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This work is concerned with a system of nonlinear wave equations with nonlinear damping
and source terms acting on both equations. We prove a global nonexistence theorem for certain
solutions with positive initial energy.

1. Introduction

In this paper we study the initial-boundary-value problem

utt − div
(
g
(
|∇u|2

)
∇u
)
+ |ut|m−1ut = f1(u, v), (x, t) ∈ Ω × (0, T),

vtt − div
(
g
(
|∇v|2

)
∇v
)
+ |vt|r−1vt = f2(u, v), (x, t) ∈ Ω × (0, T),

u(x, t) = v(x, t) = 0, x ∈ ∂Ω × (0, T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω,

(1.1)

whereΩ is a bounded domain in R
n with a smooth boundary ∂Ω,m, r ≥ 1, and fi(·, ·) : R

2 →
R (i = 1, 2) are given functions to be specified later. We assume that g is a function which
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satisfies

g ∈ C1, g(s) > 0, g(s) + 2sg ′(s) > 0 (1.2)

for s > 0.
To motivate our work, let us recall some results regarding g ≡ 1. The single-wave

equation of the form

utt −Δu + h(ut) = f(u), x ∈ Ω, t > 0 (1.3)

in Ω × (0,∞) with initial and boundary conditions has been extensively studied, and many
results concerning global existence, blow-up, energy decay have been obtained. In the
absence of the source term, that is, (f = 0), it is well known that the damping term h(ut)
assures global existence and decay of the solution energy for arbitrary initial data (see [1]).
In the absence of the damping term, the source term causes finite time blow-up of solutions
with a large initial data (negative initial energy) (see [2, 3]). The interaction between the
damping term and the source term makes the problem more interesting. This situation was
first considered by Levine [4, 5] in the linear damping case h(ut) = aut and a polynomial
source term of the form f(u) = b|u|p−2u. He showed that solutions with negative initial energy
blow up in finite time. The main tool used in [4, 5] is the “concavity method.” Georgiev and
Todorova in [6] extended Levine’s result to the nonlinear damping case h(ut) = a|ut|m−2ut.
In their work, the authors considered problem (1.3) with f(u) = b|u|p−2u and introduced a
method different from the one known as the concavity method and showed that solutions
with negative energy continue to exist globally in time ifm ≥ p ≥ 2 and blow up in finite time
if p > m ≥ 2 and the initial energy is sufficiently negative. This latter result has been pushed
by Messaoudi [7] to the situation where the initial energy E(0) < 0 and has been improved
by the same author in [8] to accommodate certain solutions with positive initial energy.

In the case of g being a given nonlinear function, the following equation:

utt − g(ux)x − uxxt + δ|ut|m−1 ut = μ|u|p−1u, x ∈ (0, 1), t > 0, (1.4)

with initial and boundary conditions has been extensively studied. Equation of type of (1.4)
is a class of nonlinear evolution governing the motion of a viscoelastic solid composed of
the material of the rate type, see [9–12]. It can also be seen as field equation governing the
longitudinal motion of a viscoelastic bar obeying the nonlinear Voigt model, see [13]. In two-
and three-dimensional cases, they describe antiplane shear motions of viscoelastic solids.
We refer to [14–16] for physical origins and derivation of mathematical models of motions
of viscoelastic media and only recall here that, in applications, the unknown u naturally
represents the displacement of the body relative to a fixed reference configuration. When
δ = μ = 0, there have been many impressive works on the global existence and other
properties of solutions of (1.4), see [9, 10, 17, 18]. Especially, in [19] the authors have proved
the global existence and uniqueness of the generalized and classical solution for the initial
boundary value problem (1.4) when we replace δ|ut|m−1ut and μ|u|p−1u by g(ut) and f(u),
respectively. But about the blow-up of the solution for problem, in this paper there has
not been any discussion. Chen et al. [20] considered problem (1.4) and first established an
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ordinary differential inequality, next given the sufficient conditions of blow-up of the solution
of (1.4) by the inequality. In [21], Hao et al. considered the single-wave equation of the
form

utt − div
(
g
(
|∇u|2

)
∇u
)
+ h(ut) = f(u), x ∈ Ω, t > 0 (1.5)

with initial and Dirichlet boundary condition, where g satisfies condition (1.2) and

g(s) ≥ b1 + b2sq, q ≥ 0. (1.6)

The damping term has the form

h(ut) = d1ut + d2|ut|r−1 ut, r > 1. (1.7)

The source term is

f(u) = a1u + a2|u|p−1u (1.8)

with p ≥ 1 for n = 1, 2 and 1 ≤ n ≤ 2n/(n − 2) for n ≥ 3, a1, a2, b1, b2, d1, d2 are nonnegative
constants, and b1 + b2 > 0. By using the energy compensation method [7, 8, 22], they proved
that under some conditions on the initial value and the growth orders of the nonlinear strain
term, the damping term, and the source term, the solution to problem (1.5) exists globally
and blows up in finite time with negative initial energy, respectively.

Some special cases of system (1.1) arise in quantum field theory which describe the
motion of chargedmesons in an electromagnetic field, see [23, 24]. Recently, some of the ideas
in [6, 22] have been extended to study certain systems of wave equations. Agre and Rammaha
[25] studied the system of (1.1) with g ≡ 1 and proved several results concerning local and
global existence of a weak solution and showed that any weak solution with negative initial
energy blows up in finite time, using the same techniques as in [6]. This latter blow-up result
has been improved by Said-Houari [26] by considering a larger class of initial data for which
the initial energy can take positive values. Recently, Wu et al. [27] considered problem (1.1)
with the nonlinear functions f1(u, v) and f2(u, v) satisfying appropriate conditions. They
proved under some restrictions on the parameters and the initial data several results on
global existence of a weak solution. They also showed that any weak solution with initial
energy E(0) < 0 blows up in finite time.

In this paper, we also consider problem (1.1) and improve the global nonexistence
result obtained in [27], for a large class of initial data in which our initial energy can take
positive values. The main tool of the proof is a technique introduced by Payne and Sattinger
[28] and some estimates used firstly by Vitillaro [29], in order to study a class of a single-wave
equation.
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2. Preliminaries and Main Result

First, let us introduce some notation used throughout this paper. We denote by || · ||q the Lq(Ω)
norm for 1 ≤ q ≤ ∞ and by ||∇ · ||2 the Dirichlet norm in H1

0(Ω) which is equivalent to the
H1(Ω) norm. Moreover, we set

(
ϕ, ψ
)
=
∫

Ω
ϕ(x)ψ(x)dx (2.1)

as the usual L2(Ω) inner product.
Concerning the functions f1(u, v) and f2(u, v), we take

f1(u, v) =
[
a|u + v|2(p+1)(u + v) + b|u|pu|v|(p+2)

]
,

f2(u, v) =
[
a|u + v|2(p+1)(u + v) + b|u|(p+2)|v|pv

]
,

(2.2)

where a, b > 0 are constants and p satisfies

⎧
⎪⎨
⎪⎩

p > −1, if n = 1, 2,

−1 < p ≤ 4 − n
n − 2

, if n ≥ 3.
(2.3)

One can easily verify that

uf1(u, v) + vf2(u, v) = 2
(
p + 2

)
F(u, v), ∀(u, v) ∈ R

2, (2.4)

where

F(u, v) =
1

2
(
p + 2

)
[
a|u + v|2(p+2) + 2b|uv|p+2

]
. (2.5)

We have the following result.

Lemma 2.1 (see [30, Lemma 2.1]). There exist two positive constants c0 and c1 such that

c0

2
(
p + 2

)
(
|u|2(p+2) + |v|2(p+2)

)
≤ F(u, v) ≤ c1

2
(
p + 2

)
(
|u|2(p+2) + |v|2(p+2)

)
. (2.6)

Throughout this paper, we define g by

g(s) = b1 + b2sq, q ≥ 0, b1 + b2 > 0, (2.7)

where b1, b2 are nonnegative constants. Obviously, g satisfies conditions (1.2) and (1.6). Set

G(s) =
∫s
0
g(s)ds, s ≥ 0. (2.8)
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In order to state and prove our result, we introduce the following function space:

Z =
{
(u, v) | u, v ∈ L∞

(
[0, T);W1,2(q+1)

0 (Ω) ∩ L2(p+2)(Ω)
)
,

ut ∈ L∞
(
[0, T);L2(Ω)

)
∩ Lm+1(Ω × (0, T)),

vt ∈ L∞
(
[0, T);L2(Ω)

)
∩ Lr+1(Ω × (0, T)), utt, vtt ∈ L∞

(
[0, T), L2(Ω)

)}
.

(2.9)

Define the energy functional E(t) associated with our system

E(t) =
1
2

(
‖ut(t)‖22 + ‖vt(t)‖22

)
+
1
2

∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx −

∫

Ω
F(u, v)dx. (2.10)

A simple computation gives

dE(t)
dt

= −‖u‖m+1
m+1 − ‖v‖r+1r+1 ≤ 0. (2.11)

Our main result reads as follows.

Theorem 2.2. Assume that (2.3) holds. Assume further that 2(p + 2) > max{2q + 2, m + 1, r + 1}.
Then any solution of (1.1) with initial data satisfying

(∫

Ω

(
G
(
|∇u0|2

)
+G
(
|∇v0|2

))
dx

)1/2

> α1, E(0) < E2, (2.12)

cannot exist for all time, where the constant α1 and E2 are defined in (3.7).

3. Proof of Theorem 2.2

In this section, we deal with the blow-up of solutions of the system (1.1). Before we prove our
main result, we need the following lemmas.

Lemma 3.1. Let Θ(t) be a solution of the ordinary differential inequality

dΘ(t)
dt

≥ CΘ1+ε(t), t > 0, (3.1)

where ε > 0. If Θ(0) > 0, then the solution ceases to exist for t ≥ Θ−ε(0)C−1ε−1.

Lemma 3.2. Assume that (2.3) holds. Then there exists η > 0 such that for any (u, v) ∈ Z, one has

‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2 ≤ η
(∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

)p+2
. (3.2)
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Proof. By using Minkowski’s inequality, we get

‖u + v‖22(p+2) ≤ 2
(
‖u‖22(p+2) + ‖v‖22(p+2)

)
. (3.3)

Also, Hölder’s and Young’s inequalities give us

‖uv‖p+2 ≤ ‖u‖2(p+2)‖v‖2(p+2) ≤
1
2

(
‖u‖22(p+2) + ‖v‖22(p+2)

)
. (3.4)

If b1 > 0, then we have

∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx ≥ c

(
‖∇u‖22 + ‖∇v‖22

)
. (3.5)

If b1 = 0, from b1 + b2 > 0, we have b2 > 0. SinceW1,2(q+1)
0 (Ω) ↪→ H1

0(Ω), we have

‖∇u‖22 + ‖∇v‖22 ≤ c1
(
‖∇u‖22(q+1) + ‖∇v‖22(q+1)

)
, (3.6)

which implies that (3.5) still holds for b1 = 0. Combining (3.3), (3.4) with (3.5) and the
embeddingH1

0(Ω) ↪→ L2(p+2)(Ω), we have (3.2).

In order to prove our result and for the sake of simplicity, we take a = b = 1 and
introduce the following:

B = η1/(2(p+2)), α1 = B−(p+2/(p+1)), E1 =

(
1
2
− 1
2
(
p + 2

)
)
α21,

E2 =

(
1

2
(
q + 1

) − 1
2
(
p + 2

)
)
α21,

(3.7)

where η is the optimal constant in (3.2). The following lemma will play an essential role in
the proof of our main result, and it is similar to a lemma used first by Vitillaro [29].

Lemma 3.3. Assume that (2.3) holds. Let (u, v) ∈ Z be the solution of the system (1.1). Assume
further that E(0) < E1 and

(∫

Ω

(
G
(
|∇u0|2

)
+G
(
|∇v0|2

))
dx

)1/2

> α1. (3.8)

Then there exists a constant α2 > α1 such that

(∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

)1/2

≥ α2, for t > 0, (3.9)

(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)1/(2(p+2)) ≥ Bα2, for t > 0. (3.10)



Abstract and Applied Analysis 7

Proof. We first note that, by (2.10), (3.2), and the definition of B, we have

E(t) ≥ 1
2

∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx − 1

2
(
p + 2

)
(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)

≥ 1
2

∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx − B2(p+2)

2
(
p + 2

)
(∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

)p+2

=
1
2
α2 − B2(p+2)

2
(
p + 2

)α2(p+2),
(3.11)

where α = (
∫
Ω(G(|∇u|2) + G(|∇v|2))dx)1/2. It is not hard to verify that g is increasing for

0 < α < α1, decreasing for α > α1, g(α) → −∞ as α → +∞, and

g(α1) =
1
2
α21 −

B2(p+2)

2
(
p + 2

)α2(p+2)1 = E1, (3.12)

where α1 is given in (3.7). Since E(0) < E1, there exists α2 > α1 such that g(α2) = E(0).
Set α0 = (

∫
Ω(G(|∇u0|2) +G(|∇v0|2))dx)1/2. Then by (3.11)we get g(α0) ≤ E(0) = g(α2),

which implies that α0 ≥ α2. Now, to establish (3.9), we suppose by contradiction that

(∫

Ω

(
G
(
|∇u(t0)|2

)
+G
(
|∇v(t0)|2

))
dx

)1/2

< α2, (3.13)

for some t0 > 0. By the continuity of
∫
Ω(G(|∇u|2) +G(|∇v|2))dx, we can choose t0 such that

(∫

Ω

(
G
(
|∇u(t0)|2

)
+G
(
|∇v(t0)|2

))
dx

)1/2

> α1. (3.14)

Again, the use of (3.11) leads to

E(t0) ≥ g
((∫

Ω

(
G
(
|∇u(t0)|2

)
+G
(
|∇v(t0)|2

))
dx

)1/2
)
> g(α2) = E(0). (3.15)

This is impossible since E(t) ≤ E(0) for all t ∈ [0, T). Hence (3.9) is established.
To prove (3.10), we make use of (2.10) to get

1
2

∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx ≤ E(0) + 1

2
(
p + 2

)
(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)
. (3.16)
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Consequently, (3.9) yields

1
2
(
p + 2

)
(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)
≥ 1

2

∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx − E(0)

≥ 1
2
α22 − E(0) ≥

1
2
α22 − g(α2) =

B2(p+2)

2
(
p + 2

)α2(p+2)2 .

(3.17)

Therefore, (3.17) and (3.7) yield the desired result.

Proof of Theorem 2.2. We suppose that the solution exists for all time and we reach to a contra-
diction. Set

H(t) = E2 − E(t). (3.18)

By using (2.10) and (3.18), we have

0 < H(0) ≤ H(t) = E2 − 1
2

(
‖ut(t)‖22 + ‖vt(t)‖22

)
− 1
2

∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

+
1

2
(
p + 2

)
(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)
.

(3.19)

From (3.9), we have

E2 − 1
2

(
‖ut(t)‖22 + ‖vt(t)‖22

)
− 1
2

∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

≤ E2 − 1
2
α21 ≤ E1 − 1

2
α21 = − 1

2
(
p + 2

)α21 < 0, ∀t ≥ 0.
(3.20)

Hence, by the above inequality and (2.6), we have

0 < H(0) ≤ H(t) ≤ 1
2
(
p + 2

)
(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)
, (3.21)

≤ c1

2
(
p + 2

)
(
‖u‖2(p+2)2(p+2) + ‖v‖2(p+2)2(p+2)

)
. (3.22)

We then define

Θ(t) = H1−δ(t) + ε
∫

Ω
(uut + vvt)dx, (3.23)

where ε small enough is to be chosen later and

0 < δ ≤ min

{
p + 1

2
(
p + 2

) , 2
(
p + 2

) − (m + 1)

2m
(
p + 2

) ,
2
(
p + 2

) − (r + 1)

2r
(
p + 2

)
}
. (3.24)



Abstract and Applied Analysis 9

Our goal is to show that Θ(t) satisfies the differential inequality (3.1) which leads to a blow-
up in finite time. By taking a derivative of (3.23), we get

Θ′(t) = (1 − δ)H−δ(t)H ′(t) + ε
(
‖ut‖22 + ‖vt‖22

)
− ε
∫

Ω

(
g
(
|∇u|2

)
|∇u|2 + g

(
|∇v|2

)
|∇v|2

)
dx

− ε
∫

Ω

(
|ut|m−1utu + |vt|r−1vtv

)
dx + ε

∫

Ω

(
uf1(u, v) + vf2(u, v)

)
dx

= (1 − δ)H−δ(t)H ′(t) + ε
(
‖ut‖22 + ‖vt‖22

)
− b1ε

(
‖∇u‖22 + ‖∇v‖22

)
− εb2‖∇u‖2(q+2)2(q+2)

− εb2‖∇v‖2(q+2)2(q+2) − ε
∫

Ω

(
|ut|m−1utu + |vt|r−1vtv

)
dx + ε

(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)
.

(3.25)

From the definition ofH(t), it follows that

−b2‖∇u‖2(q+2)2(q+2) − b2‖∇v‖
2(q+2)
2(q+2) = 2

(
q + 1

)
H(t) − 2

(
q + 1

)
E2 +

(
q + 1

)(‖ut‖22 + ‖vt‖22
)

+
(
q + 1

)
b1
(
‖∇u‖22 + ‖∇v‖22

)
− 2
(
q + 1

) ∫

Ω
F(u, v)dx,

(3.26)

which together with (3.25) gives

Θ′(t) = (1 − δ)H−δ(t)H ′(t) + ε
(
q + 2

)(‖ut‖22 + ‖vt‖22
)
+ b1qε

(
‖∇u‖22 + ‖∇v‖22

)

− ε
∫

Ω

(
|ut|m−1utu + |vt|r−1vtv

)
dx + ε

(
1 − q + 1

p + 2

)(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)

+ 2
(
q + 1

)
H(t) − 2

(
q + 1

)
E2.

(3.27)

Then, using (3.10), we obtain

Θ′(t) ≥ (1 − δ)H−δ(t)H ′(t) + ε
(
q + 2

)(‖ut‖22 + ‖vt‖22
)
+ b1qε

(
‖∇u‖22 + ‖∇v‖22

)
+ 2
(
q + 1

)
H(t)

+ εc
(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)
− ε
∫

Ω

(
|ut|m−1utu + |vt|r−1vtv

)
dx,

(3.28)

where c = 1−(q+1)/(p+2)−2(q+1)E2(Bα2)
−2(p+2). It is clear that c > 0, since α2 > B−(p+2)/(p+1).

We now exploit Young’s inequality to estimate the last two terms on the right side of (3.28)

∣∣∣∣
∫

Ω
|ut|m−1utudx

∣∣∣∣ ≤
ηm+1
1

m + 1
‖u‖m+1

m+1 +
mη

−((m+1)/m)
1

m + 1
‖ut‖m+1

m+1,

∣∣∣∣
∫

Ω
|vt|r−1vtvdx

∣∣∣∣ ≤
ηr+12

r + 1
‖v‖r+1r+1 +

rη
−((r+1)/r)
2

r + 1
‖vt‖r+1r+1,

(3.29)
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where η1, η2 are parameters depending on the time t and specified later. Inserting the last two
estimates into (3.28), we have

Θ′(t) ≥ (1 − δ)H−δ(t)H ′(t) + ε
(
q + 2

)(‖ut‖22 + ‖vt‖22
)
+ b1qε

(
‖∇u‖22 + ‖∇v‖22

)
+ 2
(
q + 1

)
H(t)

+ εc
(
‖u + v‖2(p+2)2(p+2) + 2‖uv‖p+2p+2

)
− ε η

m+1
1

m + 1
‖u‖m+1

m+1 − ε
mη

−((m+1)/m)
1

m + 1
‖ut‖m+1

m+1

− ε η
r+1
2

r + 1
‖v‖r+1r+1 − ε

rη
−((r+1)/r)
2

r + 1
‖vt‖r+1r+1.

(3.30)

By choosing η1 and η2 such that

η
−(m+1)/m
1 =M1H

−δ(t), η
−(r+1)/r
2 =M2H

−δ(t), (3.31)

whereM1 andM2 are constants to be fixed later. Thus, by using (2.6) and (3.31), inequality
(3.31) then takes the form

Θ′(t) ≥ ((1 − δ) −Mε)H−δ(t)H ′(t) + ε
(
q + 2

)(‖ut‖22 + ‖vt‖22
)
+ b1qε

(
‖∇u‖22 + ‖∇v‖22

)

+ 2
(
q + 1

)
H(t) + εc2

(
‖u‖2(p+2)2(p+2) + 2‖v‖2(p+2)2(p+2)

)
− εM−m

1 Hδm(t)‖u‖m+1
m+1

− εM−r
2 H

δr(t)‖v‖r+1r+1,

(3.32)

whereM = m/(m + 1)M1 + r/(r + 1)M2 and c2 is a positive constant.
Since 2(p + 2) > max{m + 1, r + 1}, taking into account (2.6) and (3.21), then we have

Hδm(t)‖u‖m+1
m+1 ≤ c3

(
‖u‖2δm(p+2)+(m+1)

2(p+2) + ‖v‖2δm(p+2)
2(p+2) ‖u‖m+1

m+1

)
,

Hδr(t)‖v‖r+1r+1 ≤ c4
(
‖v‖2δr(p+2)+(r+1)2(p+2) + ‖u‖2δr(p+2)2(p+2) ‖v‖r+1r+1

)
,

(3.33)

for some positive constants c3 and c4. By using (3.24) and the algebraic inequality

zν ≤ z + 1 ≤
(
1 +

1
a

)
(z + a), ∀z ≥ 0, 0 < ν ≤ 1, a ≥ 0, (3.34)

we have

‖u‖2δm(p+2)+(m+1)
2(p+2) ≤ d

(
‖u‖2(p+2)2(p+2) +H(0)

)
≤ d
(
‖u‖2(p+2)2(p+2) +H(t)

)
, ∀t ≥ 0, (3.35)
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where d = 1 + 1/H(0). Similarly,

‖v‖2δr(p+2)+(r+1)2(p+2) ≤ d
(
‖v‖2(p+2)2(p+2) +H(t)

)
, ∀t ≥ 0. (3.36)

Also, since

(X + Y )s ≤ C(Xs + Ys), X, Y ≥ 0, s > 0, (3.37)

by using (3.24) and (3.34), we conclude that

‖v‖2δm(p+2)
2(p+2) ‖u‖m+1

m+1 ≤ C
(
‖v‖2(p+2)2(p+2) + ‖u‖2(p+2)(m+1)

)
≤ C
(
‖v‖2(p+2)2(p+2) + ‖u‖2(p+2)2(p+2)

)
,

‖u‖2δr(p+2)2(p+2) ‖v‖r+1r+1 ≤ C
(
‖u‖2(p+2)2(p+2) + ‖v‖2(p+2)(r+1)

)
≤ C
(
‖u‖2(p+2)2(p+2) + ‖v‖2(p+2)2(p+2)

)
,

(3.38)

where C is a generic positive constant. Taking into account (3.33)–(3.38), estimate (3.32) takes
the form

Θ′(t) ≥ ((1 − δ) −Mε)H−δ(t)H ′(t) + ε
(
q + 2

)(‖ut‖22 + ‖vt‖22
)

+ ε
(
2
(
q + 1

) − C1M
−m
1 − C1M

−r
2

)
H(t)

+ ε
(
c2 − C2M

−m
1 − C2M

−r
2

)(‖u‖2(p+2)2(p+2) + ‖v‖2(p+2)2(p+2)

)
,

(3.39)

where C1 = max{c3d + C, c4d + C}, C2 = max{c3d, c4d}. At this point, and for large values of
M1 andM2, we can find positive constants κ1 and κ2 such that (3.39) becomes

Θ′(t) ≥ ((1 − δ) −Mε)H−δ(t)H ′(t) + ε
(
q + 2

)(‖ut‖22 + ‖vt‖22
)

+ εκ1H(t) + εκ2
(
‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

)
.

(3.40)

OnceM1 andM2 are fixed, we pick ε small enough so that (1 − δ) −Mε ≥ 0 and

Θ(0) = H1−δ(0) + ε
∫

Ω
(u0u1 + v0v1)dx > 0. (3.41)

SinceH ′(t) ≥ 0, there exists Λ > 0 such that (3.40) becomes

Θ′(t) ≥ εΛ
(
H(t) + ‖ut‖22 + ‖vt‖22 + ‖u‖2(p+2)2(p+2) + ‖v‖2(p+2)2(p+2)

)
. (3.42)

Then, we have

Θ(t) ≥ Θ(0), ∀t ≥ 0. (3.43)
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Next, we have by Hölder’s and Young’s inequalities

(∫

Ω
uutdx +

∫

Ω
vvtdx

)1/(1−δ)
≤ C
(
‖u‖τ/(1−δ)

2(p+2) + ‖ut‖s/(1−δ)2 + ‖v‖τ/(1−δ)
2(p+2) + ‖vt‖s/(1−δ)2

)
,

(3.44)

for 1/τ + 1/s = 1. We take s = 2(1 − δ), to get τ/(1 − δ) = 2/(1 − 2δ). Here and in the sequel,
C denotes a positive constant which may change from line to line. By using (3.24) and (3.34),
we have

‖u‖2/(1−2δ)2(p+2) ≤ d
(
‖u‖2(p+2)

2(p+2) +H(t)
)
, ‖v‖2/(1−2δ)2(p+2) ≤ d

(
‖v‖2(p+2)2(p+2) +H(t)

)
, ∀t ≥ 0. (3.45)

Therefore, (3.44) becomes

(∫

Ω
uutdx +

∫

Ω
vvtdx

)1/(1−δ)
≤ C
(
‖u‖2(p+2)2(p+2) + ‖v‖2(p+2)2(p+2) + ‖ut‖22 + ‖vt‖22

)
. (3.46)

Note that

Θ1/(1−δ)(t) =
(
H1−δ(t) + ε

∫

Ω
(uut + vvt)dx

)1/(1−δ)

≤ C
(
H(t) +

∣∣∣∣
∫

Ω
uutdx +

∫

Ω
vvtdx

∣∣∣∣
1/(1−δ))

≤ C
(
H(t) + ‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2) + ‖ut‖22 + ‖vt‖22

)
.

(3.47)

Combining (3.42) with (3.47), we have

Θ(t) ≥ CΘ1/(1−δ)(t), ∀t ≥ 0. (3.48)

A simple application of Lemma 3.1 gives the desired result.
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