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The enlargement and rupture of intracranial and abdominal aortic aneurysms constitutes a major
medical problem. It has been suggested that enlargement and rupture are due to mechanical
instabilities of the associated complex fluid-solid interaction in the lesions. In this paper, we
examine a coupled fluid-structure mathematical model for a cylindrical geometry representing
an idealized aneurysm using both analytical and numerical techniques. A stability analysis for
this subclass of aneurysms is presented. It is shown that this subclass of aneurysms is dynamically
stable both with and without a viscoelastic contribution to the arterial wall.

1. Introduction

An arterial aneurysm is a focal dilatation or lesion of the vascular wall. It is thought that
two to five percent of the general population of the Western world harbors ruptured or
unruptured saccular aneurysms. Such aneurysms may remain dormant for years or even
decades. These lesions are more common in women than in men, and they tend to manifest
themselves during the fifth to seventh decades of life. The mean age of rupture is around 52
years old [1].

Rupture of intracranial aneurysms is the leading cause of spontaneous subarachnoid
hemorrhage (SAH), which is fatal in 35–50% of cases. Many of the survivors suffer functional
deficits [1]. There are approximately 27,000 patients per year in the US with reported
ruptured aneurysms, or about 10 in every 100,000 persons per year [2].

The three general types of aneurysms are lateral aneurysms, fusiform aneurysms, and
saccular aneurysms [2]. A saccular aneurysm is a pouch-like sac of blood attached to an artery
or a branch of a blood vessel by a neck or stem. A lateral aneurysm is a bulge on one wall
of the blood vessel while a fusiform aneurysm bulges along all walls of the aneurysm [2].
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Fusiform aneurysms usually occur in the basilar artery and become symptomatic by pressing
on adjacent tissue. Saccular aneurysms usually occur at the apex of a bifurcation in or
near the circle of Willis and often remain asymptomatic until they rupture [1]. Aneurysms
can also be classified by size. Small aneurysms are less than 11 millimeters in diameter,
larger aneurysms are 11–25 millimeters in diameter, and giant aneurysms are greater than
25 millimeters in diameter [2]. Intracranial aneurysms are usually saccular and are often
modeled using spherical geometry [3]. However, abdominal aortic aneurysms are usually
fusiform and should be modeled using nonspherical geometry. This motivated us to consider
cylindrical geometry, which is the focus of this paper.

Much like intracranial aneurysms, abdominal aortic aneurysms are focal dilatations of
the arterial wall. They aremost problematic in the elderly population, and the vast majority of
them are of the fusiform variety [1]. They also tend to be much larger than their intracranial
counterparts. Abdominal aortic aneurysms affect 6–9% of people aged 65 or older in the
industrialized world. The rate of rupture has been estimated as 3–9% per year, with mortality
rates between 65% and 85% [4].

While all aneurysms have the potential to rupture, most intracranial aneurysms show
no symptoms unless they become very large or rupture. Many aneurysms go unnoticed until
they rupture or are detected by brain imaging, possibly obtained for another condition [2].
In a meta-analysis of a number of studies, the overall rupture risks were 1.2% for a followup
within 5 years of detection, 0.6% for a followup 5 to 10 years after detection, and 1.3% for a
followup of 10 years or more after detection [5]. The decision whether to treat the aneurysm
is currently made based primarily on the size of the lesion. If detected before rupture, there
are several treatment options, including clipping the aneurysm to prevent further blood flow
into the lesion and endovascular embolization to fill the aneurysmwith coils or latex balloons
[2]. For abdominal aortic aneurysms, surgery to remove the lesion is also possible. However,
this is a high-risk procedure with a 5% mortality rate [6]. Since these treatment options all
have associated risks, the need for better information about the causes of aneurysmal growth
and rupture to guide treatment decisions is evident.

There are several major hypotheses which have been proposed for why aneurysms
rupture. The presence of limit point instabilities, that is, mathematical bifurcations in the
aneurysm’s quasistatic response to increased distension pressure, was an early hypothesis for
a cause of rupture. However, the studies which suggested such instabilities, such as Austin
et al. [7] and Akkas [8], either used elastomeric membranes or neo-Hookean constitutive
relations, where one should expect such instabilities. Since collagenous soft tissues tend
to exhibit an exponential behavior, rather than a rubber-like response, these results need
to be revisited [9]. Another rupture hypothesis is the possibility of dynamic instabilities,
such as turbulence or resonance within the aneurysm. However, most older studies of
the elastodynamics were based on classical shell theory and are thus linearized models
[9]. Moreover, the geometries considered in the few nonlinear models for aneurysms were
spherical. Analysis of nonlinear elastodynamics in aneurysms along with fluid-structure
coupling was first performed by Shah and Humphrey [10] for a spherical geometry with
homogeneous, isotropic properties. A viscoelastic wall response was considered in a later
paper by David and Humphrey [11], also for a spherical geometry with homogeneous,
isotropic properties.

In this paper, we develop hyperelastic and viscoelastic membrane models which
incorporate fluid-structure interactions for a cylindrical geometry. These models are for
aneurysms with homogeneous, isotropic properties undergoing radial inflation. We also
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perform stability analysis on the governing equations derived for the models. We then
use numerical techniques to further examine and validate the analytical results, as well as
comparing the numerical results with the known results for a pulsating sphere.

2. Model and Governing Equations

Membranes often imply a thin layer of tissue covering a surface or dividing a space. Some
examples include cell membranes and walls covering major organs in the body. In mechanics,
the word membrane refers to a thin flexible structure which offers negligible resistance
to bending. As a result, the in-plane stresses are assumed to be constant throughout the
thickness of the membrane. Themathematical theory and governing equations for membrane
deformations can be derived from the general theory of plates and shells [12, 13].

For simplicity, consider Figure 1. It illustrates cross-sections of a cylindrical blood
vessel consisting of three components, namely, the arterial wall, cerebrospinal fluid (CSF),
and blood flow. Next we will describe the mathematical models for each of these components
and derive a radial inflation model for a cylindrical aneurysm analogous to a spherical
inflation model derived by Shah and Humphrey [10].

Let the stretch ratio of the aneurysmal wall be denoted λ = r/R where r and R are
the deformed and undeformed radii of the aneurysm. Also let h and H be the deformed and
undeformed thicknesses of the aneurysm wall. We consider radial motion of the inner and
outer fluids. Thus, we assume radial velocity is a function of only time t and radial position
r, and axial velocity is constant, that is, u = u(r, t) and w ≡ w0, where u is the radial velocity,
v is the circumferential velocity,w is the axial velocity, and the velocity vector is v = (u, v,w).
In this work, we will also assume the CSF is a viscous, incompressible, Newtonian fluid.

2.1. Model for the CSF

Next, we describe the governing equations, derived from the conservation of mass and
conservation of linear momentum. Assuming a flow in the radial direction ξ in the cylindrical
domain, the conservation of mass leads to the continuity equation ∇ · v = 0, which in
cylindrical coordinates (r, θ, z) is

1
ξ

∂

∂ξ
(ξu) +

1
ξ

∂v

∂θ
+
∂w

∂z
= 0. (2.1)

Assuming that the axial velocity is independent of z and the circumferential velocity
is zero, we then have v = 0 and ∂w/∂z = 0. Equation (2.1) becomes

1
ξ

∂

∂ξ
(ξu) = 0, (2.2)

which yields

u =
g(t)
ξ

, (2.3)
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Figure 1: Membrane cross-sections.

where g(t) is a function only depending on time. Since any particle on the membrane wall
will have the same radial velocity as an adjacent fluid particle in the cerebrospinal fluid, we
match the velocities on the outer boundary of the aneurysm to yield

∂

∂t
(r − R) = R

∂λ

∂t
=

g(t)
r

. (2.4)

Solving for g(t), we have

g(t) = R2λ
∂λ

∂t
. (2.5)

Combining (2.3) and (2.5) gives

u(ξ, t) =
g(t)
ξ

=
R2λ

ξ

∂λ

∂t
. (2.6)

The radial velocity u satisfies the Navier-Stokes radial equation given by

∂u

∂t
+ u

∂u

∂ξ
= − 1

ρf

∂p

∂ξ
+ ν

(
∂2u

∂ξ2
+
1
ξ

∂u

∂ξ
− u

ξ2

)
, (2.7)

where p is the pressure and ρf and ν are the density and the kinematic viscosity, respectively,
of the surrounding fluid. Here the fluid pressure P = P(ξ, t), is a function of ξ and t alone.
Therefore, the only nontrivial Navier-Stokes equation is the radial equation. Using (2.3), one
can compute the derivatives of u to show that the coefficient of ν

∂2u

∂ξ2
+
1
ξ

∂u

∂ξ
− u

ξ2
= 0. (2.8)
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Equation (2.7) then simplifies to

∂u

∂t
+ u

∂u

∂ξ
= − 1

ρf

∂p

∂ξ
. (2.9)

We now substitute (2.6) into (2.9) and integrate both sides with respect to ξ for
ξ ∈ [r,N], which yields an equation for Po, the pressure exerted on the outer surface of the
membrane by the cerebrospinal fluid:

Po − pN = ρf

∫N

r

[
R2

ξ

(
∂λ

∂t

)2

+
R2λ

ξ

∂2λ

∂t2
− R4λ2

ξ3

(
∂λ

∂t

)2
]
dξ

= ρf

(
R2 ln

(
N

r

)(
∂λ

∂t

)2

+ R2λ ln
(
N

r

)
∂2λ

∂t2
+
R4λ2

2N2

(
∂λ

∂t

)2

− R4λ2

2r2

(
∂λ

∂t

)2
)

= ρf

(
R2λ ln

(
N

Rλ

)
∂2λ

∂t2
+

(
R2 ln

(
N

Rλ

)
+
R4λ2

2N2
− R2

2

)(
∂λ

∂t

)2
)
.

(2.10)

Here the pressure pN represents the pressure far enough from the membrane that
u(N, t) � u(r, t) for all t.

Next we use (2.10) for Po to compute the radial stress boundary condition on the outer
wall. We use the well-known constitutive relation for a Newtonian fluid [1]

t = −PI + 2μD, (2.11)

where t is the Cauchy stress tensor that is expressed in terms of the pressure at the outer wall
boundary ro, D = 1/2[∇v + (∇v)T ], the stretching tensor, and μ, the viscosity of the CSF. For
a detailed description of tensors, see [14]. In physical components, (2.11) becomes

tξξ(ro) = −Po + 2μ
∂u

∂ξ
(r, t). (2.12)

Substituting (2.6) in (2.11) yields

tξξ(ro) = −Po − 2μ
R2λ

r2
∂λ

∂t
, (2.13)

so that

tξξ(ro) = −Po −
2μ
λ

∂λ

∂t
. (2.14)
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3. Model for the Blood

To represent the blood pressure on the innerwall Pi(t)we use a (finite) Fourier series expansion,
with mean arterial pressure Pm, and circular frequency ω;

Pi(t) = Pm +
10∑
n=1

[An cos(nωt) + Bn sin(nωt)]. (3.1)

Here An, Bn, Pm, and ω are experimentally determined constants which are well-established
in the literature [15, 16].

4. Model for the Wall

We now use the equation for the motion of a membrane

κ1T1 + κ2T2 + qn = −ρhRλ̈, (4.1)

where

qn = −Pi − tξξ(ro) = tξξ(ri) − tξξ(ro), (4.2)

ρ is the density of the membrane, and Ti are the principal stress resultants for i = 1, 2. Since the
principal curvatures of a cylindrical membrane are κ1 = 0, κ2 = 1/r where r is the radius of
the cylinder, and since h = H/λ2 for an incompressible material [1], we have

ρhRλ̈ = −T
r
− qn = − T

Rλ
− tξξ(ri) + tξξ(ro). (4.3)

Using (2.14) and substituting (4.3) into (4.1) yields the equation of motion for the membrane
model of cylindrical inflation of an aneurysm as

ρHR

λ2
∂2λ

∂t2
= −ρf

[
R2λ ln

(
N

Rλ

)
∂2λ

∂t2
+

(
R2 ln

(
N

Rλ

)
+
R4λ2

2N2
− R2

2

)(
∂λ

∂t

)2
]

− pN + Pi −
2μ
λ

∂λ

∂t
− T(λ)

Rλ
,

(4.4)

which can be rewritten in the form

(
ρHR

λ2
+ ρfR

2λ ln
(

N

Rλ

))
∂2λ

∂t2
+ ρf

[
R2 ln

(
N

Rλ

)
+
R4λ2

2N2
− 1
2
R2

](
∂λ

∂t

)2

+
2μ
λ

(
∂λ

∂t

)
+
T(λ)
Rλ

= Pi − pN.

(4.5)
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4.1. Hyperelasticity

In order to analyze this model, we need to consider a specific constitutive relation for
the membrane. The two-dimensional deformation gradient which maps the undeformed
coordinates (R,Θ) to the deformed coordinates (r, θ) is given by

F =

⎡
⎢⎢⎣

∂r

∂R

1
R

∂r

∂Θ

r
∂θ

∂R

r

R

∂θ

∂Θ

⎤
⎥⎥⎦ =

⎡
⎣λ 0

0 λ

⎤
⎦. (4.6)

Since we employ a membrane approximation, one can postulate the existence of a two-
dimensional strain-energy function w. The constitutive relation for the membrane can be
expressed as [1]

Tαβ =
1
J
FαaFβb

∂w

∂Eab
, α, β, a, b = 1, 2, (4.7)

where T is the two-dimensional Cauchy stress resultant tensor and J = det F. We consider a
Fung-type strain-energy function w of the form [1, 17]

w = c
(
eQ − 1

)
, Q = c1E

2
11 + c2E

2
22 + 2c3E11E22, (4.8)

where c and ci are material parameters and the Green strain is E = 1/2(C − I) with the right
Cauchy-Green Strain given by C = FTF. Substituting Γ ≡ c1 + c3, (4.8), and (4.6) into (4.7)
yields

T(λ) = cΓeQ
(
λ2 − 1

)
, Q =

1
2
Γ
(
λ2 − 1

)2
. (4.9)

Equation (4.5) can be nondimensionalized using the following scales for length (Ls), time
(Ts), and mass (Ms):

Ls = R, Ts =

√
ρR2H

c
, Ms = ρR2H. (4.10)

Using these scales reduces (4.5) to

(
1
x2

+ bx
(
β − lnx

))
ẍ +

(
b
(
β − lnx

)
+
bax2

2
− 1
2
b

)
ẋ2 + 2m

ẋ

x
+
f(x)
x

= F(τ), (4.11)
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where superimposed dots imply differentiation with respect to nondimensionalized time τ
and

x ≡ λ, b ≡ ρfR

ρH
, β ≡ ln

(
N

R

)
m ≡ μ√

ρcH
, (4.12)

f ≡ T

c
, F ≡

(
R

c

)(
Pi − pN

)
, τ ≡ t

√
c√

ρR2H
, a ≡ R2

N2
. (4.13)

4.2. Viscoelasticity

In this sectionwe consider the effects of a short-term viscoelastic wall response on the stability
of the aneurysm. We will describe the mathematical models for these components and derive
a radial inflation model for a cylindrical aneurysm analogous to a viscoelastic spherical
inflation model derived by David and Humphrey [11]. Using the velocity gradient L = ḞF−1,
the 2D stretching tensor

D =
1
2

(
L + LT

)
=

⎡
⎢⎣
1
λ

dλ

dt
0

0
1
λ

dλ

dt

⎤
⎥⎦, (4.14)

and the viscohyperelastic response is given by

T = ht =
1
J
F · ∂w

∂E
· FT + 2μhD = cf(λ) + 2μH

1
λ3

dλ

dt
, (4.15)

where T is the Cauchy stress resultant tensor, t is the Cauchy stress, f is the same as in
the hyperelastic model, μ is the “solid viscosity” of the aneurysm, and h = H/λ2 since
the material is incompressible. This yields the following nondimensionalized governing
equation:

(
1
x2

+ bx
(
β − lnx

))
ẍ +

(
b
(
β − lnx

)
+
bax2

2
− 1
2
b

)
ẋ2 + 2mf

ẋ

x
+
f(x)
x

+ 2md
ẋ

x4
= F(τ),

(4.16)

where μf is the viscosity of the CSF, d = H/A, mf = μf/
√
ρch, m = μ/

√
ρch, and the other

parameters are the same as in the hyperelastic case.



Journal of Applied Mathematics 9

5. Stability Analysis

5.1. Hyperelastic Model

In order to analyze (4.11), we transform it into a system of first-order equations using a
change in variable. Let y0 ≡ x and y1 ≡ dx/dτ . Then the final system of equations becomes

dy0

dτ
= y1,

dy1

dτ
=

F(τ) + 0.5by2
1 − 2m

(
y1/y0

) − f
(
y0

)
/y0 − bβy2

1 + b lny0y
2
1 − bay2

0y
2
1/2

y−2
0 + by0

(
β − ln

(
y0

)) .

(5.1)

We consider an autonomous problem, that is, F(τ) ≡ F0 for some constant F0. Then we have

f(x) = ΓeQ
(
x2 − 1

)
, Q =

1
2
Γ
(
x2 − 1

)2
. (5.2)

The derivative can be computed as

∂f

∂y0

∣∣∣∣
(α,0)

= 2ΓαeQ
[
Γ
(
α2 − 1

)2
+ 1

]
. (5.3)

We now expand the first-order equations in Taylor series around the equilibrium point (α, 0)
to get

ẏ0
(
y0, y1

)
= G(α, 0) +

∂G

∂y0

∣∣∣∣
(α,0)

(
y0 − α

)
+

∂G

∂y1

∣∣∣∣
(α,0)

(
y1 − 0

)
+HOT,

ẏ1
(
y0, y1

)
= H(α, 0) +

∂H

∂y0

∣∣∣∣
(α,0)

(
y0 − α

)
+

∂H

∂y1

∣∣∣∣
(α,0)

(
y1 − 0

)
+HOT,

(5.4)

where G and H represent the functions in the system (5.1) and HOT denotes higher-order
terms, which we will neglect. Since G(α, 0) = H(α, 0) = 0 the final linearized system of
equations can be written as

{
ẏ0

ẏ1

}
=

⎡
⎢⎣

0 1

F0 − ∂f/∂y0|(α,0)
1/α + bα2

(
β − lnα

) −2m
1/α + bα2

(
β − lnα

)
⎤
⎥⎦
{
y0 − α
y1

}
, (5.5)

where F0 is the constant pressure at the equilibrium (α, 0); hence F0 = f(α)/α. We denote the
Jacobian matrix J. Let τr = tr J and let δ = det J. Now τr < 0 if and only if the CSF is viscous
(i.e.,m > 0). Next, we will prove stability results for inviscid and viscous CSF.

Lemma 5.1. Let H = {(x, y) ∈ R
2 : x ≥ 1}. Also, let b > 0 and suppose 1/α + bα2(β − lnα)/= 0.

Then the nondimensionalized system (4.11) and (4.16) are C2(H).
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Proof . Since b > 0, x ≥ 1, and 1/α + bα2(β − lnα)/= 0 for all x ∈ H, the first and second
derivatives of (4.11) exist and are continuous on H.

Lemma 5.2. Suppose m > 0. Then the point (α, 0) is a hyperbolic equilibrium point.

Proof. Since the trace of the linearization τr < 0, and δ /= 0, all of the eigenvalues of the
linearized system (5.5) have nonzero real part.

For the inviscid case we have the following theorem.

Theorem 5.3. Let m = 0 and suppose (α, 0) is the equilibrium point in the region H for the
nondimensionalized system (5.1). Also suppose N ≥ Rα, so that β ≥ lnα. Then for the system
(5.1) one has the following.

(1) If (ΓeQ(2αΓ(α2 − 1)2 + α + α−1))/(1/α + bα2(β − lnα)) > 0, the nonlinear system has a
center at (α, 0).

(2) If (ΓeQ(2αΓ(α2 − 1)2 + α + α−1))/(1/α + bα2(β − lnα)) < 0, the nonlinear system has a
saddle point at (α, 0).

Proof. Since m = 0, τr = 0. Thus the eigenvalues

Λ =
τr ±

√
τ2r − 4δ

2

= ±
√
−δ

= ±

√√√√√−
ΓeQ

(
2αΓ

(
α2 − 1

)2 + α + α−1
)

1/α + bα2
(
β − lnα

) .

(5.6)

(1) Since ΓeQ(2αΓ(α2 − 1)2 + α + α−1)/(1/α + bα2(β − lnα)) > 0, we have δ > 0, and the
linearized system has a pair of purely imaginary complex conjugate eigenvalues and (α, 0) is
a center. Since the nonlinear system is invariant under the transformation (τ, y1) → (−τ,−y1),
it is symmetric with respect to the x-axis. Now, the nonlinear system is C1(H) by Lemma 5.1.
Therefore, the point (α, 0) must also be a center for the nonlinear system.

(2) Since ΓeQ(2αΓ(α2 − 1)2 + α + α−1)/(1/α + bα2(β − lnα)) < 0, we have δ < 0, and
the system has two real eigenvalues of opposite sign. This shows that (α, 0) is a saddle point
for the linearized system. Now, the nonlinear system is C1(H) by Lemma 5.1. Also, (α, 0) is a
hyperbolic equilibrium point since the eigenvalues of its linearization both have nonzero real
part. Therefore, the point (α, 0) must also be a saddle point for the nonlinear system.

Also, for a viscous CSF we have the following theorem.

Theorem 5.4. Let the CSF be viscous, that is, m > 0. Also let Γ > 0 and suppose (α, 0) is the
equilibrium point in the region H for the nondimensionalized system (5.1). Also suppose N ≥ Rα, so
that β ≥ lnα and that 2Γα− (1/α) > 0. Then for the nondimensionalized system (5.1), there are three
possible cases for the stability of the equilibrium point (α, 0).
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(1) If

m2 =
[
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

)][
α−1 + bβα2 − bα2 lnα

]
, (5.7)

then (α, 0) is an asymptotically stable proper node.

(2) If

m2 <

[
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

)][
α−1 + bβα2 − bα2 lnα

]
, (5.8)

then (α, 0) is an asymptotically stable focus.

(3) If

m2 >

[
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

)][
α−1 + bβα2 − bα2 lnα

]
, (5.9)

then (α, 0) is an asymptotically stable node.

Proof. The eigenvalues of the associated linearized system (see (5.5) ) are

Λ =
τr ±

√
τ2r − 4δ

2

=
−2m/A ±

√
(−2m/A)2 − 4

(
ΓeQ

(
2αΓ(α2 − 1)2 + α + α−1

)
/A

)
2

,

(5.10)

where A denotes (α−1 + bβα2 − bα2 lnα). First, note that since m, b > 0, β ≥ lnα, τr is negative
for all three cases.

(1) If

m2 =
[
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

)][
α−1 + bβα2 − bα2 lnα

]
, (5.11)

then the linear system has the repeated real eigenvalue

Λ = − m

α−1 + bβα2 − bα2 lnα
< 0, (5.12)

and the linearized system has an asymptotically stable proper node at (α, 0). Now,
the nonlinear system isC2(H) by Lemma 5.1. Also, (α, 0) is a hyperbolic equilibrium
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point by Lemma 5.2. Therefore the point (α, 0) must be an asymptotically stable
proper node for the nonlinear system.

(2) If

m2 <

[
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

)][
α−1 + bβα2 − bα2 lnα

]
, (5.13)

then the linear system has a pair of complex conjugate eigenvalues with nonzero
real part. Thus (α, 0) is an asymptotically stable focus for the linear system. Now,
the nonlinear system isC2(H) by Lemma 5.1. Also, (α, 0) is a hyperbolic equilibrium
point by Lemma 5.2. Therefore the point (α, 0) must be an asymptotically stable
focus for the nonlinear system.

(3) If

m2 >

[
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

)][
α−1 + bβα2 − bα2 lnα

]
, (5.14)

then the linear system has a pair of real eigenvalues. Since Γ > 0,

m >

√
m2 −

[
ΓeQ

(
2αΓ(α2 − 1)2 + α + α−1

)][
α−1 + bβα2 − bα2 lnα

]
(5.15)

and the eigenvalues are both negative. Thus the linearized system has an
asymptotically stable node at (α, 0). Now, the nonlinear system is C2(H) by
Lemma 5.1. Also, (α, 0) is a hyperbolic equilibrium point by Lemma 5.2. Therefore
the point (α, 0) must be an asymptotically stable node for the nonlinear system.

Theorem 5.5. Suppose the CSF is viscous, that is,m > 0. Also suppose F(τ) < f(x)/x andN ≥ Rα,
so that β ≥ lnα. Then the equilibrium point (α, 0) is asymptotically stable.

Proof. Using a result of Freitas’s [18],

L(x, ẋ) = 2
∫x

0
c(r)B(r)dr + B(x)(ẋ)2, (5.16)

with

B(x) = e2
∫x
0 b(r)dr , (5.17)

is a Lyapunov function for systems of the form

ẍ + [a(x) + b(x)ẋ]ẋ + c(x) = 0, (5.18)

where a, b, c satisfy the conditions
(1) a, b, c : R → R and are continuous,
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(2) a(x) > 0 except possibly at points where c(x) = 0,
(3) xc(x) > 0 outside a bounded interval.
Applying this to the nondimensionalized governing equation (4.11) with

a(x) =
2m/x

1/x2 + bx
(
β − lnx

) ,

b(x) =
b
(
β − lnx

)
+ bax2/2 − (1/2)b

1/x2 + bx
(
β − lnx

) ,

c(x) =
f(x)/x

1/x2 + bx
(
β − lnx

) − F(τ)
1/x2 + bx

(
β − lnx

) ,
(5.19)

yields L(α, 0) = 0 and L̇(x, ẋ) < 0 on an open region around the equilibrium and the result
follows.

Corollary 5.6. Suppose the CSF is viscous, that is, m > 0. Also suppose F(τ) ≡ 0 and β ≥ 0. Then
the equilibrium point (1,0) is asymptotically stable.

Proof. Since f(x)/x > 0 on {(x, y) ∈ R
2 : x > 0 & (x, y)/= (1, 0)}, applying Theorem 5.5 to

the nondimensionalized governing equation (4.11) yields the desired result.

5.2. Viscoelastic Model

For the viscoelastic case, we can also rewrite the governing equation as a system of first-order
ODEs, yielding

dy0

dτ
= y1

dy1

dτ
=

F(τ) + 0.5by2
1 − 2mf

(
y1/y0

) − f
(
y0

)
/y0 − bβy2

1 + b lny0y
2
1

y−2
0 + by0

(
β − ln

(
y0

))

−
(
bay2

0y
2
1/2

)
+ 2md

(
y1/y

4
0

)
y−2
0 + by0

(
β − ln

(
y0

)) .

(5.20)

Linearization of this system of equations yields

{
ẏ0

ẏ1

}
=

⎡
⎢⎢⎣

0 1

F0 − ∂f/∂y0
∣∣
(α,0)

α−1 + bα2
(
β − b lnα

) −2mfα
3 − 2md

α2 + bβα5 − bα5 lnα

⎤
⎥⎥⎦
{
y0 − α
y1

}
. (5.21)

Here the Jacobian matrix J has trace τr = tr J = (−2mfα
3 − 2md)/(α2 + bβα5 − bα5 lnα) and

determinant δ = det J = (−F0 + (∂f/∂y0)|(α,0))/(α−1 + bα2(β − b lnα)).
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Here we must have F0 = f(α)/α at the equilibrium (α, 0) and using f(x) = ΓeQ(x2−1),
we have

δ =
ΓeQ

(
2αΓ

(
α2 − 1

)2 + α + α−1
)

α−1 + bα2
(
β − b lnα

) > 0, (5.22)

and we can analyze the stability of the linearized system.
We now have an immediate analogue of Lemma 5.2.

Lemma 5.7. Supposem > 0 ormf > 0 and β ≥ lnα. Then the point (α, 0) is a hyperbolic equilibrium
point.

Proof. Since the trace of the linearization τr < 0, and δ /= 0, all of the eigenvalues of the
linearized system (5.21) have nonzero real part.

Also, note that the trace τr < 0 if either the CSF or the membrane is viscous. For a
viscous CSF and viscoelastic wall we have the following theorem.

Theorem 5.8. Let the CSF be viscous and the wall be viscoelastic, that is, m,mf > 0. Also let Γ > 0
and suppose (α, 0) is the equilibrium point in the region H for the nondimensionalized system (5.20).
Finally, suppose β ≥ lnα. Then for the nondimensionalized system (5.20), there are three possible
cases for the stability of the equilibrium point (α, 0).

(1) If

m2
fα

6 +m2d2 + 2mfmdα3

=

(
α2 + bβα5 − bα5 lnα

)2
α−1 + bα2

(
β − b lnα

) (
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

))
,

(5.23)

then (α, 0) is an asymptotically stable proper node.

(2) If

m2
fα

6 +m2d2 + 2mfmdα3

<

(
α2 + bβα5 − bα5 lnα

)2
α−1 + bα2

(
β − b lnα

) (
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

))
,

(5.24)

then (α, 0) is an asymptotically stable focus.

(3) If

m2
fα

6 +m2d2 + 2mfmdα3

>

(
α2 + bβα5 − bα5 lnα

)2
α−1 + bα2

(
β − b lnα

) (
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

))
,

(5.25)

then (α, 0) is an asymptotically stable node.
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Proof. The eigenvalues of the associated linearized system (see (5.21)) are

Λ =
τr ±

√
τ2r − 4δ

2

=
−mfα

3 −md

B

±

√((−2mfα3 − 2md
)
/B

)2 − 4
((−F0 + ∂f/∂y0|(α,0)

)
/
(
α−1 + bα2(β − b lnα

)))
2

,

(5.26)

where B denotes (α2 − b(βα5 − α5 lnα)). First, note that since m,mf > 0, τr is negative for all
three cases.

(1) If

m2
fα

6 +m2d2 + 2mfmdα3

=

(
α2 + bβα5 − bα5 lnα

)2
α−1 + bα2

(
β − b lnα

) (
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

))
,

(5.27)

then the linear system has repeated negative real eigenvalues and the linearized
system has an asymptotically stable proper node at (α, 0). Now, the nonlinear
system is C2(H) by Lemma 5.1 and (α, 0) is a hyperbolic equilibrium point by
Lemma 5.7. Therefore the point (α, 0) must also be an asymptotically stable proper
node for the nonlinear system.

(2) If

m2
fα

6 +m2d2 + 2mfmdα3

<

(
α2 + bβα5 − bα5 lnα

)2
α−1 + bα2

(
β − b lnα

) (
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

))
,

(5.28)

then the linear system has a pair of complex conjugate eigenvalues with nonzero
real part. Thus (α, 0) is an asymptotically stable focus for the linear system. Now,
the nonlinear system is C2(H) by Lemma 5.1 and (α, 0) is a hyperbolic equilibrium
point by Lemma 5.7. Therefore the point (α, 0)must also be an asymptotically stable
focus for the nonlinear system.

(3) If

m2
fα

6 +m2d2 + 2mfmdα3

>

(
α2 + bβα5 − bα5 lnα

)2
α−1 + bα2

(
β − b lnα

) (
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

))
,

(5.29)
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(d) Viscoelastic model,N = 105 m

Figure 2: Stretch ratio with varyingN.

then the linear system has a pair of real eigenvalues. Since

Γ > 0, mfα
3 +md

>

√√√√m2
fα

6 +m2d2 + 2mfmdα3 −
(
α2 + bβα5 − bα5 lnα

)2
α−1 + bα2

(
β − b lnα

) (
ΓeQ

(
2αΓ(α2 − 1)2 + α + α−1

))
(5.30)

and the eigenvalues are both negative. Thus the linearized system has an asymptotically
stable node at (α, 0). Now, the nonlinear system is C2(H) by Lemma 5.1 and (α, 0) is a
hyperbolic equilibrium point by Lemma 5.7. Therefore the point (α, 0) must also be an
asymptotically stable node for the nonlinear system.

6. Numerical Findings

Next we solve the systems (5.1) and (5.20) numerically for the following parameter values,
taken from [1, 10] with the newer values for c and Γ taken from [19]: ρ = 1050 kg/m3,
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Figure 3: Phase portraits for inviscid CSF, viscous CSF, and viscoelastic model.

R = 3 × 10−3 m, H = 27.8 × 10−6 m, ρf = 1000 kg/m3, pN = 399.9375 N/m2, c = 10.18N/m,
Γ = 23.6, μf = 1.26 × 10−4 Ns/m2, N = 105m, and the value for the “solid viscosity”
μ = 331.827Ns/m2 The mean blood pressure Pm = 90 mmHg, the Fourier coefficients for the
blood pressure were taken from [11], and all values were nondimensionalized. The systems
(5.1) and (5.20) are solved numerically using initial conditions such that λ = 1 and λ̇ = 0.
We then considered the effects of small perturbations of the initial conditions on the behavior
of the two components of the solution, that is, the stretch ratio λ and the stretch rate λ̇. We
were primarily interested in the behavior of the stretch ratio over time for different parameter
values, but also looked at the behavior of the system in two-dimensional phase space.

Figure 2 demonstrates that greatly increasing the distance N to the outer boundary
of the exterior fluid region leads to a decrease in the rate at which the solution approaches
the equilibrium. This is the case for both the hyperelastic model and the viscoelastic
model. However, the qualitative behavior remains the same, as the solution approaches an
asymptotically stable equilibrium point. As can be seen in Table 1, the eigenvalues of the
linearizations demonstrate that the equilibrium is an asymptotically stable focus in each case.
This provides justification for allowing the value ofN to vary, as long asR � N. The physical
meaning of the parameter N is a distance far from the membrane, at which the pressure due
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Table 1: Eigenvalues for models with varyingN.

N = 10 5 m Eigenvalues
Hyperelastic model −0.000001 ± 0.189731i
Viscoelastic model −0.002453 ± 0.189715i

N = 10 3 m Eigenvalues
Hyperelastic model −0.000001 ± 0.221537i

Viscoelastic model −0.003344 ± 0.221512i
N = 1m Eigenvalues

Hyperelastic model −0.000001 ± 0.351127i
Viscoelastic model −0.008398 ± 0.351026i

N = 0.1m Eigenvalues
Hyperelastic model −0.000002 ± 0.732381i

Viscoelastic model −0.036509 ± 0.731470i

to the surrounding material is much less than the pressures exerted on the membrane by the
blood and the CSF on the membrane boundaries. Note that N was taken to be an infinite
quantity in spherical models, for example, see [3, 10, 11]. This justifies the use of a large value
for N.

For the values of N chosen in the following numerical experiments, the nondimen-
sional parameter a is very small. This causes the nonlinear term involving y2

0y
2
1 to have only

a small effect on the solution. For example, for N = 105 m, as used to generate the solution
plots, we have a = 9 × 10−16, which makes the contribution due to this term nearly negligible.

We considered an initial disturbance at τ = 0 by allowing (y0, y1) to vary between
(1.01,0) and (1.02,0). Using these values, and N = 1m, appropriate phase portraits were
generated to validate the analytical results proved in the previous section. The governing
equations were solved numerically using Runge-Kutta methods available via the X-Windows
Phase Plane (XPP) software package. Figure 3 shows the phase portraits for the inviscid and
viscous cases for the CSF, as well as for the viscoelastic model. Figure 3 was generated using
ω = 2π Hz, as were the other figures unless otherwise indicated.

The numerically generated phase portraits for the inviscid and viscoelastic cases
(Figures 3(a) and 3(d), resp.) appear to show a center and a stable focus, consistent with the
analytical results in the stability analysis section. The figure showing the phase portrait for
the hyperelastic model with viscous CSF (see Figure 3(b)) seems to show a center; however,
this is due to the fact that the real parts of the eigenvalues for this case are approximately
−1 × 10−6, which is very close to zero. Thus the solution converges to the equilibrium very
slowly relative to the other cases. Using the value mf = 10, we were able to generate a phase
portrait (see Figure 3(c)) which better represents the theoretical dynamical behavior of the
hyperelastic model.

We also investigated the behavior for Γ = −10 to try and locate a saddle point for
the inviscid case, as should be expected from the analytical results. The equilibrium point
is now located at y0 ≈ 0.0240839, y1 = 0, which is not physically relevant since y0 < 1.
The eigenvalues of the Jacobian matrix can be computed as Λ1 ≈ −0.255257, Λ2 ≈ 0.255259,
indicating that the linearized system indeed has a saddle at the equilibrium.
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Figure 4: Stretch ratio for inviscid CSF, viscous CSF, and viscoelastic model.

Table 2: Eigenvalues for hyperelastic model with varyingmf .

mf = 372.3979903 Eigenvalue 1 Eigenvalue 2
Theoretical value −.1897424481 −.1897424481
mf = 375 Eigenvalue 1 Eigenvalue 2
Numerical model −0.174348 −0.206469
mf = 373.666 Eigenvalue 1 Eigenvalue 2
Numerical model −0.189063 −0.190400
mf = 373 Eigenvalue 1 Eigenvalue 2
Numerical model −0.189393 + 0.011303i −0.189393 − 0.011303i

Table 2 shows the different possibilities for the eigenvalues of the Jacobian matrix for
the hyperelastic model for various values of mf with N = 105 m. The theoretical value given
is computed from the condition

m2 =
[
ΓeQ

(
2αΓ

(
α2 − 1

)2
+ α + α−1

)][
α−1 + bβα2 − bα2 lnα

]
, (6.1)

which gives the theoretical cutoff point for the equilibrium to be a node instead of a focus.
As demonstrated in the table, the value of mf computed from the numerics beyond which
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Figure 5: Stretch ratio for viscoelastic model with varying m.

the equilibrium becomes a node is close to the theoretical value, lying betweenmf = 373 and
mf = 373.666.

Plots of the stretch ratio λ are shown in Figures 5, 6, and 7 for various values of m, R,
and ω. The actual equilibrium point is at approximately (y0, y1) = (1.0531, 0); however, we
examine stability by considering a perturbed system with initial condition (y0, y1) = (1.05, 0).
Figure 4(a) shows the neutrally stable behavior of the solution for the inviscid case while
Figures 4(b)–4(d) show the decay of the solution to an equilibrium state for the viscous and
viscoelastic cases. This supports the conclusion that the equilibrium is asymptotically stable
if either viscosity is nonzero.

Figure 5 shows the effect of varying the nondimensional parameter m on the stretch
ratio λ. Larger values ofm cause the solution to approach the equilibrium state more rapidly.
The valuem = 4mf was used in [11] to illustrate the effect of a viscoelastic wall on the stability
of the solution. However, the much larger values ofm consistent with the wall viscosity used
in [3] and seen in Figure 4(c) lead to much faster decay to the equilibrium state. This larger
viscosity value is likely more in line with the biological structure of the arterial wall.

The effect of varying the initial radius R in the viscoelastic model is seen in Figure 6.
Larger values of R lead to slower decay to the equilibrium state. The data used in [10] is
for saccular aneurysms, which are represented by a spherical geometry. For a cylindrical
geometry representing a fusiform aneurysm, it may be more appropriate to consider a larger
initial radius. Figures 6(c)-6(d) show the effects of a more realistic aneurysm size.
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Figure 6: Stretch ratio for viscoelastic model with varying radii.

Table 3: Eigenvalues for spherical and cylindrical membrane models.

Cylinder Eigenvalues
Hyperelastic model −0.000001 ± 0.189731i
Viscoelastic model −0.002453 ± 0.189715i
Sphere Eigenvalues
Hyperelastic model −0.000005 ± 0.987053i
Viscoelastic model −0.094307 ± 0.982538i

Figure 7 demonstrates that greatly increasing the circular frequency ω leads to a slight
increase in the rate at which the solution approaches the equilibrium. However, it seems that
the frequency is not a major factor in the rate of decay; changing the viscosities has a much
larger effect.

The hyperelastic and viscoelastic aneurysm models derived in this paper are
analogous to the models derived for a spherical geometry in [10, 11], respectively. The actual
equilibrium point for the spherical case is at approximately (y0, y1) = (1.029, 0); however, we
follow [11] and examine stability by considering a perturbed system with initial condition
(y0, y1) = (1.031, 0). The comparison of these models for the two geometries is in Figure 8.
In both cases, the magnitude of the solution and the size of the oscillations are larger in the
cylindrical case than in the spherical case. The eigenvalues of the linearization for a cylinder
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Figure 7: Stretch ratio with varying ω.

and for a sphere are given in Table 3. The eigenvalues are complex and have negative real
parts for each model, supporting the conclusion that the equilibrium is an asymptotically
stable focus for each case.

7. Discussion and Conclusions

Shah and Humphrey [10]were the first to consider the nonlinear elastic behavior of saccular
aneurysms over finite strains as well as the effects of a viscous CSF on the coupled fluid-
structure nature of such lesions for a spherical geometry. In this paper, we have extended
results from [10, 11] for a spherical geometry to a cylindrical one. This may allow the present
results to be applied to fusiform as well as saccular aneurysms while including the short-term
effects of viscoelasticity. This is especially important in view of the prevalence of fusiform
aneurysms in the abdominal aorta. The simplifications of the present model allowed us to
investigate the elastodynamics of a subclass of aneurysms. However, aneurysms come in
a large variety of shapes and sizes, and the need for more general and realistic models is
evident.

We have also performed stability analysis of the hyperelastic and viscoelastic models
using both numerical experiments and analytical techniques. The present results support
the earlier conclusion [10, 11] that aneurysms are stabilized both by a viscous CSF and by
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Figure 8: Stretch ratio for cylindrical versus spherical geometry.

viscoelasticity in the wall while under the dynamical loads of the cardiac cycle. This seems
to indicate that the pulsatile blood pressure is not a major cause of aneurysm enlargement
and rupture. The numerical results also demonstrate that the oscillations and wall stretch are
of greater magnitude in the cylindrical case than they were for a sphere. This indicates that
a cylindrically shaped (possibly fusiform) aneurysm may expand farther than a spherical
saccular aneurysm with similar material properties. However, both subclasses of aneurysms
are stable under the loads of the cardiac cycle.

Future research could involve extending these results using the full 3D elasticity
theory in place of the membrane approach as was done for a spherical geometry in [3].
The need for better estimation of material parameters is also evident, especially in view of
the differences in size and shape between abdominal aortic and intracranial aneurysms. For
example, the Fourier coefficients for blood pressure used in these models were based on a
study of anesthetized patients, thus, the values lead to a lower blood pressure than would be
expected for a fully conscious subject. There is also the need for consideration of much longer
time scales, as aneurysm growth and rupture usually takes place over a period of years rather
than seconds as considered in this work. The material parameters, blood pressure, and longer
time scales will be considered in a forthcoming paper.
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