λr
m(λ)∗f = m(λ)∗Zrf

(
f ∈ F; r = 0, 1, . . .

)
(3.4)

by a mere routine induction on r.

Lemma 3.1 (finiteness lemma). For all r ∈ �, ZrF(I) ⊂ F(I).

Proof. Clearly

ZF = m(λ)∗ZF|λ=0 =
∂

∂λ
m(λ)∗F

∣∣∣∣
λ=0
∈ F(I) (3.5)

for any function (2.3) by virtue of (2.10): induction on r.

Theorem 3.2 (finiteness theorem). Every function F ∈ F(I) admits (locally, near generic points)
the representation

F = F̃

(
. . . ,

∂rHi

∂λr

(
0;h1, . . . , hm(i)

)
, . . .

)
(3.6)

in terms of a composed function where i = 1, . . . , I and F̃ is a �∞ -smooth function of a finite number
of variables.
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Proof. Let us temporarily denote

Hi
r =

∂rHi

∂λr
(λ; . . .) =

∂r

∂λr
m(λ)∗hi, hir = H

i
r(0; . . .) = Zrhi, (3.7)

where the second equality follows from (3.4) with f = hi, λ = 0. Then

Hi
r = m(λ)∗hir = m(λ)∗Zrhi (3.8)

by virtue of (3.4) with general λ.
If j = j(i) is large enough, there does exist an identity hij+1 = Gi(hi0, . . . , h

i
j). Therefore

∂j+1Hi

∂λj+1
= Hi

j+1 = Gi
(
Hi

0, . . . ,H
i
j

)
= Gi

(
Hi, . . . ,

∂jHi

∂λj

)
(3.9)

by applying m(λ)∗. This may be regarded as ordinary differential equation with initial values

Hi
∣∣∣
λ=0

= hi0, . . . ,
∂jHi

∂λj

∣∣∣∣∣
λ=0

= hij . (3.10)

The solution Hi = H̃i(λ;hi0, . . . , h
i
j) expressed in terms of initial values reads

Hi
(
λ;h1, . . . , hm(i)

)
= H̃i

(
λ;Hi

(
0;h1, . . . , hm(i)

)
, . . . ,

∂jHi

∂λj

(
0;h1, . . . , hm(i)

))
(3.11)

in full detail. If λ is kept fixed, this is exactly the identity (3.6) for the particular case F =
Hi(λ;h1, . . . , hm(i)). The general case follows by a routine.

Definition 3.3. Let � be the set of (local) vector fields

Z =
∑

zi
∂

∂hi

(
zi ∈ F, infinite sum

)
(3.12)

such that every family of functions {Zrhi}r∈� (i fixed but arbitrary) can be expressed in terms
of a finite number of coordinates.

Remark 3.4. Neither � + � ⊂ � nor [� , � ] ⊂ � as follows from simple examples. However, �
is a conical set (over F): if Z ∈ � then fZ ∈ � for any f ∈ F. Easy direct proof may be omitted
here.

Summary 2. If Z is IT of a group then all functions Zrhi (i = 1, . . . , I; r = 0, 1, . . .) are
included into family F(I) hence Z ∈ � . The converse is clearly also true: every vector
field Z ∈ � generates a local Lie group since the Lie system (3.3) admits finite-dimensional
approximations in spaces F(I).
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Let us finally reformulate the last sentence in terms of basical functions.

Theorem 3.5 (approximation theorem). Let Z ∈ � be a vector field locally defined on �∞ and
F1, . . . , FK(I) ∈ F be a maximal functionally independent subset of the family of all functions

Zrhi (i = 1, . . . , I; r = 0, 1, . . .). (3.13)

Denoting ZFk = F
k
(F1, . . . , FK(I)), then the system

∂

∂λ
m(λ)∗Fk = m(λ)∗ZFk = F

k(
m(λ)∗F1, . . . ,m(λ)∗FK(I)

)
(k = 1, . . . , K(I)) (3.14)

may be regarded as a “finite-dimensional approximation” to the Lie system (3.3) of the one-parameter
local groupm(λ) generated by Z.

In particular, assuming F1 = h1, . . . , FI = hI , then the the initial portion

d
dλ

m(λ)∗Fi =
d

dλ
m(λ)∗hi =

d
dλ

Hi = zi
(
H1, . . . ,Hm(i)

)
(i = 1, . . . , I) (3.15)

of the above system transparently demonstrates the approximation property.

4. On the Multiparameter Case

The following result does not bring much novelty and we omit the proof.

Theorem 4.1. Let Z1, . . . , Zd be commuting local vector fields in the space �∞ . ThenZ1, . . . , Zd ∈ �
if and only if the vector fields Z = a1Z1 + · · · + adZd (a1, . . . , ad ∈ �) locally generate an abelian Lie
group.

In full non-Abelian generality, let us consider a (local) multiparameter group formally
given by the same equations (2.1) as above where λ = (λ1, . . . , λd) ∈ �d are parameters close
to the zero point 0 = (0, . . . , 0) ∈ �d . The rule (2.2) is generalized as

m(0) = id., m
(
ϕ
(
λ, μ
))

= m(λ)m
(
μ
)
, (4.1)

where λ = (λ1, . . . , λd), μ = (μ1, . . . , μd) and ϕ = (ϕ1, . . . , ϕd) determine the composition
of parameters. Appropriately adapting the space F(I) and the concept of basical functions
F1, . . . , FK(I), Lemma 2.2 holds true without any change.

Passing to the infinitesimal approach, we introduce vector fields Z1, . . . , Zd which are
IT of the group. We recall (without proof) the Lie equations [17]

∂

∂λj
m(λ)∗f =

∑
a
j

i (λ)m(λ)∗Zjf
(
f ∈ F; j = 1, . . . , d

)
(4.2)

with the initial condition m(0) = id. Assuming Z1, . . . , Zd linearly independent over �,
coefficients a

j

i (λ) may be arbitrarily chosen and the solution m(λ) always is a group
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transformation (the first fundamental theorem). If basical functions F1, . . . , FK(I) are inserted
for f , we have a finite-dimensional approximation which is self-contained in the sense that

ZjF
k = F̃kj

(
F1, . . . , FK(I)

) (
j = 1, . . . , d; k = 1, . . . , K(I)

)
(4.3)

are composed functions in accordance with the definition of the basical functions.
Let us conversely consider a Lie algebra of local vector fieldsZ = a1Z1+· · ·+adZd (ai ∈

�) on the space �∞ . Let moreoverZ1, . . . , Zd ∈ � uniformly in the sense that there is a universal
space F(I) with LZiF(I) ⊂ F(I) for all i = 1, . . . , d. Then the Lie equations may be applied and
we obtain reasonable finite-dimensional approximations.

Summary 3. Theorem 4.1 holds true even in the non-Abelian and multidimensional case if the
inclusions Z1, . . . , Zd ∈ � are uniformly satisfied.

As yet we have closely simulated the primary one-parameter approach, however, the
results are a little misleading: the uniformity requirement in Summary 3 may be completely
omitted. This follows from the following result [9, page 30] needless here and therefore stated
without proof.

Theorem 4.2. LetK be a finite-dimensional submodule of the module of vector fields on �∞ such that
[K,K] ⊂ K. ThenK ⊂ � if and only if there exist generators (overF) of submoduleK that are lying
in � .

5. Symmetries of the Infinite-Order Jet Space

The previous results can be applied to the groups of generalized symmetries of partial
differential equations. Alas, some additional technical tools cannot be easily explained at this
place, see the concluding Section 11 below. So we restrict ourselves to the trivial differential
equations, that is, to the groups of generalized symmetries in the total infinite-order jet space
which do not require any additional preparations.

Let M(m,n) be the jet space of n-dimensional submanifolds in �m+n [9–13]. We recall
the familiar (local) jet coordinates

xi,w
j

I

(
I = i1 . . . ir ; i, i1, . . . , ir = 1, . . . , n; r = 0, 1, . . . ; j = 1, . . . , m

)
. (5.1)

Functions f = f(. . . , xi, w
j

I , . . .) on M(m,n) are C∞-smooth and depend on a finite number of
coordinates. The jet coordinates serve as a mere technical tool. The true jet structure is given
just by the moduleΩ(m,n) of contact forms

ω =
∑

a
j

Iω
j

I

(
finite sum, ω

j

I = dwj

I −
∑

w
j

Iidxi
)

(5.2)

or, equivalently, by the “orthogonal” moduleH(m,n) = Ω⊥(m,n) of formal derivatives

D =
∑

aiDi

⎛
⎝Di =

∂

∂xi
+
∑

w
j

Ii

∂

∂w
j

I

; i = 1, . . . , n;D	ωj

I = ω
j

I(D) = 0

⎞
⎠. (5.3)
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Let us state useful formulae

df =
∑

Dif dxi +
∑ ∂f

∂w
j

I

ω
j

I , Di	dω
j

I = ω
j

Ii, LDiω
j

I = ω
j

Ii, (5.4)

where LDi = Di	d + dDi	 denotes the Lie derivative.
We are interested in (local) one-parameter groups of transformations m(λ) given by

certain formulae

m(λ)∗xi = Gi

(
λ; . . . , xi′ , w

j ′

I ′ , . . .
)
, m(λ)∗wj

I = G
j

I

(
λ; . . . , xi′ , w

j ′

I ′ , . . .
)

(5.5)

and in vector fields

Z =
∑

zi
(
. . . , xi′ , w

j ′

I ′ , . . .
) ∂

∂xi
+
∑

z
j

I

(
. . . , xi′ , w

j ′

I ′ , . . .
) ∂

∂w
j

I

(5.6)

locally defined on the jet space M(m,n); see also (1.1) and (1.2).

Definition 5.1. We speak of a group of morphisms (5.5)of the jet structure if the inclusion
m(λ)∗Ω(m,n) ⊂ Ω(m,n) holds true. We speak of a (universal) variation (5.6) of the jet
structure ifLZΩ(m,n) ⊂ Ω(m,n). If a variation (5.6) moreover generates a group, speaks
of a (generalized or higher-order) infinitesimal symmetry of the jet structure.

So we intentionally distinguish between true infinitesimal transformations generating
a group and the formal concepts; this point of view and the terminology are not commonly
used in the current literature.

Remark 5.2. A few notes concerning this unorthodox terminology are useful here. In actual
literature, the vector fields (5.6) are as a rule decomposed into the “trivial summand D” and
the so-called “evolutionary form V ” of the vector field Z, explicitly

Z = D + V

⎛

⎝D =
∑

ziDi ∈ H(m,n), V =
∑

Q
j

I

∂

∂w
j

I

, Q
j

I = z
j

I −
∑

w
j

Iizi

⎞

⎠. (5.7)

The summand D is usually neglected in a certain sense [3–7] and the “essential” summand
V is identified with the evolutional system

∂w
j

I

∂λ
= Qj

I

(
. . . , xi′ , w

j ′

I ′ , . . .
) (

w
j

I =
∂nwj

∂xi1 · · ·∂xin
(λ, x1, . . . , xn)

)
(5.8)

of partial differential equations (the finite subsystem with I = φ empty is enough here since
the remaining part is a mere prolongation). This evolutional system is regarded as a “virtual
flow” on the “space of solutions” wj = wj(x1, . . . , xn), see [7, especially page 11]. In more
generality, some differential constraints may be adjoint. However, in accordance with the
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ancient classical tradition, functions δwj = ∂wj/∂λ are just the variations. (There is only
one novelty: in classical theory, δwj are introduced only along a given solution while the
vector fields Z are “universally” defined on the space.) In this “evolutionary approach”,
the properties of the primary vector field Z are utterly destroyed. It seems that the true
sense of this approach lies in the applications to the topical soliton theory. However, then
the evolutional system is always completed with boundary conditions and embedded into
some normed functional spaces in order to ensure the existence of global “true flows”. This
is already quite a different story and we return to our topic.

In more explicit terms, morphisms (5.5) are characterized by the (implicit) recurrence

∑
G
j

IiDi′Gi = Di′G
j

I

(
i′ = 1, . . . , n

)
, (5.9)

where det(Di′Gi)/= 0 is supposed and vector field (5.6) is a variation if and only if

z
j

Ii = Diz
j

I −
∑

w
j

Ii′Dizi′ . (5.10)

Recurrence (5.9) easily follows from the inclusion m(λ)∗ωj

I ∈ Ω(m,n) and we omit the proof.
Recurrence (5.10) follows from the identity

LZω
j

I = LZ
(

dwj

I −
∑

w
j

Iidxi
)
= dzjI −

∑
z
j

Iidxi −
∑

w
j

Iidzi

∼=
(∑

Di′z
j

I −
∑

z
j

Ii′ −
∑

w
j

IiDi′zi
)

dxi′ (mod Ω(m,n))
(5.11)

and the inclusion LZω
j

I ∈ Ω(m,n). The obvious formula

LZω
j

I =
∑
⎛

⎝ ∂z
j

I

∂w
j ′

I ′

−
∑

w
j

Ii

∂zi

∂w
j ′

I ′

⎞

⎠ω
j ′

I ′ (5.12)

appearing on this occasion also is of a certain sense, see Theorem 5.5 and Section 10 below. It
follows that the initial functions Gi, Gj , zi, zj (empty I = φ) may be in principle arbitrarily
prescribed in advance. This is the familiar prolongation procedure in the jet theory.

Remark 5.3. Recurrence (5.10) for the variation Z can be succintly expressed by ω
j

Ii(Z) =
Diω

j

I(Z). This remarkable formula admits far going generalizations, see concluding
Examples 11.3 and 11.4 below.

Let us recall that a vector field (5.6) generates a group (5.5) if and only if Z ∈ � hence
if and only if every family

{Zrxi}r∈�,
{
Zrw

j

I

}

r∈�
(5.13)
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can be expressed in terms of a finite number of jet coordinates. We conclude with simple but
practicable remark: due to jet structure, the infinite number of conditions (5.13) can be replaced
by a finite number of requirements if Z is a variation.

Lemma 5.4. Let (5.6) be a variation of the jet structure. Then the inclusion Z ∈ � is equivalent to
any of the requirements

(ι) every family of functions

{Zrxi}r∈�,
{
Zrwj

}

r∈�

(
i = 1, . . . , n; j = 1, . . . , m

)
(5.14)

can be expressed in terms of a finite number of jet coordinates,

(ιι) every family of differential forms

{
LrZdxi

}
r∈�,

{
LrZdwj

}

r∈�

(
i = 1, . . . , n; j = 1, . . . , m

)
(5.15)

involves only a finite number of linearly independent terms,

(ιιι) every family of differential forms

{
LrZdxi

}
r∈�,

{
LrZdwj

I

}

r∈�

(
i = 1, . . . , n; j = 1, . . . , m; arbitrary I

)
(5.16)

involves only a finite number of linearly independent terms.

Proof. Inclusion Z ∈ � is defined by using the families (5.13) and this trivially implies (ι)
where only the empty multi-indice I = φ is involved. Then (ι) implies (ιι) by using the rule
LZdf = dZf . Assuming (ιι), we may employ the commutative rule

[Di, Z] = DiZ − ZDi =
∑

ai
′

i Di′

(
ai
′

i = Dizi′
)

(5.17)

in order to verify identities of the kind

LZdwj

i = LZdDiw
j = LZLDidw

i = LDiLZdwi −
∑

ai
′

iLDi′w
j (5.18)

and in full generality identities of the kind

LkZdwj

I =
∑

aI
′

I,kLDI′ L
k′

Zdwj (
sum with k′ ≤ k,

∣∣I ′
∣∣ ≤ |I|

)
(5.19)

with unimportant coefficients, therefore (ιιι) follows. Finally (ιιι) obviously implies the
primary requirement on the families (5.13).

This is not a whole story. The requirements can be expressed only in terms of the
structural contact forms. With this final result, the algorithms [10–13] for determination of
all individual morphisms can be closely simulated in order to obtain the algorithm for the
determination of all groupsm(λ) of morphisms, see Section 10 below.



Abstract and Applied Analysis 13

Theorem 5.5 (technical theorem). Let (5.6) be a variation of the jet space. Then Z ∈ � if and only
if every family

{
LrZω

j
}

r∈�

(
j = 1, . . . , m

)
(5.20)

involves only a finite number of linearly independent terms.

Some nontrivial preparation is needful for the proof. Let Θ be a finite-dimensional
module of 1-forms (on the space M(m,n) but the underlying space is irrelevant here). Let us
consider vector fields X such that LfXΘ ⊂ Θ for all functions f . Let moreover Adj Θ be the
module of all forms ϕ satisfying ϕ(X) = 0 for all such X. Then Adj Θ has a basis consisting of
total differentials of certain functions f1, . . . , fK (the Frobenius theorem), and there is a basis
of module Θ which can be expressed in terms of functions f1, . . . , fK. Alternatively saying,
(an appropriate basis of) the Pfaffian system ϑ = 0 (ϑ ∈ Θ) can be expressed only in terms of
functions f1, . . . , fK. This result frequently appears in Cartan’s work, but we may refer only
to [9, 18, 19] and to the appendix below for the proof.

Module Adj Θ is intrinsically related to Θ: if a mapping m preserves Θ then m
preserves Adj Θ. In particular, assuming

m(λ)∗Θ ⊂ Θ, then m(λ)∗Adj Θ ⊂ Adj Θ (5.21)

is true for a group m(λ). In terms of IT of the group m(λ), we have equivalent assertion

LZΘ ⊂ Θ implies LZAdj Θ ⊂ Adj Θ (5.22)

and thereforeLrZAdj Θ ⊂ Adj Θ for all r. The preparation is done.

Proof. Let Θ be the module generated by all differential formsLrZω
j (j = 1, . . . , m; r = 0, 1, . . .).

Assuming finite dimension of module Θ, we have module Adj Θ and clearly LZΘ ⊂ Θ
whence LrZAdj Θ ⊂ Adj Θ (r = 0, 1, . . .). However Adj Θ involves both the differentials
dx1, . . . ,dxn (see below) and the forms ω1, . . . , ωm. Point (ιι) of previous Lemma 5.4 implies
Z ∈ � . The converse is trivial.

In order to finish the proof, let us on the contrary assume that Adj Θ does not contain
all differentials dx1, . . . ,dxn. Alternatively saying, the Pfaffian system ϑ = 0 (ϑ ∈ Θ) can be
expressed in terms of certain functions f1, . . . , fK such that df1 = · · · = dfK = 0 does not
imply dx1 = · · · = dxn = 0. On the other hand, it follows clearly that maximal solutions of the
Pfaffian system can be expressed only in terms of functions f1, . . . , fK and therefore we do not
need all independent variables x1, . . . , xn. This is however a contradiction: the Pfaffian system
consists of contact forms and involves the equations ω1 = · · · = ωn = 0. All independent
variables are needful if we deal with the common classical solutions wj = wj(x1, . . . , xn).

The result can be rephrased as follows.

Theorem 5.6. LetΩ0 ⊂ Ω(m,n) be the submodule of all zeroth-order contact forms ω =
∑
ajωj and

Z be a variation of the jet structure. Then Z ∈ � if and only if dim⊕LrZΩ0 <∞.
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6. On the Multiparameter Case

Let us temporarily denote by � the family of all infinitesimal variations (5.6) of the jet
structure. Then � + � ⊂ �, c� ⊂ � (c ∈ �), [�,�] ⊂ �, and it follows that � is an infinite-
dimensional Lie algebra (coefficients in �). On the other hand, if Z ∈ � and fZ ∈ � for
certain f ∈ F then f ∈ � is a constant. (Briefly saying: the conical variations of the total jet space
do not exist. We omit easy direct proof.) It follows that only the common Lie algebras over �
are engaged if we deal with morphisms of the jet spaces M(m,n).

Theorem 6.1. Let G ⊂ � be a finite-dimensional Lie subalgebra. Then G ⊂ � if and only if there
exists a basis of G that is lying in � .

The proof is elementary and may be omitted. Briefly saying, Theorem 4.2 (coefficients
in F) turns into quite other and much easier Theorem 6.1 (coefficients in �).

7. The Order-Preserving Groups in Jet Space

Passing to particular examples from now on, we will briefly comment some well-known
classical results for the sake of completeness.

Let Ωl ⊂ Ω(m,n) be the submodule of all contact forms ω =
∑
a
j

Iω
j

I (sum with |I| ≤ l)
of the order l at most. A morphism (5.5) and the infinitesimal variation (5.6) are called order
preserving if

m(λ)∗Ωl ⊂ Ωl, LZΩl ⊂ Ωl, (7.1)

respectively, for a certain l = 0, 1, . . . (equivalently: for all l ∈ �, see Lemmas 9.1 and 9.2
below). Due to the fundamental Lie-Bäcklund theorem [1, 3, 6, 10–13], this is possible only
in the pointwise case or in the Lie’s contact transformation case. In quite explicit terms: assuming
(7.1) then either functions Gi, Gj , zi, zj (empty I = φ) in formulae (5.5) and (5.6) are functions
only of the zeroth-order jet variables xi′ , wj ′ or, in the second case, we have m = 1 and all
functions Gi, G1, G1

i , zi, z
1, z1

i contain only the zeroth- and first-order variables xi′ , w1, w1
i′ .

A somewhat paradoxically, short proofs of this fundamental result are not easily
available in current literature. We recall a tricky approach here already applied in [10–13],
to the case of the order-preserving morphisms. The approach is a little formally improved
and appropriately adapted to the infinitesimal case.

Theorem 7.1 (infinitesimal Lie-Bäcklund). Let a variation Z preserve a submodule Ωl ⊂ Ω(m,n)
of contact forms of the order l at most for a certain l ∈ �. Then Z ∈ � and either Z is an infinitesimal
point transformation orm = 1 and Z is the infinitesimal Lie’s contact transformation.

Proof. We suppose LZΩl ⊂ Ωl. Then LrZΩ0 ⊂ LrZΩl ⊂ Ωl therefore Z ∈ � by virtue of
Theorem 5.5. Moreover LZΩl−1 ⊂ Ωl−1, . . . ,LZΩ0 ⊂ Ω0 by virtue of Lemma 9.2 below. So
we have

LZωj =
∑

ajj
′
ωj ′ (j, j ′ = 1, . . . , m

)
. (7.2)



Abstract and Applied Analysis 15

Assuming m = 1, then (7.2) turns into the classical definition of Lie’s infinitesimal contact
transformation. Assume m ≥ 2. In order to finish the proof we refer to the following result
which implies that Z is indeed an infinitesimal point transformation.

Lemma 7.2. Let Z be a vector field on the jet spaceM(m,n) satisfying (7.2) andm ≥ 2. Then

Zxi = zi
(
. . . , xi′ , w

j ′ , . . .
)
, Zwj = zj

(
. . . , xi′ , w

j ′ , . . .
) (

i = 1, . . . , n; j = 1, . . . , m
)

(7.3)

are functions only of the point variables.

Proof. Let us introduce module Θ of (m + 2n)-forms generated by all forms of the kind

ω1 ∧ · · · ∧ωm ∧
(

dωj1
)n1
∧
(

dωjk
)nk

= dw1 ∧ · · ·dwm ∧ dx1 ∧ · · ·dxn ∧
∑
± dw

j ′1
i1
∧ · · · ∧ dwj ′n

in
,

(7.4)

where
∑
nk = n. Clearly Θ = (Ω0)m ∧ (dΩ0)n. The inclusions

LZΩ0 ⊂ Ω0, LZdΩ0 = dLZΩ0 + Ω0 ⊂ dΩ0 + Ω0 (7.5)

are true by virtue of (7.2) and imply LZΘ ⊂ Θ.
Module Θ vanishes when restricted to certain hyperplanes, namely, just to the

hyperplanes of the kind

ϑ =
∑

aidxi +
∑

ajdwj = 0 (7.6)

(use m ≥ 2 here). This is expressed by Θ ∧ ϑ = 0 and it follows that

0 = LZ(Θ ∧ ϑ) = LZΘ ∧ ϑ + Θ ∧ LZϑ = Θ ∧ LZϑ. (7.7)

Therefore LZϑ again is such a hyperplane: LZϑ ∼= 0 (mod all dxi and dwj). On the other
hand,

LZϑ ∼=
∑

aidzi +
∑

ajdzj
(

mod all dxi and dwj
)

(7.8)

and it follows that dzi, dzj ∼= 0.

There is a vast literature devoted to the pointwise transformations and symmetries so
that any additional comments are needless. On the other hand, the contact transformations
are more involved and less popular. They explicitly appear on rather peculiar and dissimilar
occasions in actual literature [20, 21]. However, in reality the groups of Lie contact
transformations are latently involved in the classical calculus of variations and provide the
core of the Hilbert-Weierstrass extremality theory of variational integrals.
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8. Digression to the Calculus of Variations

We establish the following principle.

Theorem 8.1 (metatheorem). The geometries of nondegenerate local one-parameter groups of Lie
contact transformations (CT) and of nondegenerate first-order one-dimensional variational integrals
(VI) are identical. In particular, the orbits of a given CT group are extremals of appropriate VI and
conversely.

Proof. The CT groups act in the jet space M(1, n) equipped with the contact module Ω(1, n).
Then the abbreviations

wI = w1
I , ωI = ω1

I = dwI −
∑

wIidxi Z =
∑

zi
∂

∂xi
+
∑

z1
I

∂

∂wI
(8.1)

are possible. Let us recall the classical approach [22, 23]. The Lie contact transformations
defined by certain formulae

m∗xi = Gi(·), m∗w = G1(·), m∗wi = G1
i (·) ((·) = (x1, . . . , xn,w,w1, . . . , wn)) (8.2)

preserve the Pfaffian equation ω = dw −
∑
widxi = 0 or (equivalently) the submodule Ω0 ⊂

Ω(1, n) of zeroth-order contact forms. Explicit formulae are available in literature. We are
interested in one-parameter local CT groups of transformations m(λ)(−ε < λ < ε) which are
“nondegenerate” in a sense stated below and then the explicit formulae are not available yet.
On the other hand, our VI with smooth Lagrangian Ł

∫
Ł
(
t, y1, . . . , yn, y

′
1, . . . , y

′
n

)
dt

(
yi = yi(t), ′ =

d

dt
, det

(
∂2Ł

∂y′i∂y
′
j

)

/= 0

)
(8.3)

to appear later, involves variables from quite other jet space M(n, 1) with coordinates
denoted t (the independent variable), y1, . . . , yn (the dependent variables) and higher-order
jet variables like y′i, y

′′
i and so on.

We are passing to the topic proper. Let us start in the space M(1, n) with CT groups.
One can check that vector field (5.6) is infinitesimal CT if and only if

Z = −
∑

Qwi

∂

∂xi
+
(
Q −

∑
wiQwi

) ∂

∂w
+
∑

(Qxi +wiQw)
∂

∂wi
+ · · · , (8.4)

where the function Q = Q(x1, . . . , xn,w,w1, . . . , wn) may be arbitrarily chosen.
“Hint: we have, by definition

LZω = Z	dω + dω(Z) =
∑

(ziωi −ωi(Z)dxi) + dQ ∈ Ω0, (8.5)

where Q = Q(x1, . . . , xn,w,w1, . . . , wn, . . .) = ω(Z) = z1 −
∑
wizi,

dQ =
∑

DiQdxi +
∂Q

∂w
ω +

∑ ∂Q

∂wi
ωi (8.6)
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whence immediately zi = −∂Q/∂wi, z1 = Q +
∑
wizi = Q −

∑
wi · ∂Q/∂wi, ∂Q/∂wI = 0 if

|I| ≥ 1 and formula (8.4) follows.”
Alas, the corresponding Lie system (not written here) is not much inspirational.

Let us however consider a function w = w(x1, . . . , xn) implicitly defined by an equation
V (x1, . . . , xn,w) = 0. We may suppose that the transformed function m(λ)∗w satisfies the
equation

V
(
x1, . . . , xn,m(λ)∗w

)
= λ (8.7)

without any loss of generality. In infinitesimal terms

1 =
∂(V − λ)

∂λ
= Z(V − λ) = −

∑
QwiVxi +

(
Q −

∑
wiQwi

)
Vw. (8.8)

However wi = ∂w/∂xi = −Vxi/Vw may be inserted here, and we have the crucial Jacobi
equation

1 = Q
(
x1, . . . , xn,w,−

Vx1

Vw
, . . . ,−

Vxn
Vw

)
Vw (8.9)

(not involving V ) which can be uniquely rewritten as the Hamilton-Jacobi (HJ) equation

Vw +H
(
x1, . . . , xn,w, p1, . . . , pn

) (
pi = Vxi

)
(8.10)

in the “nondegenerate” case
∑
QwiVxi /= 1. Let us recall the characteristic curves [22, 23] of the

HJ equation given by the system

dw
1

=
dxi
Hpi

= −
dpi
Hxi

=
dV

−H +
∑
piHpi

. (8.11)

The curves may be interpreted as the orbits of the group m(λ). (Hint: look at the well-
known classical construction of the solution V of the Cauchy problem [22, 23] in terms of
the characteristics. The initial Cauchy data are transferred just along the characteristics, i.e.,
along the group orbits.) Assume moreover the additional condition det(∂2H/∂pi∂pj)/= 0. We
may introduce variational integral (8.3) with the Lagrange function Ł given by the familiar
identities

Ł +H =
∑

piy
′
i (8.12)

with interrelations

t = w, yi = xi, y′i =Hpi , pi = Ły′i (i = 1, . . . , n) (8.13)

between variables t, yi, y′i of the space M(n, 1) and variables xi, w, wi of the space
M(1, n). Since (8.11) may be regarded as a Hamiltonian system for the extremals of VI, the
metatheorem is clarified.
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W = μ
W = λ

xi,w fixed
λ-waves

(a)

Orbit
DiW = 0

W = λ

Infinitesimally close points
focus and orbits of foci

(b)

m(λ)

The group: m(λ + μ)

m(μ)

(c)

Figure 3

Remark 8.2. Let us recall the Mayer fields of extremals for the VI since they provide the true
sense of the above construction. The familiar Poincaré-Cartan form

ϕ̆ = Łdt +
∑

Ły′i
(
dyi − y′idt

)
= −Hdt +

∑
pidyi (8.14)

is restricted to appropriate subspace y′i = gi(t, y1, . . . , yn) (i = 1, . . . , n; the slope field) in order
to become a total differential

ϕ̆
∣∣
y′i=gi

= dV
(
t, y1, . . . , yn

)
= Vtdt +

∑
Vyidyi (8.15)

of the action V . We obtain the requirements Vt = −H, Vyi = pi identical with (8.10). In
geometrical terms: transformations of a hypersurface V = 0 by means of CT group may be identified
with the level sets V = λ (λ ∈ �) of the action of a Mayer fields of extremals.

The last statement is in accordance with (8.11) where

dV =
(
−H +

∑
piHpi

)
dw =

(
−H +

∑
piy

′
i

)
dt = Łdt, (8.16)

use the identifications (8.13) of coordinates. This is the classical definition of the action V in
a Mayer field. We have moreover clarified the additive nature of the level sets V = λ: roughly
saying, the composition with V = μ provides V = λ+μ (see Figure 3(c)) and this is caused by
the additivity of the integral

∫
Ł dt calculated along the orbits.

On this occasion, the wave enveloping approach to CT groups is also worth
mentioning.

Lemma 8.3 (see [10–13]). Let W(x1, . . . , xn,w, x1, . . . , xn,w) be a function of 2n + 2 variables.
Assume that the systemW = D1W = · · · = DnW = 0 admits a unique solution

xi = Fi
(
. . . , xi

′, w,wi
′, . . .
)
, w = F1(. . . , xi′, w,wi

′, . . .
)

(8.17)
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by applying the implicit function theorem and analogously the systemW = D1W = · · · = DnW = 0
(where Di = ∂/∂xi +

∑
wi∂/∂w) admits a certain solution

xi = Fi(. . . , xi′ , w,wi′ , . . .), w = F
1
(. . . , xi′ , w,wi′ , . . .). (8.18)

Then m∗xi = Fi, m∗w = F1 provides a Lie CT and (m−1)∗xi = Fi, (m−1)∗w = F
1
is the inverse.

In more generality, if function W in Lemma 8.3 moreover depends on a parameter λ,
we obtain a mapping m(λ) which is a certain CT involving a parameter λ and the inverse
m(λ)−1. In favourable case (see below) thism(λ) may be even a CT group. The geometrical sense
is as follows. Equation W = 0 with xi, w kept fixed represents a wave in the space xi, w
(Figure 3(a)).

The total system W = D1W = · · · = DnW = 0 provides the intersection (envelope) of
infinitely close waves (Figure 3(b)) with the resulting transform, the focus point m (or m(λ)
if the parameter λ is present). The reverse waves with the role of variables interchanged gives
the inversion. Then the group property holds true if the waves can be composed (Figure 3(c))
within the parameters λ, μ, but this need not be in general the case.

Let us eventually deal with the condition ensuring the group composition property.
Without loss of generality, we may consider the λ-depending wave

W(x1, . . . , xn,w, x1, . . . , xn,w) − λ = 0. (8.19)

If xi, w are kept fixed, the previous results may be applied. We obtain a group if and only if
theHJ equation (8.10) holds true, therefore

Ww +H(x1, . . . , xn,w,Wx1 , . . . ,Wxn) = 0. (8.20)

The existence of such function H means that functions Ww,Wx1 , . . . ,Wxn of dashed variables
are functionally dependent whence

det

(
Www Wwxi′

Wxiw Wxixi′

)
= 0, det

(
Wxixi′

)
/= 0. (8.21)

The symmetry xi,w ↔ xi,w is not surprising here since the change λ ↔ −λ provides the
inverse mapping: equations

W(. . . , xi, w, . . . , xi, w) = λ, W(. . . , xi, w, . . . , xi, w) = −λ (8.22)

are equivalent. In particular, it follows that

W(. . . , xi, w, . . . , xi, w) = −W(. . . , xi, w, . . . , xi, w), W(. . . , xi, w, . . . , xi, w) = 0 (8.23)

and the wave W − λ = 0 corresponds to the Mayer central field of extremals.
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Ω0 Ω1 · · ·

(a)

Ω0 Ω1 · · ·

(b)

Ωl

LZ

Θl =
⊕
LrZΩl

(c)

Figure 4

Summary 4. Conditions (8.21) ensure the existence ofHJ equation (8.20) for the λ-wave
(8.19) and therefore the group composition property of waves (8.19) in the nondegenerate
case det (∂2H/∂pi∂pj)/= 0.

Remark 8.4. A reasonable theory of Mayer fields of extremals and Hamilton-Jacobi equations
can be developed also for the constrained variational integrals (the Lagrange problem) within
the framework of jet spaces, that is, without the additional Lagrange multipliers [9, Chapter
3]. It follows that there do exist certain groups of generalized Lie’s contact transformations
with differential constraints.

9. On the Order-Destroying Groups in Jet Space

We recall that in the order-preserving case, the filtration

Ω(m,n)∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω(m,n) = ∪Ωl (9.1)

of module Ω(m,n) is preserved (Figure 4(a)). It follows that certain invariant submodules
Ωl ⊂ Ω(m,n) are a priori prescribed which essentially restricts the store of the symmetries (the
Lie-Bäcklund theorem). The order-destroying groups also preserve certain submodules of
Ω(m,n) due to approximation results, however, they are not known in advance (Figure 4(b))
and appear after certain saturation (Figure 4(c)) described in technical theorem 5.1.

The saturation is in general a toilsome procedure. It may be simplified by applying
two simple principles.

Lemma 9.1 (going-up lemma). Let a group of morphisms m(λ) preserve a submodule Θ ⊂
Ω(m,n). Then also the submodule

Θ +
∑
LDiΘ ⊂ Ω(m,n) (9.2)

is preserved.

Proof. We suppose LZΘ ⊂ Θ. Then

LZ
(
Θ +

∑
LDiΘ

)
= LZΘ +

(
LDiLZΘ −

∑
Dizi′LDi′Θ

)
⊂ Θ +

∑
LDiΘ (9.3)

by using the commutative rule (5.17).
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Lemma 9.2 (going-down lemma). Let the group of morphisms m(λ) preserve a submodule Θ ⊂
Ω(m,n). Let Θ′ ⊂ Θ be the submodule of all ω ∈ Θ satisfying LDiω ∈ Θ (i = 1, . . . , n). Then Θ′ is
preserved, too.

Proof. Assume ω ∈ Θ′ hence LDiω ∈ Θ. Then LDiLZω = LZLDiω + L∑Dizi′ ·Di′ω ∈ Θ hence
LZω ∈ Θ′ and Θ′ is preserved.

We are passing to illustrative examples.

Example 9.3. Let us consider the vector field (the variation of jet structure)

Z =
∑

z
j

I

∂

∂w
j

I

(
z
j

I = DIz
j , DI = Di1 · · ·Din

)
, (9.4)

see (5.6) and (5.10) for the particular case zi = 0. Then Zrxi = 0 (i = 1, . . . , n) and the sufficient
requirement Z2wj = 0 (j = 1, . . . , m) ensures Z ∈ � , see (ι) of Lemma 5.4. We will deal with
the linear case where

zj =
∑

a
jj ′

i′w
j ′

i′

(
a
jj ′

i′ ∈ �
)

(9.5)

is supposed. Then

Z2wj = Zzj =
∑

a
jj ′

i′ z
j ′

i′ =
∑

a
jj ′

i′ a
j ′j ′′

i′′ w
j ′′

i′i′′ = 0 (9.6)

identically if and only if

∑

j ′

(
a
jj ′

i′ a
j ′j ′′

i′′ + ajj
′

i′′a
j ′j ′′

i′

)
= 0

(
i′, i′′ = 1, . . . , n; j, j ′, j ′′ = 1, . . . , m

)
. (9.7)

This may be expressed in terms of matrix equations

AiAi′ = 0
(
i, i′ = 1, . . . , n; Ai =

(
a
jj ′

i

))
(9.8)

or, in either of more geometrical transcriptions

A2 = 0, ImA ⊂ KerA
(
A =

∑
λiAi, λi ∈ �

)
, (9.9)

where A is regarded as (a matrix of an) operator acting in m-dimensional linear space and
depending on parameters λ1, . . . , λn. We do not know explicit solutions A in full generality,
however, solutions A such that Ker A does not depend on the parameters λ1, . . . , λn can be
easily found (and need not be stated here). The same approach can be applied to the more
general sufficient requirement Zrwj = 0 (j = 1, . . . , m; fixed r) ensuring Z ∈ � . If r ≥ n, the
requirement is equivalent to the inclusion Z ∈ � .
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Example 9.4. Let us consider vector field (5.6) where z1 = · · · = zm = 0. In more detail, we take

Z =
∑

zi
∂

∂xi
+
∑

z
j

i

∂

∂w
j

i

+ · · ·
(
z
j

i = −
∑

w
j

i′Dizi′
)
. (9.10)

Then Zrwj = 0 and we have to deal with functions Zrxi in order to ensure the inclusion
Z ∈ � . This is a difficult task. Let us therefore suppose

z1 = z
(
. . . , xi′ , w

j ′ , w
j ′

1 , . . .
)
, zk = ck ∈ � (k = 2, . . . , n). (9.11)

Then Zxk = 0 (k = 2, . . . , n) and

Z2x1 = Zz =
∑ ∂z

∂xi
zi +

∑ ∂z

∂w
j

1

z
j

1, (9.12)

where

z
j

1 = −wj

1D1z = −wj

1

⎛
⎝ ∂z

∂x1
+
∑ ∂z

∂wj ′
w
j ′

1 +
∑ ∂z

∂w
j ′

1

w
j ′

11

⎞
⎠. (9.13)

The second-order summand

Z2x1 = · · · +
∑ ∂z

∂w
j

1

z
j

1 = · · · −
∑ ∂z

∂w
j

1

w
j

1
∂z

∂w
j ′

1

w
j ′

11 (9.14)

identically vanishes for the choice

z = f
(
. . . , xi′ , w

j ′ , ul, . . .
) (

ul =
wl

1

w1
1

; l = 2, . . . , m

)
(9.15)

as follows by direct verification. Quite analogously

Zul = Z
wl

1

w1
1

= zl1
1
w1

1

− z1
1

wl
1

(
w1

1

)2 =

⎛

⎝−wl
1

1
w1

1

+w1
1

wl
1

(
w1

1

)2

⎞

⎠D1z = 0. (9.16)

It follows that all functions Zrxi, Zrwj can be expressed in terms of the finite family of
functions xi (i = 1, . . . , n), wj (j = 1, . . . , m), ul (l = 2, . . . , m) and therefore Z ∈ � .

Remark 9.5. On this occasion, let us briefly mention the groups generated by vector fields Z
of the above examples. The Lie system of the vector field (9.4) and (9.5) reads

dGi

dλ
= 0,

dGj

dλ
=
∑

a
jj ′

i′G
j ′

i′
(
i = 1, . . . , n; j = 1, . . . , m

)
, (9.17)
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where we omit the prolongations. It is resolved by

Gi = xi, Gj = wj + λ
∑

a
jj ′

i′w
j ′

i′
(
i = 1, . . . , n; j = 1, . . . , m

)
(9.18)

as follows either by direct verification or, alternatively, from the property Z2xi = Zzi = 0 (i =
1, . . . , n) which implies

d
∑
a
jj ′

i′G
j ′

i′

dλ
= 0,

∑
a
jj ′

i′ G
j ′

i′ =
∑

a
jj ′

i′G
j ′

i′

∣∣∣
λ=0

=
∑

a
jj ′

i′w
j ′

i′ .
(9.19)

Quite analogously, the Lie system of the vector field (9.10), (9.11), (9.15) reads

dG1

dλ
= f

(
. . . , Gi′ , G

j ′ ,
Gl′

1

G1
1

, . . .

)
,

dGk

dλ
= ck,

dGj

dλ
= 0

(
k = 2, . . . , n; j = 1, . . . , m

)
(9.20)

and may be completed with the equations

d
(
Gl

1/G
1
1

)

dλ
= 0 (l = 2, . . . , m) (9.21)

following from (9.16). This provides a classical self-contained system of ordinary differential
equations where the common existence theorems can be applied.

The above Lie systems admit many nontrivial first integrals F ∈ F, that is, functions
F that are constant on the orbits of the group. Conditions F = 0 may be interpreted as
differential equations in the total jet space, and the above transformation groups turn into
the external generalized symmetries of such differential equations, see Section 11 below.

10. Towards the Main Algorithm

We briefly recall the algorithm [10–13] for determination of all individual automorphisms m
of the jet space M(m,n) in order to compare it with the subsequent calculation of vector field
Z ∈ � .

Morphisms m of the jet structure were defined by the property m∗Ω(m,n) ⊂ Ω(m,n).
The inverse m−1 exists if and only if

Ω0 ⊂ m∗Ω(m,n), equivalently Ω0 ⊂ m∗Ωl (l = l(m)) (10.1)

for appropriate term Ωl(m) of filtration (9.1). However

m∗Ωl+1 = m∗Ωl +
∑
LDim

∗Ωl (10.2)
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and it follows that criterion (10.1) can be verified by repeated use of operators LDi . In more
detail, we start with equations

m∗ωj =
∑

a
jj ′

I ′ω
j ′

I ′

(
= dm∗wj −

∑
m∗wj

idm
∗xi
)

(10.3)

with uncertain coefficients. Formulae (10.3) determine the module m∗Ω0. Then we search for
lower-order contact forms, especially forms from Ω0, lying in m∗Ωl with the use of (10.2).
Such forms are ensured if certain linear relations among coefficients exist. The calculation is
finished on a certain level l = l(m) and this is the algebraic part of the algorithm. With
this favourable choice of coefficients ajj

′

I ′ , functions m∗xi, m∗wj (and therefore the invertible
morphism m) can be determined by inspection of the bracket in (10.3). This is the analytic part
of algorithm.

Let us turn to the infinitesimal theory. Then the main technical tool is the rule (5.17) in
the following transcription:

LZLDi = LDiLZ −
∑

Dizi′LDi′ (10.4)

or, when applied to basical forms

LZω
j

Ii = LDiLZω
j

I −
∑

Dizi′ω
j

Ii′ . (10.5)

We are interested in vector fields Z ∈ � . They satisfy the recurrence (5.10) together with
requirements

dim⊕LrZΩ0 < ∞, equivalently LrZΩ0 ⊂ Ωl(Z) (r = 0, 1, . . .) (10.6)

for appropriate l(Z) ∈ �. Due to the recurrence (10.5) these requirements can be effectively
investigated. In more detail, we start with equations

LZωj =
∑

a
jj ′

I ′ω
j ′

I ′

(
= dzj −

∑
z
j
idxi −

∑
w
j
idzi
)
. (10.7)

Formulae (10.7) determine module LZΩ0. Then, choosing l(Z) ∈ �, operator LZ is to
be repeatedly applied and requirements (10.6) provide certain polynomial relations for the
coefficients by using (10.5). This is the algebraical part of the algorithm. With such coefficients
a
jj ′

I ′ available, functions zi = LZxi, zj = LZwj (and therefore the vector field Z ∈ � ) can be
determined by inspection of the bracket in (10.7) or, alternatively, with the use of formulae
(5.12) for the particular case I = φ empty

LZωj =
∑
⎛

⎝ ∂zj

∂w
j ′

I ′

−
∑

w
j

i

∂zi

∂w
j ′

I ′

⎞

⎠ω
j ′

I ′ . (10.8)

This is the analytic part of the algorithm.
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Altogether taken, the algorithm is not easy and the conviction [7, page 121] that the
“exhaustive description of integrable C-fields (fields Z ∈ � in our notation) is given in [16]”
is disputable. We can state only one optimistic result at this place.

Theorem 10.1. The jet spaces M(1, n) do not admit any true generalized infinitesimal symmetries
Z ∈ � .

Proof. We suppose m = 1 and then (10.7) reads

LZω1 =
∑

a11
I ′ω

1
I ′ = · · · + a

11
I ′′ω

1
I ′′

(
a11
I ′′ /= 0

)
, (10.9)

where we state a summand of maximal order. Assuming I ′′ = φ, the Lie-Bäcklund theorem
can be applied and we do not have the true generalized symmetry Z. Assuming I ′′ /=φ, then

LrZω
1 = · · · + a11

I ′′ω
1
I ′′ ···I ′′

(
r terms I ′′

)
(10.10)

by using rule (10.5) where the last summand may be omitted. It follows that (10.6) is not
satisfied hence Z /∈ � .

Example 10.2. We discuss the simplest possible but still a nontrivial particular example.
Assume m = 2, n = 1 and l(Z) = 1. Let us abbreviate

x = x1, D = D1, Z = z
∂

∂x
+
∑

z
j

I

∂

∂w
j

I

(
j = 1, 2; I = 1 · · ·1

)
. (10.11)

Then, due to l(Z) = 1, requirement (10.6) reads

LrZΩ0 ⊂ Ω1 (r = 0, 1, . . .). (10.12)

In particular (if r = 1) we have (10.7) written here in the simplified notation

LZωj = aj1ω1 + aj2ω2 + bj1ω1
1 + b

j2ω2
1

(
j = 1, 2

)
. (10.13)

The next requirement (r = 2) implies the (only seemingly) stronger inclusion

L2
ZΩ0 ⊂ LZΩ0 + Ω0 (10.14)

which already ensures (10.12) for all r and therefore Z ∈ � (easy). We suppose (10.14) from
now on.

“Hint for proof of (10.14): assuming (10.12) and moreover the equality

L2
ZΩ0 +LZΩ0 + Ω0 = Ω1, (10.15)
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it follows that

LZΩ1 ⊂ L3
ZΩ0 +L2

ZΩ0 +LZΩ0 ⊂ Ω1 (10.16)

and Lie-Bäcklund theorem can be applied whence LZΩ0 ⊂ Ω0, l(Z) = 0 which we exclude. It
follows that necessarily

dim
(
L2
ZΩ0 +LZΩ0 + Ω0

)
< dimΩ1 = 4. (10.17)

On the other hand dim(LZΩ0 + Ω0) ≥ 3 and the inclusion (10.14) follows.”
After this preparation, we are passing to the proper algebra. Clearly

L2
Zω

j = · · · + bj1LZω1
1 + b

j2LZω2
1 = · · · + bj1

(
b11ω1

11 + b
12ω2

11

)
+ bj2

(
b21ω1

11 + b
22ω2

11

)
(10.18)

by using the commutative rule (10.5). Due to “weaker” inclusion (10.12) with r = 2, we obtain
identities

bj1b11 + bj2b21 = 0, bj1b12 + bj2b22 = 0
(
j = 1, 2

)
. (10.19)

Omitting the trivial solution, they are satisfied if either

b11 + b22 = 0, b12 = cb11, b11 + cb21 = 0 (10.20)

for appropriate factor c (where b11 /= 0 and either b12 /= 0 or b21 /= 0 is supposed) or

b11 = b22 = 0, either b12 = 0 or b21 = 0. (10.21)

We deal only with the (more interesting) identities (10.20) here. Then

LZω1 = a11ω1 + a12ω2 − cb
(
ω1

1 + cω
2
1

)
,

LZω2 = a21ω1 + a22ω2 + b
(
ω1

1 + cω
2
1

) (10.22)

(abbreviation b = b21) by inserting (10.20) into (10.13). It follows that

LZ
(
ω1 + cω2

)
= a1ω1 + a2ω2

(
a1 = a11 + ca21, a2 = a12 + ca22 + Zc

)
. (10.23)

It may be seen by direct calculation ofL2
Zω

2 that the “stronger” inclusion (10.14) is equivalent
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to the identity ca1 = a2, that is,

LZ
(
ω1 + cω2

)
= a
(
ω1 + cω2

)
(10.24)

(abbreviation a = a1). Alternatively, (10.24) can be proved by using Lemma 9.2.
“Hint: denoting Θ = LZΩ0+Ω0, (10.14) impliesLZΘ ⊂ Θ. MoreoverLD(ω1+cω2) ∈ Θ

by using (10.22). Lemma 9.2 can be applied: ω1 + cω2 ∈ Θ′ and Θ′ involves just all multiples
of form ω1 + cω2. ThereforeLZ(ω1 + cω2) ∈ Θ′ is a multiple of ω1 + cω2.”

The algebraical part is concluded. We have congruences

LZω1 ∼= −cb
(
ω1

1 + cω
2
1

)
, LZω2 ∼= b

(
ω1

1 + cω
2
1

)
(mod Ω0) (10.25)

and equality

LZω1 + cLZω2 + Zcω2 = a
(
ω1 + cω2

)
. (10.26)

If Z is a variation then these three conditions together ensure the “stronger inclusion” (10.14)
hence Z ∈ � .

We turn to analysis. Abbreviating

Z
jj ′

I ′ =
∂zj

∂w
j ′

I ′

−wj

1
∂z

∂w
j ′

I ′

(
j, j ′ = 1, 2; I ′ = 1 · · ·1

)
(10.27)

and employing (10.8), the above conditions (10.25) and (10.26) read

∑
Z

1j ′

I ′ω
j ′

I ′ = −cb
(
ω1

1 + cω
2
1

)
,
∑

Z
2j ′

I ′ω
j ′

I ′ = b
(
ω1

1 + cω
2
1

) (∣∣I ′
∣∣ ≥ 1

)
,

∑(
Z

1j ′

I ′ + cZ
2j ′

I ′

)
ω
j ′

I ′ + Zcω
2 = a

(
ω1 + cω2

)
.

(10.28)

We compare coefficients of forms ωj

I on the level s = |I ′|

s = 0: Z11 + cZ21 = a, Z12 + cZ22 + Zc = ac, (10.29)

s = 1: Z11
1 = −cb, Z12

1 = −(c)2b, Z21
1 = b, Z22

1 = bc, Z
1j
1 + cZ2j

1 = 0, (10.30)

s ≥ 2: Zjj ′

I ′ = 0, Z
1j ′

I ′ + cZ
2j ′

I ′ = 0. (10.31)

We will successively delete the coefficients a, b, c in order to obtain interrelations only for
variables Zjj ′

I ′ . Clearly

s = 0: Z12 + cZ22 + Zc =
(
Z11 + cZ21

)
c,

s = 1: Z11
1 + Z22

1 = 0, Z11
1 Z

22
1 = Z12

1 Z
21
1 ,

(10.32)
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and we moreover have three compatible equations

c = −
Z11

1

Z21
1

= −
Z12

1

Z22
1

, (c)2 = −
Z12

1

Z21
1

(10.33)

for the coefficient c. To cope with levels s ≥ 2, we introduce functions

Qj = ωj(Z) = zj −wj

1z
(
j = 1, 2

)
. (10.34)

Then substitution into (10.27) with the help of (10.31) gives

∂Qj

∂w
j ′

I ′

= 0
(
j, j ′ = 1, 2;

∣∣I ′
∣∣ ≥ 2

)
. (10.35)

It follows moreover easily that

Z
jj ′

1 =
∂Qj

∂w
j ′

1

(
j /= j ′

)
, Z

jj

1 = z +
∂Qj

∂w
j

1

, Zjj ′ =
∂Qj

∂wj ′ (10.36)

and we have the final differential equations

s = 0:
∂Q1

∂w2 + c
∂Q2

∂w2 +Zc =

(
∂Q1

∂w1
+ c

∂Q2

∂w1

)
c, (10.37)

s = 1: 2z +
∂Q1

∂w1
1

+
∂Q2

∂w2
1

= 0,

(
z +

∂Q1

∂w1
1

)(
z +

∂Q2

∂w2
1

)
=
∂Q1

∂w2
1

∂Q2

∂w1
1

(10.38)

for the unknown functions

z = z
(
x,w1, w2, w1

1, w
2
1

)
, Qj = Qj

(
x,w1, w2, w1

1, w
2
1

)
. (10.39)

The coefficient c is determined by (10.33) and (10.36) in terms of functions Qj . This concludes the
analytic part of the algorithm since trivially zj = wj

1z +Q
j and the vector field Z is determined.

The system is compatible: particular solutions with functions Qj quadratic in jet
variables and c = const. can be found as follows. Assume

Qj = Aj
(
w1

1

)2
+ 2Bjw1

1w
2
1 + C

j
(
w2

1

)2 (
j = 1, 2

)
(10.40)

with constant coefficients Aj, Bj , Cj ∈ �. We also suppose c ∈ � and then (10.37) is trivially
satisfied.
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On the other hand, (10.33) provide the requirements

z +
∂Q1

∂w1
1

+ c
∂Q2

∂w1
1

=
∂Q1

∂w2
1

+ c

(
z +

∂Q2

∂w2
1

)
=
∂Q1

∂w2
1

+ (c)2 ∂Q
2

∂w1
1

= 0 (10.41)

by using (10.36). If we put

z = −∂Q
1

∂w1
1

− ∂Q
2

∂w2
1

= −
(
A1 + B1

)
w1

1 −
(
B1 + C2

)
w2

1, (10.42)

then (10.38) is satisfied (a clumsy direct verification).
The above requirements turn to a system of six homogeneous linear equations (not

written here) for the six constants Aj , Bj , Cj (j = 1, 2) with determinant Δ = c2(c2 − 8) if the
values z, Q1, Q2 are inserted and the coefficients of w1

1 and w2
1 are compared. The roots c = 0

and c = ±2
√

2 of the equation Δ = 0 provide rather nontrivial infinitesimal transformation Z,
however, we can state only the simplest result for the trivial root c = 0 for obvious reason. It
reads

Q1 = A1
(
w1

1

)2
, Q2 = A2

(
w1

1

)2
, z = −A1w1

1, z1 = 0, z2 = w1
1

(
A2w1

1 +A
1w2

1

)
, (10.43)

where A1, A2 are arbitrary constants.

Remark 10.3. It follows that investigation of vector fields Z ∈ � cannot be regarded for easy
task and some new powerful methods are necessary, for example, better use of differential
forms (involutive systems) with pseudogroup symmetries of the problem (moving frames).

11. A Few Notes on the Symmetries of Differential Equations

The external theory deals with (systems of) differential equations (DE) that are firmly localized
in the jet spaces. This is the common approach and it runs as follows. A given finite system of
DE is infinitely prolonged in order to ensure the compatibility. In general, this prolongation
is a toilsome and delicate task, in particular the “singular solutions” are tacitly passed over.
The prolongation procedure is expressed in terms of jet variables and as a result a fixed
subspace of the (infinite-order) jet space appears which represents theDE under consideration.
Then the external symmetries [2, 3, 6, 7] are such symmetries of the ambient jet space which
preserve the subspace. In this sense we may speak of classical symmetries (point and contact
transformations) and higher-order symmetries (which destroy the order of derivatives).

The internal theory ofDE is irrelevant to the jet localization, in particular to the choice of
the hierarchy of independent and dependent variables. This point of view is due to E. Cartan
and actually the congenial term “diffiety” was introduced in [6, 7]. Alas, these diffieties were
defined as objects locally identical with appropriate external DE restricted to the corresponding
subspace of the ambient total jet space. This can hardly be regarded as a coordinate-free (or jet
theory-free) approach since the model objects (external DE) and the intertwining mappings
(higher-order symmetries) essentially need the use of the above hard jet theory mechanisms
and concepts.
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In reality, the final result of prolongation, the infinitely prolonged DE, can be
alternatively characterized by three simple axioms as follows [8, 9, 24–27].

Let M be a space modelled on �∞ (local coordinates h1, h2, . . . as in Sections 1 and
2 above). Denote by F(M) the structural module of all smooth functions f on M (locally
depending on a finite numberm(f) of coordinates). Let Φ(M),T(M) be theF(M)-modules of
all differential 1-forms and vector fields on M, respectively. For every submodule Ω ⊂ Φ(M),
we have the “orthogonal” submodule Ω⊥ =H ⊂ T(M) of all X ∈ H such that Ω(X) = 0.

Then an F(M)-submodule Ω ⊂ Φ(M) is called a diffiety if the following three
requirements are locally satisfied.

(A) Ω is of codimension n <∞, equivalentH is of dimension n < ∞.
Here n is the number of independent variables. The independent variables provide the
complementary module to Ω in Φ(M) which is not prescribed in advance.

(B) dΩ ∼= 0 (mod Ω), equivalent LHΩ ⊂ Ω, equivalently: [H,H] ⊂ H.
This Frobenius condition ensures the classical passivity requirement: we deal with the
compatible infinite prolongation of differential equations.

(C) There exists filtration Ω∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω = ∪Ωl by finite-dimensional
submodules Ωl ⊂ Ω such that

LHΩl ⊂ Ωl+1 (all l), Ωl+1 = Ωl +LHΩl

(
l large enough

)
. (11.1)

This condition may be expressed in terms of a �H-polynomial algebra on the
graded module ⊕ Ωl/Ωl−1 (the Noetherian property) and ensures the finite number
of dependent variables. Filtration Ω∗ may be capriciously modified. In particular,
various localizations of Ω in jet spaces Ω(m,n) can be easily obtained.

The internal symmetries naturally appear. For instance, a vector field Z ∈ T(M) is called
a (universal) variation of diffiety Ω if LZΩ ⊂ Ω and infinitesimal symmetry if moreover Z
generates a local group, that is, if and only if Z ∈ � .

Theorem 11.1 (technical theorem). Let Z be a variation of diffiety Ω. Then Z ∈ � if and only if
there is a finite-dimensional F(M)-submodule Θ ⊂ Ω such that

⊕LrHΘ = Ω, dim⊕LrZΘ < ∞. (11.2)

This is exactly counterpart to Theorem 5.6: submodule Θ ⊂ Ω stands here for the
previous submodule Ω0 ⊂ Ω(m,n). We postpone the proof of Theorem 11.1 together with
applications to some convenient occasion.

Remark 11.2. There may exist conical symmetries Z of a diffiety Ω, however, they are all lying
inH and generate just the Cauchy characteristics of the diffiety [9, page 155].

We conclude with two examples of internal theory of underdetermined ordinary
differential equations. The reasonings to follow can be carried over quite general diffieties
without any change.
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Example 11.3. Let us deal with the Monge equation

dx

dt
= f
(
t, x, y,

dy

dt

)
. (11.3)

The prolongation can be represented as the Pfaffian system

dx − f
(
t, x, y, y′

)
dt = 0, dy − y′dt = 0, dy′ − y′′dt = 0, . . . . (11.4)

Within the framework of diffieties, we introduce space M with coordinates

t, x0, y0, y1, y2, . . . (11.5)

and submodule Ω ⊂ Φ(M) with generators

dx0 − fdt, (ωr =)dyr − yr+1dt
(
r = 0, 1, . . . ; f = f

(
t, x0, y0, y1

))
. (11.6)

ClearlyH = Ω⊥ ⊂ T(M) is one-dimensional subspace including the vector field

D =
∂

∂t
+ f

∂

∂x0
+
∑

yr+1
∂

∂yr
. (11.7)

One can easily find that we have a diffiety. (A and B are trivially satisfied. The common order
preserving filtrations where Ωl involves dx0 − fdt and ωr with r ≤ l is enough for C.)

We introduce a new (standard [9]) filtration Ω∗ where the submodule Ωl ⊂ Ω is
generated by the forms

ϑ0 = dx0 − fdt −
∂f

∂y1
ω0, ωr (r ≤ l − 1). (11.8)

This is indeed a filtration since

LDϑ0 = df −Dfdt −D
∂f

∂y1
·ω0 −

∂f

∂y1
ω1 =

∂f

∂x0

(
dx0 − fdt

)
+
(
∂f

∂y0
−D

∂f

∂y1

)
ω0

=
∂f

∂x0
ϑ0 +Aω0

(
A =

∂f

∂y0
+
∂f

∂x0

∂f

∂y1
−D

∂f

∂y1

) (11.9)

and (trivially) LDωr = ωr+1. Assuming A/= 0 from now on (this is satisfied if fy1y1 /= 0) every
module Ωl is generated by the forms ϑr = LrDϑ0 (r ≤ l).

The forms ϑr satisfy the recurrenceLDϑr = ϑr+1. Then the formula

ϑr+1 = LDϑr = D	dϑr + dϑr(D) = D	dϑr (11.10)
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implies the congruence dϑr ∼= dt ∧ ϑr+1 (mod Ω ∧Ω). Let

Z = z
∂

∂t
+ z0 ∂

∂x0
+
∑

zr
∂

∂yr
(11.11)

be a variation of Ω in the common sense LZΩ ⊂ Ω. This inclusion is equivalent to the
congruence

LZϑr = Z	dϑr + dϑr(Z) ∼= −ϑr+1(Z)dt +Dϑr(Z)dt = 0 (mod Ω) (11.12)

whence to the recurrence

ϑr+1(Z) = Dϑr(Z) (11.13)

quite analogous to the recurrence (5.10), see Remark 5.3. It follows that the functions

z = Zt = dt(Z), g = ϑ0(Z) (11.14)

can be quite arbitrarily chosen. Then functions ϑr(Z) = Drg are determined and we obtain
quite explicit formulae for the variation Z. In more detail

g = ϑ0(Z) =
(

dx0 − fdt −
∂f

∂y1
ω0

)
(Z) = z0 − fz −

∂f

∂y1

(
z0 − y1z

)
,

Dg = ϑ1(Z)
(
∂f

∂x0
ϑ0 +Aω0

)
(Z) =

∂f

∂x0
g +A

(
z0 − y1z

)
(11.15)

and these equations determine coefficients z0 and z0 in terms of functions z and g.
Coefficients zr (r ≥ 1) follow by prolongation (not stated here). If moreover

dim {LrZϑ0}r∈� < ∞ (11.16)

we have infinitesimal symmetry Z ∈ � , see Theorem 11.1.

Example 11.4. Let us deal with the Hilbert-Cartan equation [3]

dy

dt
=

(
d2x

dt2

)2

. (11.17)

Passing to the diffiety, we introduce space M with coordinates

t, x0, x1, y0, y1, y2, . . . (11.18)
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and submodule Ω ⊂ Φ(M) generated by forms

dx0 − x1dt, dx1 −
√
y1dt, (ωr =)dyr − yr+1dt (r = 0, 1, . . .). (11.19)

The submoduleH = Ω⊥ ⊂ T(M) is generated by the vector field

D =
∂

∂t
+ x1

∂

∂x0
+
√
y1

∂

∂x1
+
∑

yr+1
∂

∂yr
. (11.20)

We introduce the form

ϑ0 = dx0 − x1dt + B

{
dx1 −

√
y1dt − 1

2√y1
ω0

} (
B =

1/√y1

D
(
1/√y1

)
)

(11.21)

and moreover the forms

ϑ1 = LDϑ0 = (1 +DB){· · · },

ϑ2 = LDϑ1 = D2B{· · · } −Cω0

(
C = (1 +DB)D

1
2√y1

)
,

ϑ3 = · · · + Cω1,

ϑ4 = · · · + Cω2,

...

(11.22)

Assuming C/= 0, we have a standard filtration Ω∗ where the submodules Ωl ⊂ Ω are generated
by forms ϑr (r ≤ l). Explicit formulae for variations

Z = z
∂

∂t
+ z0 ∂

∂x0
+ z1 ∂

∂x1
+
∑

zr
∂

∂yr
(11.23)

can be obtained analogously as in Example 11.3 (and are omitted here). Functions z and g =
ϑ0(Z) can be arbitrarily chosen. Condition (11.16) ensures Z ∈ � .

Appendix

For the convenience of reader, we survey some results [9, 18, 19] on the modules Adj. Our
reasonings are carried out in the space �n and will be true locally near generic points.

Let Θ be a given module of 1-forms and A(Θ) the module of all vector fields X such
that LfXΘ ⊂ Θ for all functions f , see [9]. Clearly

L[X,Z]Θ = (LXLZ − LZLX)Θ ⊂ Θ (X,Z ∈ A(Θ)) (A.1)
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and it follows that identity

f[X, Y] = [X,Z] +Xf · Y
(
X, Y ∈ A(Θ); Z = fY

)
(A.2)

implies Lf[X,Y]Θ ⊂ Θ whence [A(Θ), A(Θ)] ⊂ A(Θ).
Let Θ be of a finite dimension I. The Frobenius theorem can be applied, and it follows

that module Adj Θ = A(Θ)⊥ (of all forms ϕ satisfying ϕ(A(Θ)) = 0) has a certain basis
df1, . . . ,dfK (K ≥ I).

On the other hand, identity

LfXϑ = fX
⌋
dϑ + d

(
fϑ(X)

)
= fLXϑ + ϑ(X)ϑ (A.3)

implies that X ∈ A(Θ) if and only if

ϑ(X) = 0, X	dϑ ∈ Θ (ϑ ∈ Θ) (A.4)

which is the classical definition, see [2]. In particular Θ ⊂ Adj Θ so we may suppose the
generators

ϑi = dfi + giI+1dfI+1 + · · · + giKdfK ∈ Θ (i = 1, . . . , I) (A.5)

of module Θ. Recall that Xfk = 0 (k = 1, . . . , K; X ∈ A(Θ)) whence

LXϑi = XgiI+1dfI+1 + · · · +XgiKdfK ∈ Θ (A.6)

and this implies XgiI+1 = · · · = XgiK = 0. It follows that

dgiI+1, . . . ,dg
i
K ∈ AdjΘ (i = 1, . . . , I) (A.7)

and therefore all coefficients gi
k

depend only on variables f1, . . . , fK.
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