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We develop the Weyl-Titchmarsh theory for time scale symplectic systems. We introduce the
M(λ)-function, study its properties, construct the corresponding Weyl disk and Weyl circle, and
establish their geometric structure including the formulas for their center and matrix radii. Similar
properties are then derived for the limiting Weyl disk. We discuss the notions of the system being
in the limit point or limit circle case and prove several characterizations of the system in the
limit point case and one condition for the limit circle case. We also define the Green function
for the associated nonhomogeneous system and use its properties for deriving further results
for the original system in the limit point or limit circle case. Our work directly generalizes the
corresponding discrete time theory obtained recently by S. Clark and P. Zemánek (2010). It also
unifies the results in many other papers on the Weyl-Titchmarsh theory for linear Hamiltonian
differential, difference, and dynamic systems when the spectral parameter appears in the second
equation. Some of our results are new even in the case of the second-order Sturm-Liouville
equations on time scales.

1. Introduction

In this paper we develop systematically theWeyl-Titchmarsh theory for time scale symplectic
systems. Such systems unify and extend the classical linear Hamiltonian differential systems
and discrete symplectic and Hamiltonian systems, including the Sturm-Liouville differential
and difference equations of arbitrary even order. As the research in the Weyl-Titchmarsh
theory has been very active in the last years, we contribute to this development by presenting
a theory which directly generalizes and unifies the results in several recent papers, such as
[1–4] and partly in [5–14].
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Historically, the theory nowadays called byWeyl and Titchmarsh started in [15] by the
investigation of the second-order linear differential equation

(
r(t)z′(t)

)
+ q(t)z(t) = λz(t), t ∈ [0,∞), (1.1)

where r, q : [0,∞) → � are continuous, r(t) > 0, and λ ∈ � , is a spectral parameter. By using
a geometrical approach it was showed that (1.1) can be divided into two classes called the
limit circle and limit point meaning that either all solutions of (1.1) are square integrable for
all λ ∈ � \ � or there is a unique (up to a multiplicative constant) square-integrable solution
of (1.1) on [0,∞). Analytic methods for the investigation of (1.1) have been introduced in
a series of papers starting with [16]; see also [17]. We refer to [18–20] for an overview of
the original contributions to the Weyl-Titchmarsh theory for (1.1); see also [21]. Extensions
of the Weyl-Titchmarsh theory to more general equations, namely, to the linear Hamiltonian
differential systems

z′(t) = [λA(t) + B(t)]z(t), t ∈ [0,∞), (1.2)

was initiated in [22] and developed further in [6, 8, 10, 11, 23–38].
According to [19], the first paper dealing with the parallel discrete time Weyl theory

for second-order difference equations appears to be the work mentioned in [39]. Since then a
long time elapsed until the theory of difference equations attractedmore attention. The Weyl-
Titchmarsh theory for the second-order Sturm-Liouville difference equations was developed
in [22, 40, 41]; see also the references in [19]. For higher-order Sturm-Liouville difference
equations and linear Hamiltonian difference systems, such as

Δxk = Akxk+1 +
(
Bk + λW

[2]
k

)
uk, Δuk =

(
Ck − λW

[1]
k

)
xk+1 −A∗

kuk, k ∈ [0,∞)
�
, (1.3)

where Ak, Bk, Ck, W
[1]
k , W [2]

k are complex n × n matrices such that Bk and Ck are Hermitian

and W
[1]
k

and W
[2]
k

are Hermitian and nonnegative definite, the Weyl-Titchmarsh theory was
studied in [9, 14, 42]. Recently, the results for linear Hamiltonian difference systems were
generalized in [1, 2] to discrete symplectic systems

xk+1 = Akxk + Bkuk, uk+1 = Ckxk +Dkuk + λWkxk+1, k ∈ [0,∞)
�
, (1.4)

where Ak, Bk, Ck, Dk, Wk are complex n × n matrices such that Wk is Hermitian and
nonnegative definite and the 2n × 2n transition matrix in (1.4) is symplectic, that is,

Sk :=

(
Ak Bk

Ck Dk

)

, S∗
kJSk = J, J :=

(
0 I

−I 0

)

. (1.5)

In the unifying theory for differential and difference equations—the theory of time
scales—the classification of second-order Sturm-Liouville dynamic equations

yΔΔ(t) + q(t)yσ(t) = λyσ(t), t ∈ [a,∞)�, (1.6)
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to be of the limit point or limit circle type is given in [4, 43]. These two papers seem to
be the only ones on time scales which are devoted to the Weyl-Titchmarsh theory for the
second order dynamic equations. Another way of generalizing the Weyl-Titchmarsh theory
for continuous and discrete Hamiltonian systems was presented in [3, 5]. In these references
the authors consider the linear Hamiltonian system

xΔ(t) = A(t)xσ(t) + [B(t) + λW2(t)]u(t),

uΔ(t) = [C(t) − λW1(t)]xσ(t) −A∗(t)u(t), t ∈ [a,∞)
�
,

(1.7)

on the so-called Sturmian or general time scales, respectively. Here fΔ(t) is the time scale
Δ-derivative and fσ(t) := f(σ(t)), where σ(t) is the forward jump at t; see the time scale
notation in Section 2.

In the present paper we develop the Weyl-Titchmarsh theory for more general linear
dynamic systems, namely, the time scale symplectic systems

xΔ(t) = A(t)x(t) + B(t)u(t),

uΔ(t) = C(t)x(t) +D(t)u(t) − λW(t)xσ(t), t ∈ [a,∞)
�
,

(Sλ)

where A, B, C, D, W are complex n × n matrix functions on [a,∞)
�
, W(t) is Hermitian and

nonnegative definite, λ ∈ � , and the 2n × 2n coefficient matrix in system (Sλ) satisfies

S(t) :=
(
A(t) B(t)

C(t) D(t)

)

, S∗(t)J +JS(t) + μ(t)S∗(t)JS(t) = 0, t ∈ [a,∞)
�
, (1.8)

where μ(t) := σ(t)− t is the graininess of the time scale. The spectral parameter λ is only in the
second equation of system (Sλ). This system was introduced in [44], and it naturally unifies
the previously mentioned continuous, discrete, and time scale linear Hamiltonian systems
(having the spectral parameter in the second equation only) and discrete symplectic systems
into one framework. Our main results are the properties of the M(λ) function, the geometric
description of theWeyl disks, and characterizations of the limit point and limit circle cases for
the time scale symplectic system (Sλ). In addition, we give a formula for the L2

W solutions of
a nonhomogeneous time scale symplectic system in terms of its Green function. These results
generalize and unify in particular all the results in [1–4] and some results from [5–14]. The
theory of time scale symplectic systems or Hamiltonian systems is a topic with active research
in recent years; see, for example, [44–51]. This paper can be regarded not only as a completion
of these papers by establishing the Weyl-Titchmarsh theory for time scale symplectic systems
but also as a comparison of the corresponding continuous and discrete time results. The
references to particular statements in the literature are displayed throughout the text. Many
results of this paper are new even for (1.6), being a special case of system (Sλ). An overview
of these new results for (1.6) will be presented in our subsequent work.

This paper is organized as follows. In the next section we recall some basic notions
from the theory of time scales and linear algebra. In Section 3 we present fundamental
properties of time scale symplectic systems with complex coefficients, including the
important Lagrange identity (Theorem 3.5) and other formulas involving their solutions.
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In Section 4 we define the time scale M(λ)-function for system (Sλ) and establish its basic
properties in the case of the regular spectral problem. In Section 5 we introduce the Weyl
disks and circles for system (Sλ) and describe their geometric structure in terms of contractive
matrices in � n×n . The properties of the limiting Weyl disk andWeyl circle are then studied in
Section 6, where we also prove that system (Sλ) has at least n linearly independent solutions
in the space L2

W (see Theorem 6.7). In Section 7 we define the system (Sλ) to be in the limit
point and limit circle case and prove several characterizations of these properties. In the final
section we consider the system (Sλ) with a nonhomogeneous term. We construct its Green
function, discuss its properties, and characterize the L2

W solutions of this nonhomogeneous
system in terms of the Green function (Theorem 8.5). A certain uniqueness result is also
proven for the limit point case.

2. Time Scales

Following [52, 53], a time scale � is any nonempty and closed subset of � . A bounded time
scale can be therefore identified as [a, b]

�
:= [a, b] ∩ � which we call the time scale interval,

where a := min� and b := max�. Similarly, a time scale which is unbounded above has
the form [a,∞)� := [a,∞) ∩ �. The forward and backward jump operators on a time scale
are denoted by σ(t) and ρ(t) and the graininess function by μ(t) := σ(t) − t. If not otherwise
stated, all functions in this paper are considered to be complex valued. A function f on [a, b]

�

is called piecewise rd-continuous; we write f ∈ Cprd on [a, b]
�
if the right-hand limit f(t+) exists

finite at all right-dense points t ∈ [a, b)
�
, and the left-hand limit f(t−) exists finite at all left-

dense points t ∈ (a, b]� and f is continuous in the topology of the given time scale at all
but possibly finitely many right-dense points t ∈ [a, b)

�
. A function f on [a,∞)

�
is piecewise

rd-continuous; we write f ∈ Cprd on [a,∞)
�
if f ∈ Cprd on [a, b]

�
for every b ∈ (a,∞)

�
. An

n × nmatrix-valued function f is called regressive on a given time scale interval if I + μ(t)f(t)
is invertible for all t in this interval.

The time scale Δ-derivative of a function f at a point t is denoted by fΔ(t); see [52,
Definition 1.10]. Whenever fΔ(t) exists, the formula fσ(t) = f(t) + μ(t)fΔ(t) holds true. The
product rule for the Δ-differentiation of the product of two functions has the form

(
fg
)Δ(t) = fΔ(t)g(t) + fσ(t)gΔ(t) = fΔ(t)gσ(t) + f(t)gΔ(t). (2.1)

A function f on [a, b]
�
is called piecewise rd-continuously Δ-differentiable; we write f ∈ C1

prd

on [a, b]
�
; if it is continuous on [a, b]

�
, then fΔ(t) exists at all except for possibly finitely

many points t ∈ [a, ρ(b)]
�
, and fΔ ∈ Cprd on [a, ρ(b)]

�
. As a consequence we have that the

finitely many points ti at which fΔ(ti) does not exist belong to (a, b)� and these points ti are
necessarily right-dense and left-dense at the same time. Also, since at those points we know
that fΔ(t+i ) and fΔ(t−i ) exist finite, we replace the quantity fΔ(ti) by fΔ(t±i ) in any formula
involving fΔ(t) for all t ∈ [a, ρ(b)]

�
. Similarly as above we define f ∈ C1

prd on [a,∞)
�
. The

time scale integral of a piecewise rd-continuous function f over [a, b]
�
is denoted by

∫b
a
f(t)Δt

and over [a,∞)
�
by
∫∞
a f(t)Δt provided this integral is convergent in the usual sense; see [52,

Definitions 1.71 and 1.82].
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Remark 2.1. As it is known in [52, Theorem 5.8] and discussed in [54, Remark 3.8], for a fixed
t0 ∈ [a, b]

�
and a piecewise rd-continuous n × n matrix function A(·) on [a, b]

�
which is

regressive on [a, t0)�, the initial value problem yΔ(t) = A(t)y(t) for t ∈ [a, ρ(b)]
�
with y(t0) =

y0 has a unique solution y(·) ∈ C1
prd on [a, b]� for any y0 ∈ � n . Similarly, this result holds on

[a,∞)
�
.

Let us recall some matrix notations from linear algebra used in this paper. Given
a complex square matrix M, by M∗, M > 0, M ≥ 0, M < 0, M ≤ 0, rankM, KerM,
defM, we denote, respectively, the conjugate transpose, positive definiteness, positive
semidefiniteness, negative definiteness, negative semidefiniteness, rank, kernel, and the
defect (i.e., the dimension of the kernel) of the matrix M. Moreover, we will use the notation
Im(M) := (M − M∗)/(2i) and Re(M) := (M + M∗)/2 for the Hermitian components of
the matrix M; see [55, pages 268-269] or [56, Fact 3.5.24]. This notation will be also used
with λ ∈ � , and in this case Im(λ) and Re(λ) represent the imaginary and real parts of
λ.

Remark 2.2. If the matrix Im(M) is positive or negative definite, then the matrix M is
necessarily invertible. The proof of this fact can be found, for example, in [2, Remark 2.6].

In order to simplify the notation we abbreviate [fσ(t)]∗ and [f∗(t)]σ by fσ∗(t).
Similarly, instead of [fΔ(t)]∗ and [f∗(t)]Δ we will use fΔ∗(t).

3. Time Scale Symplectic Systems

LetA(·), B(·), C(·),D(·),W(·) be n×n piecewise rd-continuous functions on [a,∞)
�
such that

W(t) ≥ 0 for all t ∈ [a,∞)
�
; that is, W(t) is Hermitian and nonnegative definite, satisfying

identity (1.8). In this paper we consider the linear system (Sλ) introduced in the previous
section. This system can be written as

zΔ(t, λ) = S(t)z(t, λ) + λJW̃(t)zσ(t, λ), t ∈ [a,∞)
�
, (Sλ)

where the 2n × 2nmatrix W̃(t) is defined and has the property

W̃(t) :=

(
W(t) 0

0 0

)

, JW̃(t) =

(
0 0

−W(t) 0

)

. (3.1)

The system (Sλ) can be written in the equivalent form

zΔ(t, λ) = S(t, λ)z(t, λ), t ∈ [a,∞)�, (3.2)
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where the matrix S(t, λ) is defined through the matrices S(t) and W̃(t) from (1.8) and (3.1)
by

S(t, λ) := S(t) + λJW̃(t)
[
I + μ(t)S(t)

]

=

(
A(t) B(t)

C(t) − λW(t)
[
I + μ(t)A(t)

]
D(t) − λμ(t)W(t)B(t)

)

.

(3.3)

By using the identity in (1.8), a direct calculation shows that the matrix function S(·, ·)
satisfies

S∗(t, λ)J +JS
(
t, λ
)
+ μ(t)S∗(t, λ)JS

(
t, λ
)
= 0, t ∈ [a,∞)

�
, λ ∈ � . (3.4)

Here S∗(t, λ) = [S(t, λ)]∗, and λ is the usual conjugate number to λ.

Remark 3.1. The name time scale symplectic system or Hamiltonian system has been reserved in
the literature for the system of the form

zΔ(t) = �(t)z(t), t ∈ [a,∞)�, (3.5)

in which the matrix function �(·) satisfies the identity in (1.8); see [44–47, 57], and compare
also, for example, with [58–61]. Since for a fixed λ, ν ∈ � the matrix S(t, λ) from (3.3) satisfies

S∗(t, λ)J + JS(t, ν) + μ(t)S∗(t, λ)JS(t, ν) =
(
λ − ν

)[
I + μ(t)S∗(t)

]
W̃(t)

[
I + μ(t)S(t)

]
,

(3.6)

it follows that the system (Sλ) is a true time scale symplectic system according to the above
terminology only for λ ∈ � , while strictly speaking (Sλ) is not a time scale symplectic system
for λ ∈ � \ � . However, since (Sλ) is a perturbation of the time scale symplectic system (S0)
and since the important properties of time scale symplectic systems needed in the presented
Weyl-Titchmarsh theory, such as (3.4) or (3.8), are satisfied in an appropriate modification,
we accept with the above understanding the same terminology for the system (Sλ) for any
λ ∈ � .

Equation (3.4) represents a fundamental identity for the theory of time scale
symplectic systems (Sλ). Some important properties of the matrixS(t, λ) are displayed below.
Note that formula (3.7) is a generalization of [46, equation (10.4)] to complex values of λ.

Lemma 3.2. Identity (3.4) is equivalent to the identity

S
(
t, λ
)
J + JS∗(t, λ) + μ(t)S

(
t, λ
)
JS∗(t, λ) = 0, t ∈ [a,∞)

�
, λ ∈ � . (3.7)
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In this case for any λ ∈ � we have

[
I + μ(t)S∗(t, λ)

]
J
[
I + μ(t)S

(
t, λ
)]

= J, t ∈ [a,∞)
�
, (3.8)

[
I + μ(t)S

(
t, λ
)]

J
[
I + μ(t)S∗(t, λ)

]
= J, t ∈ [a,∞)

�
, (3.9)

and the matrices I + μ(t)S(t, λ) and I + μ(t)S(t, λ) are invertible with

[
I + μ(t)S(t, λ)

]−1 = −J
[
I + μ(t)S∗

(
t, λ
)]

J, t ∈ [a,∞)
�
. (3.10)

Proof. Let t ∈ [a,∞)
�
and λ ∈ � be fixed. If t is right-dense, that is, μ(t) = 0, then identity

(3.4) reduces to S∗(t, λ)J + JS(t, λ) = 0. Upon multiplying this equation by J from the left
and right side, we get identity (3.7) with μ(t) = 0. If t is right scattered, that is, μ(t) > 0,
then (3.4) is equivalent to (3.8). It follows that the determinants of I + μ(t)S(t, λ) and I +
μ(t)S(t, λ) are nonzero proving that these matrices are invertible with the inverse given by
(3.10). Upon multiplying (3.8) by the invertible matrices [I + μ(t)S(t, λ)]J from the left and

−[I + μ(t)S(t, λ)]
−1
J from the right and by using J2 = −I, we get formula (3.9), which is

equivalent to (3.7) due to μ(t) > 0.

Remark 3.3. Equation (3.10) allows writing the system (Sλ) in the equivalent adjoint form

zΔ(t, λ) = JS∗
(
t, λ
)
Jzσ(t, λ), t ∈ [a,∞)

�
. (3.11)

System (3.11) can be found, for example, in [47, Remark 3.1(iii)] or [50, equation (3.2)] in the
connection with optimality conditions for variational problems over time scales.

In the following result we show that (3.4) guarantees, among other properties, the
existence and uniqueness of solutions of the initial value problems associated with (Sλ).

Theorem 3.4 (existence and uniqueness theorem). Let λ ∈ � , t0 ∈ [a,∞)�, and z0 ∈ �
2n be

given. Then the initial value problem (Sλ) with z(t0) = z0 has a unique solution z(·, λ) ∈ C1
prd on the

interval [a,∞)
�
.

Proof. The coefficient matrix of system (Sλ), or equivalently of system (3.2), is piecewise rd-
continuous on [a,∞)

�
. By Lemma 3.2, the matrix I+μ(t)S(t, λ) is invertible for all t ∈ [a,∞)

�
,

which proves that the function S(·, λ) is regressive on [a,∞)
�
. Hence, the result follows from

Remark 2.1.

If not specified otherwise, we use a common agreement that 2n-vector solutions of
system (Sλ) and 2n × n-matrix solutions of system (Sλ) are denoted by small letters and
capital letters, respectively, typically by z(·, λ) or z̃(·, λ) and Z(·, λ) or Z̃(·, λ).

Next we establish several identities involving solutions of system (Sλ) or solutions of
two such systems with different spectral parameters. The first result is the Lagrange identity
known in the special cases of continuous time linear Hamiltonian systems in [11, Theo-
rem 4.1] or [8, equation (2.23)], discrete linear Hamiltonian systems in [9, equation (2.55)]
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or [14, Lemma 2.2], discrete symplectic systems in [1, Lemma 2.6] or [2, Lemma 2.3], and
time scale linear Hamiltonian systems in [3, Lemma 3.5] and [5, Theorem 2.2].

Theorem 3.5 (Lagrange identity). Let λ, ν ∈ � andm ∈ � be given. If z(·, λ) and z(·, ν) are 2n×m
solutions of systems (Sλ) and (Sν), respectively, then

[z∗(t, λ)Jz(t, ν)]Δ =
(
λ − ν

)
zσ∗(t, λ)W̃(t)zσ(t, ν), t ∈ [a,∞)�. (3.12)

Proof. Formula (3.12) follows from the time scales product rule (2.1) by using the relation
zσ(t, λ) = [I + μ(t)S(t, λ)]z(t, λ) and identity (3.6).

As consequences of Theorem 3.5, we obtain the following.

Corollary 3.6. Let λ, ν ∈ � andm ∈ � be given. If z(·, λ) and z(·, ν) are 2n×m solutions of systems
(Sλ) and (Sν), respectively, then for all t ∈ [a,∞)

�
we have

z∗(t, λ)Jz(t, ν) = z∗(a, λ)Jz(a, ν) +
(
λ − ν

)∫ t

a

zσ∗(s, λ)W̃(s)zσ(s, ν)Δs. (3.13)

One can easily see that if z(·, λ) is a solution of system (Sλ), then z(·, λ) is a solution of
system (Sλ). Therefore, Theorem 3.5with ν = λ yields aWronskian-type property of solutions
of system (Sλ).

Corollary 3.7. Let λ ∈ � andm ∈ � be given. For any 2n ×m solution z(·, λ) of systems (Sλ)

z∗(t, λ)Jz
(
t, λ
)
≡ z∗(a, λ)Jz

(
a, λ
)
, is constant on [a,∞)

�
. (3.14)

The following result gives another interesting property of solutions of system (Sλ) and
(Sλ).

Lemma 3.8. Let λ ∈ � and m ∈ � be given. For any 2n ×m solutions z(·, λ) and z̃(·, λ) of system
(Sλ), the 2n × 2n matrix function K(·, λ) defined by

K(t, λ) := z(t, λ)z̃∗
(
t, λ
)
− z̃(t, λ)z∗

(
t, λ
)
, t ∈ [a,∞)

�
, (3.15)

satisfies the dynamic equation

KΔ(t, λ) = S(t, λ)K(t, λ) +
[
I + μ(t)S(t, λ)

]
K(t, λ)S∗

(
t, λ
)
, t ∈ [a,∞)

�
, (3.16)

and the identities K∗(t, λ) = −K(t, λ) and

Kσ(t, λ) =
[
I + μ(t)S(t, λ)

]
K(t, λ)

[
I + μ(t)S∗

(
t, λ
)]

, t ∈ [a,∞)
�
. (3.17)
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Proof. Having that z(·, λ) and z̃(·, λ) are solutions of system (Sλ), it follows that z(·, λ) and
z̃(·, λ) are solutions of system (Sλ). The results then follow by direct calculations.

Remark 3.9. The content of Lemma 3.8 appears to be new both in the continuous and discrete
time cases. Moreover, when the matrix function K(·, λ) ≡ K(λ) is constant, identity (3.17)
yields for any right-scattered t ∈ [a,∞)

�
that

S(t, λ)K(λ) +K(λ)S∗
(
t, λ
)
+ μ(t)S(t, λ)K(λ)S∗

(
t, λ
)
= 0. (3.18)

It is interesting to note that this formula is very much like (3.7). More precisely, identity (3.7)
is a consequence of (3.18) for the case ofK(λ) ≡ J.

Next we present properties of certain fundamental matrices Ψ(·, λ) of system (Sλ),
which are generalizations of the corresponding results in [46, Section 10.2] to complex λ.
Some of these results can be proven under the weaker condition that the initial value of
Ψ(a, λ) does depend on λ and satisfies Ψ∗(a, λ)JΨ(a, λ) = J. However, these more general
results will not be needed in this paper.

Lemma 3.10. Let λ ∈ � be fixed. If Ψ(·, λ) is a fundamental matrix of system (Sλ) such thatΨ(a, λ)
is symplectic and independent of λ, then for any t ∈ [a,∞)

�
we have

Ψ∗(t, λ)JΨ
(
t, λ
)
= J, Ψ−1(t, λ) = −JΨ∗

(
t, λ
)
J, Ψ(t, λ)JΨ∗

(
t, λ
)
= J. (3.19)

Proof. Identity (3.19)(i) is a consequence of Corollary 3.7, in which we use the fact thatΨ(a, λ)
is symplectic and independent of λ. The second identity in (3.19) follows from the first one,
while the third identity is obtained from the equation Ψ(t, λ)Ψ−1(t, λ) = I.

Remark 3.11. If the fundamentalmatrixΨ(·, λ) = (Z(·, λ) Z̃(·, λ)) in Lemma 3.10 is partitioned
into two 2n × n blocks, then (3.19)(i) and (3.19)(iii) have, respectively, the form

Z∗(t, λ)JZ
(
t, λ
)
= 0, Z∗(t, λ)JZ̃

(
t, λ
)
= I, Z̃∗(t, λ)JZ̃

(
t, λ
)
= 0, (3.20)

Z(t, λ)Z̃∗
(
t, λ
)
− Z̃(t, λ)Z∗

(
t, λ
)
= J. (3.21)

Observe that the matrix on the left-hand side of (3.21) represents a constant matrix K(t, λ)
from Lemma 3.8 and Remark 3.9.

Corollary 3.12. Under the conditions of Lemma 3.10, for any t ∈ [a,∞)
�
, we have

Ψσ(t, λ)JΨ∗
(
t, λ
)
=
[
I + μ(t)S(t, λ)

]
J, (3.22)

which in the notation of Remark 3.11 has the form

Zσ(t, λ)Z̃∗
(
t, λ
)
− Z̃σ(t, λ)Z∗

(
t, λ
)
=
[
I + μ(t)S(t, λ)

]
J. (3.23)
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Proof. Identity (3.22) follows from the equation Ψσ(t, λ) = [I +μ(t)S(t, λ)]Ψ(t, λ) by applying
formula (3.19)(ii).

4. M(λ)-Function for Regular Spectral Problem

In this section we consider the regular spectral problem on the time scale interval [a, b]�with
some fixed b ∈ (a,∞)

�
. We will specify the corresponding boundary conditions in terms of

complex n × 2nmatrices from the set

Γ :=
{
α ∈ � n×2n , αα∗ = I, αJα∗ = 0

}
. (4.1)

The two defining conditions for α ∈ � n×2n in (4.1) imply that the 2n × 2n matrix (α∗ − Jα∗)
is unitary and symplectic. This yields the identity

(
α∗ −Jα∗)

(
α

αJ

)

= I ∈ � 2n×2n , that is, α∗α − Jα∗αJ = I. (4.2)

The last equation also implies, compare with [60, Remark 2.1.2], that

Kerα = ImJα∗. (4.3)

Let α, β ∈ Γ be fixed and consider the boundary value problem

(Sλ), αz(a, λ) = 0, βz(b, λ) = 0. (4.4)

Our first result shows that the boundary conditions in (4.4) are equivalent with the boundary
conditions phrased in terms of the images of the 2n × 2nmatrices

Ra :=
(
Jα∗ 0

)
, Rb :=

(
0 −Jβ∗

)
, (4.5)

which satisfy R∗
aJRa = 0, R∗

bJRb = 0, and rank(R∗
a R∗

b) = 2n.

Lemma 4.1. Let α, β ∈ Γ and λ ∈ � be fixed. A solution z(·, λ) of system (Sλ) satisfies the boundary
conditions in (4.4) if and only if there exists a unique vector ξ ∈ � 2n such that

z(a, λ) = Raξ, z(b, λ) = Rbξ. (4.6)

Proof. Assume that (4.4) holds. Identity (4.3) implies the existence of vectors ξa, ξb ∈ � n such
that z(a, λ) = −Jα∗ξa and z(b, λ) = −Jβ∗ξb. It follows that z(·, λ) satisfies (4.6) with ξ :=
(−ξ∗a ξ∗

b
)∗. It remains to prove that ξ is unique such a vector. If z(·, λ) satisfies (4.6) and also

z(a, λ) = Raζ and z(b, λ) = Rbζ for some ξ, ζ ∈ � 2n , then Ra(ξ−ζ) = 0 and Rb(ξ−ζ) = 0. Hence,
Jα∗(I 0)(ξ−ζ) = 0 and −Jβ∗(0 I)(ξ−ζ) = 0. If wemultiply the latter two equalities by αJ and
βJ, respectively, and use αα∗ = I = ββ∗, then we obtain (I 0)(ξ − ζ) = 0 and (0 I)(ξ − ζ) = 0.
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This yields ξ − ζ = 0, which shows that the vector ξ in (4.6) is unique. The opposite direction,
that is, that (4.6) implies (4.4), is trivial.

Following the standard terminology, see, for example, [62, 63], a number λ ∈ � is
an eigenvalue of (4.4) if this boundary value problem has a solution z(·, λ)/≡ 0. In this case
the function z(·, λ) is called the eigenfunction corresponding to the eigenvalue λ, and the
dimension of the space of all eigenfunctions corresponding to λ (together with the zero
function) is called the geometric multiplicity of λ.

Given α ∈ Γ, we will utilize from now on the fundamental matrix Ψ(·, λ, α) of system
(Sλ) satisfying the initial condition from (4.4), that is,

ΨΔ(t, λ, α) = S(t, λ)Ψ(t, λ, α), t ∈
[
a, ρ(b)

]
�
, Ψ(a, λ, α) =

(
α∗ −Jα∗). (4.7)

Then Ψ(a, λ, α) does not depend on λ, and it is symplectic and unitary with the inverse
Ψ−1(a, λ, α) = Ψ∗(a, λ, α). Hence, the properties of fundamental matrices derived earlier in
Lemma 3.10, Remark 3.11, and Corollary 3.12 apply for the matrix function Ψ(·, λ, α).

The following assumption will be imposed in this section when studying the regular
spectral problem.

Hypothesis 4.2. For every λ ∈ � , we have

∫b

a

Ψσ∗(t, λ, α)W̃(t)Ψσ(t, λ, α)Δt > 0. (4.8)

Condition (4.8) can be written in the equivalent form as

∫b

a

zσ∗(t, λ)W̃(t)zσ(t, λ)Δt > 0, (4.9)

for every nontrivial solution z(·, λ) of system (Sλ). Assumptions (4.8) and (4.9) are equivalent
by a simple argument using the uniqueness of solutions of system (Sλ). The latter form
(4.9) has been widely used in the literature, such as in the continuous time case in [8,
Hypothesis 2.2], [30, equation (1.3)], [26, equation (2.3)], in the discrete time case in [9,
Condition (2.16)], [14, equation (1.7)], [1, Assumption 2.2], [2, Hypothesis 2.4], and in the
time scale Hamiltonian case in [3, Assumption 3] and [5, Condition (3.9)].

Following Remark 3.11, we partition the fundamental matrix Ψ(·, λ, α) as

Ψ(·, λ, α) =
(
Z(·, λ, α) Z̃(·, λ, α)

)
, (4.10)

where Z(·, λ, α) and Z̃(·, λ, α) are the 2n× n solutions of system (Sλ) satisfying Z(a, λ, α) = α∗

and Z̃(a, λ, α) = −Jα∗. With the notation

Λ
(
λ, α, β

)
:= Ψ(b, λ, α)Ψ∗(a, λ, α)Ra − Rb =

(
−Z̃(b, λ, α) Jβ∗

)
, (4.11)
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we have the classical characterization of the eigenvalues of (4.4); see, for example, the
continuous time in [64, Chapter 4], the discrete time in [14, Theorem 2.3, Lemma 2.4], [2,
Lemma 2.9, Theorem 2.11], and the time scale case in [62, Lemma 3], [63, Corollary 1].

Proposition 4.3. For α, β ∈ Γ and λ ∈ � , we have with notation (4.11) the following.

(i) The number λ is an eigenvalue of (4.4) if and only if detΛ(λ, α, β) = 0.

(ii) The algebraic multiplicity of the eigenvalue λ, that is, the number defΛ(λ, α, β), is equal to
the geometric multiplicity of λ.

(iii) Under Hypothesis 4.2, the eigenvalues of (4.4) are real, and the eigenfunctions
corresponding to different eigenvalues are orthogonal with respect to the semi-inner product

〈z(·, λ), z(·, ν)〉W,b :=
∫b

a

zσ∗(t, λ)W̃(t)zσ(t, ν)Δt. (4.12)

Proof. The arguments are here standard, and we refer to [44, Section 5], [63, Corollary 1],
[3, Theorem 3.6].

The next algebraic characterization of the eigenvalues of (4.4) is more appropriate for
the development of the Weyl-Titchmarsh theory for (4.4), since it uses the matrix βZ̃(b, λ, α)
which has dimension n instead of using the matrixΛ(λ, α, β)which has dimension 2n. Results
of this type can be found in special cases of system (Sλ) in [8, Lemma 2.5], [11, Theorem 4.1],
[9, Lemma 2.8], [14, Lemma 3.1], [1, Lemma 2.5], [3, Theorem 3.4], and [2, Lemma 3.1].

Lemma 4.4. Let α, β ∈ Γ and λ ∈ � be fixed. Then λ is an eigenvalue of (4.4) if and only
if detβZ̃(b, λ, α) = 0. In this case the algebraic and geometric multiplicities of λ are equal to
def βZ̃(b, λ, α).

Proof. One can follow the same arguments as in the proof of the corresponding discrete
symplectic case in [2, Lemma 3.1]. However, having the result of Proposition 4.3, we can
proceed directly by the methods of linear algebra. In this proof we abbreviate Λ := Λ(λ, α, β)
and Z̃ := Z̃(b, λ, α). Assume that Λ is singular, that is, −Z̃c + Jβ∗d = 0 for some vectors
c, d ∈ � n , not both zero. Then Z̃c = Jβ∗d, which yields that βZ̃c = 0. If c = 0, then Jβ∗d = 0,
which implies upon the multiplication by βJ from the left that d = 0. Since not both c and d

can be zero, it follows that c /= 0 and the matrix βZ̃ is singular. Conversely, if βZ̃c = 0 for some
nonzero vector c ∈ � n , then −Z̃c+Jβ∗d = 0; that is,Λ is singular, with the vector d := −βJZ̃c.
Indeed, by using identity (4.2) we have Jβ∗d = −Jβ∗βJZ̃c = (I − β∗β)Z̃c = Z̃c. From the
above we can also see that the number of linearly independent vectors in Ker βZ̃ is the same
as the number of linearly independent vectors in KerΛ. Therefore, by Proposition 4.3(ii), the
algebraic and geometric multiplicities of λ as an eigenvalue of (4.4) are equal to def βZ̃.

Since the eigenvalues of (4.4) are real, it follows that the matrix βZ̃(b, λ, α) is invertible
for every λ ∈ � except for at most n real numbers. This motivates the definition of the M(λ)-
function for the regular spectral problem.



Abstract and Applied Analysis 13

Definition 4.5 (M(λ)-function). Let α, β ∈ Γ. Whenever the matrix βZ̃(b, λ, α) is invertible for
some value λ ∈ � , we define the Weyl-TitchmarshM(λ)-function as the n × n matrix

M(λ) = M(λ, b) = M
(
λ, b, α, β

)
:= −
[
βZ̃(b, λ, α)

]−1
βZ(b, λ, α). (4.13)

The above definition of the M(λ)-function is a generalization of the corresponding
definitions for the continuous and discrete linear Hamiltonian and symplectic systems in
[8, Definition 2.6], [9, Definition 2.9], [14, equation (3.10)], [1, page 2859], [2, Definition 3.2]
and time scale linear Hamiltonian systems in [3, equation (4.1)]. The dependence of the
M(λ)-function on b, α, and β will be suppressed in the notation, and M(λ, b) or M(λ, b, α, β)
will be used only in few situations when we emphasize the dependence on b (such as at
the end of Section 5) or on α and β (as in Lemma 4.14). By [65, Corollary 4.5], see also [44,
Remark 2.2], the M(·)-function is an entire function in λ. Another important property of the
M(λ)-function is established in the following.

Lemma 4.6. Let α, β ∈ Γ and λ ∈ � \ � . Then

M∗(λ) = M
(
λ
)
. (4.14)

Proof. We abbreviateZ(λ) := Z(b, λ, α) and Z̃(λ) := Z̃(b, λ, α). By using the definition ofM(λ)
in (4.13) and identity (3.21), we have

M∗(λ) −M
(
λ
)
=
[
βZ̃
(
λ
)]−1

β
[
Z
(
λ
)
Z̃∗(λ) − Z̃

(
λ
)
Z∗(λ)

]
β∗
[
βZ̃(λ)

]∗−1

(3.21)
=
[
βZ̃
(
λ
)]−1

βJβ∗
[
βZ̃(λ)

]∗−1
= 0,

(4.15)

because β ∈ Γ. Hence, equality (4.14) holds true.

The following solution plays an important role in particular in the results concerning
the square integrable solutions of system (Sλ).

Definition 4.7 (Weyl solution). For any matrixM ∈ � n×n , we define the so-calledWeyl solution
of system (Sλ) by

X(·, λ, α,M) := Ψ(·, λ, α)
(
I M∗)∗ = Z(·, λ, α) + Z̃(·, λ, α)M, (4.16)

where Z(·, λ, α) and Z̃(·, λ, α) are defined in (4.10).

The functionX(·, λ, α,M), being a linear combination of two solutions of system (Sλ),
is also a solution of this system. Moreover, αX(a, λ, α,M) = I, and, if βZ̃(b, λ, α) is invertible,
then βX̃(b, λ, α,M) = βZ̃(b, λ, α)[M − M(λ)]. Consequently, if we take M := M(λ) in
Definition 4.7, then βX(b, λ, α,M(λ)) = 0; that is, the Weyl solution X(·, λ, α,M(λ)) satisfies
the right endpoint boundary condition in (4.4).
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Following the corresponding notions in [8, equation (2.18)], [9, equation (2.51)], [14,
page 471], [1, page 2859], [2, equation (3.13)], [3, equation (4.2)], we define the Hermitian
n × nmatrix function E(M) for system (Sλ).

Definition 4.8. For a fixed α ∈ Γ and λ ∈ � \ � , we define the matrix function

E : � n×n −→ �
n×n , E(M) = E(M,b) := iδ(λ)X∗(b, λ, α,M)JX(b, λ, α,M), (4.17)

where δ(λ) := sgn Im(λ).

For brevitywe suppress the dependence of the function E(·) on b and λ. In few caseswe
will need E(M) depending on b (as in Theorem 5.1 and Definition 6.2) and in such situations
we will use the notation E(M,b). Since (iJ)∗ = iJ, it follows that E(M) is a Hermitian matrix
for any M ∈ � n×n . Moreover, from Corollary 3.6, we obtain the identity

E(M) = −2δ(λ) Im(M) + 2|Im(λ)|
∫b

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt, (4.18)

where we used the fact that

X∗(a, λ, α,M)JX(a, λ, α,M)
(4.7)
= M −M∗ = 2i Im(M). (4.19)

Next we define the Weyl disk and Weyl circle for the regular spectral problem. The
geometric characterizations of the Weyl disk and Weyl circle in terms of the contractive
or unitary matrices which justify the terminology “disk” or “circle” will be presented in
Section 5.

Definition 4.9 (Weyl disk and Weyl circle). For a fixed α ∈ Γ and λ ∈ � \ � , the set

D(λ) = D(λ, b) :=
{
M ∈ � n×n , E(M) ≤ 0

}
, (4.20)

is called theWeyl disk, and the set

C(λ) = C(λ, b) := ∂D(λ) =
{
M ∈ � n×n , E(M) = 0

}
, (4.21)

is called theWeyl circle.

The dependence of the Weyl disk and Weyl circle on b will be again suppressed. In
the following result we show that the Weyl circle consists of precisely those matrices M(λ)
with β ∈ Γ. This result generalizes the corresponding statements in [8, Lemma 2.8], [9,
Lemma 2.13], [14, Lemma 3.3], [1, Theorem 3.1], [2, Theorem 3.6], and [3, Theorem 4.2].

Theorem 4.10. Let α ∈ Γ, λ ∈ � \� , andM ∈ � n×n . The matrixM belongs to the Weyl circle C(λ)
if and only if there exists β ∈ Γ such that βX(b, λ, α,M) = 0. In this case and under Hypothesis 4.2,
we have with such a matrix β thatM = M(λ) as defined in (4.13).
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Proof. Assume thatM ∈ C(λ), that is, E(M) = 0. Then, with the vector

β := X∗(b)J =
(
I M∗)Ψ∗(b, λ, α)J ∈ � n×2n , (4.22)

where X(b) denotes X(b, λ, α,M), we have

βX(b) = X∗(b)JX(b) =
[

1
(iδ(λ))

]
E(M) = 0. (4.23)

Moreover, rankβ = n, because the matricesΨ(b, λ, α) and J are invertible and rank(I M∗) =
n. In addition, the identity J∗ = J−1 yields

βJβ∗ = X∗(b)JX(b)
(4.23)
= 0. (4.24)

Now, if the condition ββ∗ = I is not satisfied, then we replace β by β̃ := (ββ∗)−1/2β (note that
ββ∗ > 0, so that (ββ∗)−1/2 is well defined), and in this case

β̃X(b) =
(
ββ∗
)−1/2

βX(b)
(4.23)
= 0,

β̃Jβ̃∗ =
(
ββ∗
)−1/2

βJβ∗
(
ββ∗
)−1/2 (4.24)

= 0,

β̃β̃∗ =
(
ββ∗
)−1/2

ββ∗
(
ββ∗
)−1/2 = I.

(4.25)

Conversely, suppose that for a given M ∈ � n×n there exists β ∈ Γ such that βX(b) = 0. Then
from (4.3) it follows thatX(b) = Jβ∗P for the matrix P := −βJX(b) ∈ � n×n . Hence,

E(M) = iδ(λ)P ∗βJ∗JJβ∗P = iδ(λ)P ∗βJβ∗P = 0, (4.26)

that is, M ∈ C(λ). Finally, since λ ∈ � \ � , then by Proposition 4.3(iii) the number λ is not an
eigenvalue of (4.4), which by Lemma 4.4 shows that the matrix βZ̃(b, λ, α) is invertible. The
definition of the Weyl solution in (4.16) then yields

βZ(b, λ, α) + βZ̃(b, λ, α)M = βX(b, λ, α,M) = 0, (4.27)

which implies thatM = −[βZ̃(b, λ, α)]
−1
βZ(b, λ, α) = M(λ).

Remark 4.11. The matrix P := −βJX(b, λ, α,M) ∈ � n×n from the proof of Theorem 4.10 is
invertible. This fact was not needed in that proof. However, we show that P is invertible
because this argument will be used in the proof of Lemma 4.14. First we prove that
KerP = KerX(b, λ, α,M). For if Pd = 0 for some d ∈ �

n , then from identity (4.2)
we get X(b, λ, α,M)d = (I − β∗β)X(b, λ, α,M)d = Jβ∗Pd = 0. Therefore, KerP ⊆
KerX(b, λ, α,M). The opposite inclusion follows by the definition of P . And since, by (4.16),
rankX(b, λ, α,M) = rank(I M∗)∗ = n, it follows that KerX(b, λ, α,M) = {0}. Hence,
KerP = {0} as well; that is, the matrix P is invertible.
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The next result contains a characterization of the matricesM ∈ � n×n which lie “inside”
theWeyl diskD(λ). In the previous result (Theorem 4.10)we have characterized the elements
of the boundary of the Weyl disk D(λ), that is, the elements of the Weyl circle C(λ), in terms
of the matrices β ∈ Γ. For such β we have βJβ∗ = 0, which yields iδ(λ)βJβ∗ = 0. Comparing
with that statement we now utilize the matrices β ∈ � n×2n which satisfy iδ(λ)βJβ∗ > 0. In the
special cases of the continuous and discrete time, this result can be found in [8, Lemma 2.13],
[9, Lemma 2.18], and [2, Theorem 3.13].

Theorem 4.12. Let α ∈ Γ, λ ∈ � \ � , andM ∈ � n×n . The matrixM satisfies E(M) < 0 if and only
if there exists β ∈ � n×2n such that iδ(λ)βJβ∗ > 0 and βX(b, λ, α,M) = 0. In this case and under
Hypothesis 4.2, we have with such a matrix β that M = M(λ) as defined in (4.13) and β may be
chosen so that ββ∗ = I.

Proof. For M ∈ � n×n consider on [a, b]
�
the Weyl solution

X(·) := X(·, λ, α,M) =

(
X1(·)

X2(·)

)

, with n × n blocks X1(·) and X2(·). (4.28)

Suppose first that E(M) < 0. Then the matrices Xj(b), j ∈ {1, 2}, are invertible. Indeed, if
one of them is singular, then there exists a nonzero vector v ∈ � n such that X1(b)v = 0 or
X2(b)v = 0. Then

v∗E(M)v = iδ(λ)v∗X∗(b)JX(b)v = iδ(λ)v∗[X∗
1(b)X2(b) − X∗

2(b)X1(b)
]
v = 0, (4.29)

which contradicts E(M) < 0. Now we set β1 := I, β2 := −X1(b)X−1
2 (b), and β := (β1 β2). Then

for this 2n × n matrix β we have βX(b) = 0 and, by a similar calculation as in (4.29),

E(M) = iδ(λ)X∗(b)JX(b) = iδ(λ)X∗
2(b)
(
β2β

∗
1 − β1β

∗
2

)
X2(b)

= 2δ(λ)X∗
2(b) Im

(
β1β

∗
2
)
X2(b) = −iδ(λ)X∗

2(b)βJβ
∗X2(b),

(4.30)

where we used the equality βJβ∗ = 2i Im(β1β∗2). Since E(M) < 0 and X2(b) is invertible, it
follows that iδ(λ)βJβ∗ > 0. Conversely, assume that for a given matrix M ∈ � n×n there is
β = (β1 β2) ∈ �

n×2n satisfying iδ(λ)βJβ∗ > 0 and βX(b) = 0. Condition iδ(λ)βJβ∗ > 0 is
equivalent to Im(β1β∗2) < 0 when Im(λ) > 0 and to Im(β1β∗2) > 0 when Im(λ) < 0. The positive
or negative definiteness of Im(β1β∗2) implies the invertibility of β1 and β2; see Remark 2.2.
Therefore, from the equality β1X1(b) + β2X2(b) = βX(b) = 0, we obtainX1(b) = −β−11 β2X2(b),
and so

E(M) = iδ(λ)
[
X∗

1(b)X2(b) − X∗
2(b)X1(b)

]

= iδ(λ)X∗
2(b)β

−1
1

(
β2β

∗
1 − β1β

∗
2

)
β∗−11 X2(b)

= −iδ(λ)X∗
2(b)β

−1
1 βJβ∗β∗−11 X2(b).

(4.31)
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The matrix X2(b) is invertible, because if X2(b)d = 0 for some nonzero vector d ∈ � n ,
then X1(b)d = −β−11 β2X2(b)d = 0, showing that rankX(b) < n. This however contradicts
rankX(b) = n which we have from the definition of the Weyl solution X(·) in (4.16).
Consequently, (4.31) yields through iδ(λ)βJβ∗ > 0 that E(M) < 0.

If the matrix β does not satisfy ββ∗ = I, then we modify it according to the
procedure described in the proof of Theorem 4.10. Finally, since λ ∈ � \ � , we get from
Proposition 4.3(iii) and Lemma 4.4 that the matrix βZ̃(b, λ, α) is invertible which in turn

implies through the calculation in (4.27) thatM = −[βZ̃(b, λ, α)]
−1
βZ(b, λ, α) = M(λ).

In the following lemma we derive some additional properties of the Weyl disk and
the M(λ)-function. Special cases of this statement can be found in [8, Lemma 2.9], [33,
Theorem 3.1], [9, Lemma 2.14], [14, Lemma 3.2(ii)], [1, Theorem 3.7], [2, Lemma 3.7], and
[3, Theorem 4.13].

Theorem 4.13. Let α ∈ Γ and λ ∈ � \ � . For any matrixM ∈ D(λ) we have

δ(λ) Im(M) ≥ |Im(λ)|
∫b

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt ≥ 0. (4.32)

In addition, under Hypothesis 4.2, we have δ(λ) Im(M) > 0.

Proof. By identity (4.18), for any matrix M ∈ D(λ), we have

2δ(λ) Im(M) = −E(M) + 2|Im(λ)|
∫b

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt

≥ 2|Im(λ)|
∫b

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt,

(4.33)

which yields together with W̃(t) ≥ 0 on [a, ρ(b)]
�
the inequalities in (4.32). The last assertion

in Theorem 4.13 is a simple consequence of Hypothesis 4.2.

In the last part of this section we wish to study the effect of changing α, which is one
of the parameters of the M(λ)-function and the Weyl solution X(·, λ, α,M), when α varies
within the set Γ. For this purpose we will use theM(λ)-function with all its arguments in the
following two statements.

Lemma 4.14. Let α, β, γ ∈ Γ and λ ∈ � \ � . Then

M
(
λ, b, α, β

)
=
[
αJγ ∗ + αγ ∗M

(
λ, b, γ, β

)][
αγ ∗ − αJγ ∗M

(
λ, b, γ, β

)]−1
. (4.34)

Proof. Let M(b, λ, α, β) and M(b, λ, γ, β) be given via (4.13), and consider the Weyl solutions
Xα(·) := X(·, λ, α,M(b, λ, α, β)) and Xγ(·) := X(·, λ, γ,M(b, λ, γ, β)) defined by (4.16) with
M = M(b, λ, α, β) and M = M(b, λ, γ, β), respectively. First we prove that the two Weyl
solutions Xα(·) andXγ(·) differ by a constant nonsingular multiple. By definition, βXα(b) = 0
and βXγ (b) = 0, which implies through (4.3) that Xα(b) = Jβ∗Pα and Xγ(b) = Jβ∗Pγ
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for some matrices Pα, Pγ ∈ � n×n , which are invertible by Remark 4.11. This implies that
Xα(b)P−1

α = Jβ∗ = Xγ(b)P−1
γ . Consequently, Xα(b) = Xγ(b)P , where P := P−1

γ Pα. By the
uniqueness of solutions of system (Sλ), see Theorem 3.4, we obtain that Xα(·) = Xγ (·)P on
[a, b]

�
. Upon the evaluation at t = a we get

Ψ(a, λ, α)

(
I

M
(
λ, b, α, β

)

)

= Ψ
(
a, λ, γ

)
(

I

M
(
λ, b, γ, β

)

)

P. (4.35)

Since the matrices Ψ(a, λ, α) = (α∗ − Jα∗) and Ψ(a, λ, γ) = (γ ∗ − Jγ ∗) are unitary, it follows
from (4.35) that

(
I

M
(
λ, b, α, β

)

)

=

(
α

αJ

)
(
γ ∗ −Jγ ∗

)
(

I

M
(
λ, b, γ, β

)

)

P

=

(
αγ ∗ − αJγ ∗M

(
λ, b, γ, β

)

αJγ ∗ + αγ ∗M
(
λ, b, γ, β

)

)

P.

(4.36)

The first row above yields that P = [αγ ∗ − αJγ ∗M(λ, b, γ, β)]−1, while the second row is then
written as identity (4.34).

Corollary 4.15. Let α, β, γ ∈ Γ and λ ∈ � \ � . With notation (4.16) and (4.13) we have

X
(
·, λ, α,M

(
λ, b, α, β

))
= X
(
·, λ, γ,M

(
λ, b, γ, β

))[
αγ ∗ − αJγ ∗M

(
λ, b, γ, β

)]−1
. (4.37)

Proof. The above identity follows from (4.35) and the formula for the matrix P from the end
of the proof of Lemma 4.14.

5. Geometric Properties of Weyl Disks

In this section we study the geometric properties of the Weyl disks as the point b

moves through the interval [a,∞)
�
. Our first result shows that the Weyl disks D(λ, b) are

nested. This statement generalizes the results in [11, Theorem 4.5], [66, Section 3.2.1], [9,
equation (2.70)], [14, Theorem 3.1], [3, Theorem 4.4], and [5, Theorem 3.3(i)].

Theorem 5.1 (nesting property of Weyl disks). Let α ∈ Γ and λ ∈ � \ � . Then

D(λ, b2) ⊆ D(λ, b1), for every b1, b2 ∈ [a,∞)
�
, b1 < b2. (5.1)
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Proof. Let b1, b2 ∈ [a,∞)
�
with b1 < b2, and take M ∈ D(λ, b2), that is, E(M,b2) ≤ 0. From

identity (4.18) with b = b1 and later with b = b2 and by using W̃(·) ≥ 0, we have

E(M,b1)
(4.18)
= −2δ(λ) Im(M) + 2|Im(λ)|

∫b1

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt

≤ −2δ(λ) Im(M) + 2|Im(λ)|
∫b2

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt

(4.18)
= E(M,b2) ≤ 0.

(5.2)

Therefore, by Definition 4.9, the matrix M belongs to D(λ, b1), which shows the result.

Similarly for the regular case (Hypothesis 4.2) we now introduce the following
assumption.

Hypothesis 5.2. There exists b0 ∈ (a,∞)
�
such that Hypothesis 4.2 is satisfied with b = b0; that

is, inequality (4.8) holds with b = b0 for every λ ∈ � .

From Hypothesis 5.2 it follows by W̃(·) ≥ 0 that inequality (4.8) holds for every b ∈
[b0,∞)

�
.

For the study of the geometric properties of Weyl disks we will use the following
representation:

E(M,b) = iδ(λ)X∗(b, λ, α,M)JX(b, λ, α,M) =
(
I M∗)

(F(b, λ, α) G∗(b, λ, α)

G(b, λ, α) H(b, λ, α)

)(
I

M

)

,

(5.3)

of the matrix E(M,b), where we define on [a,∞)
�
the n × n matrices

F(·, λ, α) := iδ(λ)Z∗(·, λ, α)JZ(·, λ, α),

G(·, λ, α) := iδ(λ)Z̃∗(·, λ, α)JZ(·, λ, α),

H(·, λ, α) := iδ(λ)Z̃∗(·, λ, α)JZ̃(·, λ, α).

(5.4)

Since E(M,b) is Hermitian, it follows that F(·, λ, α) and H(·, λ, α) are also Hermitian.
Moreover, by (4.7), we have H(a, λ, α) = 0. In addition, if b ∈ [b0,∞)

�
, then Corollary 3.7

and Hypothesis 5.2 yield for any λ ∈ � \ �

H(b, λ, α) = 2|Im(λ)|
∫b

a

Z̃σ∗(t, λ, α)W̃(t)Z̃σ(t, λ, α)Δt > 0. (5.5)

Therefore, H(b, λ, α) is invertible (positive definite) for all b ∈ [b0,∞)
�
and monotone

nondecreasing as b → ∞, with a consequence thatH−1(b, λ, α) is monotone nonincreasing as
b → ∞. The following factorization of E(M,b) holds true; see also [2, equation (4.11)].
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Lemma 5.3. Let α ∈ Γ and λ ∈ � \ � . With the notation (5.4), for any M ∈ � n×n and b ∈ [a,∞)
�

we have

E(M,b) = F(b, λ, α) − G∗(b, λ, α)H−1(b, λ, α)G(b, λ, α)

+
[
G∗(b, λ, α)H−1(b, λ, α) +M∗

]
H(b, λ, α)

[
H−1(b, λ, α)G(b, λ, α) +M

]
,

(5.6)

whenever the matrixH(b, λ, α) is invertible.

Proof. The result is shown by a direct calculation.

The following identity is a generalization of its corresponding versions in [11,
Lemma 4.3], [1, Lemma 3.3], [14, Proposition 3.2], [2, Lemma 4.2], [3, Lemma 4.6], and
[5, Theorem 5.6].

Lemma 5.4. Let α ∈ Γ and λ ∈ � \ � . With the notation (5.4), for any b ∈ [a,∞)
�
, we have

G∗(b, λ, α)H−1(b, λ, α)G(b, λ, α) − F(b, λ, α) = H−1
(
b, λ, α

)
, (5.7)

whenever the matricesH(b, λ, α) andH(b, λ, α) are invertible.

Proof. In order to simplify and abbreviate the notation we introduce the matrices

F := F(b, λ, α), G := G(b, λ, α), H := H(b, λ, α),

F̃ := F
(
b, λ, α

)
, G̃ := G

(
b, λ, α

)
, H̃ := H

(
b, λ, α

)
,

(5.8)

and use the notation Z(λ) and Z̃(λ) for Z(b, λ, α) and Z̃(b, λ, α), respectively. Then, since
F∗ = F and δ(λ)δ(λ) = −1, we get the identities

G∗F̃ − F∗G̃ = Z∗(λ)J
[
Z̃(λ)Z∗

(
λ
)
− Z(λ)Z̃∗

(
λ
)]

JZ
(
λ
) (3.21)

= Z∗(λ)JZ
(
λ
) (3.20)

= 0, (5.9)

HG̃∗ − GH∗ = Z̃∗(λ)J
[
Z̃(λ)Z∗

(
λ
)
− Z(λ)Z̃∗

(
λ
)]

JZ̃
(
λ
) (3.21)

= Z̃∗(λ)JZ̃
(
λ
) (3.20)

= 0, (5.10)

GG̃ −HF̃ = Z̃∗(λ)J
[
Z(λ)Z̃∗

(
λ
)
− Z̃(λ)Z∗

(
λ
)]

JZ
(
λ
) (3.21)

= −Z̃∗(λ)JZ
(
λ
) (3.20)

= I, (5.11)

G∗G̃∗ − FH̃ = Z∗(λ)J
[
Z̃(λ)Z∗

(
λ
)
− Z(λ)Z̃∗

(
λ
)]

JZ̃
(
λ
) (3.21)

= Z∗(λ)JZ̃
(
λ
) (3.20)

= I. (5.12)

Hence, by using that H̃ is Hermitian, we see that

H̃−1 (5.12)
= G∗G̃∗H̃−1 − F = G∗G̃∗H̃∗−1 − F (5.10)

= G∗H−1G − F. (5.13)

Identity (5.7) is now proven.
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Corollary 5.5. Let α ∈ Γ and λ ∈ � \ � . Under Hypothesis 5.2, the matrix H(b, λ, α) is invertible
for every b ∈ [b0,∞)

�
, and for these values of b we have

G∗(b, λ, α)H−1(b, λ, α)G(b, λ, α) − F(b, λ, α) > 0. (5.14)

Proof. Since b ∈ [b0,∞)
�
, then identity (5.5) yields that H(b, λ, α) > 0 and H(b, λ, α) > 0.

Consequently, inequality (5.14) follows from (5.7) of Lemma 5.4.

In the next result we justify the terminology for the sets D(λ, b) and C(λ, b) in
Definition 4.9 to be called a “disk” and a “circle.” It is a generalization of [14, Theorem 3.1],
[2, Theorem 5.4], [5, Theorem 3.3(iii)]; see also [66, Theorem 3.5], [26, pages 70-71], [8,
page 3485], [14, Proposition 3.3], [1, Theorem 3.3], [3, Theorem 4.8]. Consider the sets V and
U of contractive and unitary matrices in � n×n , respectively, that is,

V :=
{
V ∈ � n×n , V ∗V ≤ I

}
, U := ∂V =

{
U ∈ � n×n , U∗U = I

}
. (5.15)

The set V is known to be closed (in fact compact, since V is bounded) and convex.

Theorem 5.6. Let α ∈ Γ and λ ∈ � \� . Under Hypothesis 5.2, for every b ∈ [b0,∞)�, the Weyl disk
and Weyl circle have the representations

D(λ, b) =
{
P(λ, b) + R(λ, b)VR

(
λ, b
)
, V ∈ V

}
, (5.16)

C(λ, b) =
{
P(λ, b) + R(λ, b)UR

(
λ, b
)
, U ∈ U

}
, (5.17)

where, with the notation (5.4),

P(λ, b) := −H−1(λ, b, α)G(λ, b, α), R(λ, b) := H−1/2(λ, b, α). (5.18)

Consequently, for every b ∈ [b0,∞)
�
, the sets D(λ, b) are closed and convex.

The representations of D(λ, b) and C(λ, b) in (5.16) and (5.17) can be written as
D(λ, b) = P(λ, b) +R(λ, b)VR(λ, b) and C(λ, b) = P(λ, b) +R(λ, b)UR(λ, b). The importance of
the matrices P(λ, b) and R(λ, b) is justified in the following.

Definition 5.7. For α ∈ Γ, λ ∈ � \ � , and b ∈ [a,∞)� such that H(λ, b, α) and H(λ, b, α) are
positive definite, the matrix P(λ, b) is called the center of the Weyl disk or the Weyl circle. The
matrices R(λ, b) and R(λ, b) are called the matrix radii of the Weyl disk or the Weyl circle.

Proof of Theorem 5.6. By (5.5) and for any b ∈ [b0,∞)
�
, the matrices H := H(λ, b, α) and

H̃ := H(λ, b, α) are positive definite, so that the matrices P := P(λ, b), R(λ) := R(λ, b), and
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R(λ) := R(λ, b) are well defined. By Definition 4.9, for M ∈ D(λ, b), we have E(M,b) ≤ 0,
which in turn with notation (5.8) implies by Lemmas 5.3 and 5.4 that

− R2
(
λ
)
+ (M∗ − P ∗)R−2(λ)(M − P)

(5.7)
= F − G∗H−1G +

(
H−1G +M

)∗
H
(
H−1G +M

)
= E(M,b) ≤ 0.

(5.19)

Therefore, the matrix

V := R−1(λ)(M − P)R−1
(
λ
)
, (5.20)

satisfies V ∗V ≤ I. This relation between the matrices M ∈ D(λ, b) and V ∈ V is bijective
(more precisely, it is a homeomorphism), and the inverse to (5.20) is given by M = P +
R(λ)VR(λ). The latter formula proves that the Weyl disk D(λ, b) has the representation in
(5.16). Moreover, since by the definition M ∈ C(λ, b) means that E(M,b) = 0, it follows that
the elements of the Weyl circle C(λ, b) are in one-to-one correspondence with the matrices V
defined in (5.20)which, similarly as in (5.19), now satisfy V ∗V = I. Hence, the representation
ofC(λ, b) in (5.17) follows. The fact that for b ∈ [b0,∞)

�
the setsD(λ, b) are closed and convex

follows from the same properties of the set V, being homeomorphic to D(λ, b).

6. Limiting Weyl Disk and Weyl Circle

In this section we study the limiting properties of the Weyl disk and Weyl circle and their
center andmatrix radii. Since under Hypothesis 5.2 the matrix functionH(·, λ, α) is monotone
nondecreasing as b → ∞, it follows from the definition of R(λ, b) andR(λ, b) in (5.18) that the
twomatrix functionsR(λ, ·) andR(λ, ·) aremonotone nonincreasing for b → ∞. Furthermore,
since R(λ, b) and R(λ, b) are Hermitian and positive definite for b ∈ [b0,∞)

�
, the limits

R+(λ) := lim
b→∞

R(λ, b), R+

(
λ
)
:= lim

b→∞
R
(
λ, b
)
, (6.1)

exist and satisfy R+(λ) ≥ 0 and R+(λ) ≥ 0. The index “+” in the above notation as
well as in Definition 6.2 refers to the limiting disk at +∞. In the following result we will
see that the center P(λ, b) also converges to a limiting matrix when b → ∞. This is a
generalization of [11, Theorem 4.7], [1, Theorem 3.5], [14, Proposition 3.5], [2, Theorem 4.5],
and [3, Theorem 4.10].

Theorem 6.1. Let α ∈ Γ and λ ∈ � \ � . Under Hypothesis 5.2, the center P(λ, b) converges as
b → ∞ to a limiting matrix P+(λ) ∈ � n×n , that is,

P+(λ) := lim
b→∞

P(λ, b). (6.2)

Proof. We prove that the matrix function P(λ, ·) satisfies the Cauchy convergence criterion.
Let b1, b2 ∈ [b0,∞)� be given with b1 < b2. By Theorem 5.1, we have that D(λ, b2) ⊆ D(λ, b1).
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Therefore, by (5.16) of Theorem 5.6, for a matrix M ∈ D(λ, b2), there are (unique) matrices
V1, V2 ∈ V such that

M = P
(
λ, bj
)
+ R
(
λ, bj
)
VjR
(
λ, bj
)
, j ∈ {1, 2}. (6.3)

Upon subtracting the two equations in (6.3), we get

P(λ, b2) − P(λ, b1) + R(λ, b2)V2R
(
λ, b2
)
= R(λ, b1)V1R

(
λ, b1
)
. (6.4)

This equation, when solved for V1 in terms of V2, has the form

V1 = R−1(λ, b1)
[
P(λ, b2) − P(λ, b1) + R(λ, b2)V2R

(
λ, b2
)]

R−1
(
λ, b1
)
=: T(V2), (6.5)

which defines a continuous mapping T : V → V, T(V2) = V1. Since V is compact, it follows
that the mapping T has a fixed point in V, that is, T(V ) = V for some matrix V ∈ V. Equation
T(V ) = V implies that

P(λ, b2) − P(λ, b1) = R(λ, b1)VR
(
λ, b1
)
− R(λ, b2)VR

(
λ, b2
)

= [R(λ, b1) − R(λ, b2)]VR
(
λ, b1
)
− R(λ, b2)V

[
R
(
λ, b1
)
− R
(
λ, b2
)]

.

(6.6)

Hence, by ‖V ‖ ≤ 1, we have

‖P(λ, b2) − P(λ, b1)‖ ≤ ‖R(λ, b1) − R(λ, b2)‖
∥
∥∥R
(
λ, b1
)∥∥∥ + ‖R(λ, b2)‖

∥
∥∥R
(
λ, b1
)
− R
(
λ, b2
)∥∥∥.

(6.7)

Since the functions R(λ, ·) and R(λ, ·) are monotone nonincreasing, they are bounded; that is,
for some K > 0, we have ‖R(λ, b)‖ ≤ K and ‖R(λ, b)‖ ≤ K for all b ∈ [b0,∞)

�
.

Let ε > 0 be arbitrary. The convergence of R(λ, b) and R(λ, b) as b → ∞ yields the
existence of b3 ∈ [b0,∞)� such that for every b1, b2 ∈ [b3,∞)�with b1 < b2 we have

‖R(ν, b1) − R(ν, b2)‖ ≤ ε

(2K)
, ν ∈

{
λ, λ
}
. (6.8)

Using estimate (6.8) in inequality (6.7) we obtain for b2 > b1 ≥ b3

‖P(λ, b2) − P(λ, b1)‖ <
ε

(2K)
·K +

ε

(2K)
·K = ε. (6.9)

This means that the limit P+(λ) ∈ � n×n in (6.2) exists, which completes the proof.
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By Theorems 5.1 and 5.6 we know that the Weyl disks D(λ, b) are closed, convex, and
nested as b → ∞. Thereore the limit of D(λ, b) as b → ∞ is a closed, convex, and nonempty
set. This motivates the following definition, which can be found in the special cases of system
(Sλ) in [26, Theorem 3.3], [1, Theorem 3.6], [2, Definition 4.7], and [3, Theorem 4.12].

Definition 6.2 (limiting Weyl disk). Let α ∈ Γ and λ ∈ � \ � . Then the set

D+(λ) :=
⋂

b∈[a,∞)
�

D(λ, b), (6.10)

is called the limiting Weyl disk. The matrix P+(λ) from Theorem 6.1 is called the center ofD+(λ)
and the matrices R+(λ) and R+(λ) from (6.1) its matrix radii.

As a consequence of Theorem 5.6, we obtain the following characterization of the
limiting Weyl disk.

Corollary 6.3. Let α ∈ Γ and λ ∈ � \ � . Under Hypothesis 5.2, we have

D+(λ) = P+(λ) + R+(λ)VR+

(
λ
)
, (6.11)

where V is the set of all contractive matrices defined in (5.15).

From now on we assume that Hypothesis 5.2 holds, so that the limiting center P+(λ)
and the limiting matrix radii R+(λ) and R+(λ) ofD+(λ) are well defined.

Remark 6.4. By means of the nesting property of the disks (Theorem 5.1) and Theorems 4.10
and 4.12, it follows that the elements of the limiting Weyl disk D+(λ) are of the form

M+(λ) ∈ D+(λ), M+(λ) = lim
b→∞

M
(
λ, b, α, β(b)

)
, (6.12)

where β(b) ∈ � n×2n satisfies β(b)β∗(b) = I and iδ(λ)β(b)Jβ∗(b) ≥ 0 for all b ∈ [a,∞).
Moreover, from Lemma 4.6, we conclude that

M∗
+(λ) = M+

(
λ
)
. (6.13)

A matrix M+(λ) from (6.12) is called a half-line Weyl-Titchmarsh M(λ)-function. Also, as
noted in [2, Section 4], see also [8, Theorem 2.18], the function M+(λ) is a Herglotz function
with rank n and has a certain integral representation (which will not be needed in this
paper).

Our next result shows another characterization of the elements of D+(λ) in terms of
the Weyl solution X(·, α, λ,M) defined in (4.16). This is a generalization of [11, page 671],
[26, equation (3.2)], [1, Theorem 3.8(i)], [2, Theorem 4.8], and [3, Theorem 4.15].
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Theorem 6.5. Let α ∈ Γ, λ ∈ � \ � , and M ∈ � n×n . The matrix M belongs to the limiting Weyl
disk D+(λ) if and only if

∫∞

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt ≤ Im(M)
Im(λ)

. (6.14)

Proof. By Definition 6.2, we have M ∈ D+(λ) if and only if M ∈ D(λ, b), that is, E(M,b) ≤ 0,
for all b ∈ [a,∞)

�
. Therefore, by formula (4.18), we get

∫b

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt =
E(M,b)
2|Im(λ)|

+
δ(λ) Im(M)

|Im(λ)|
≤ Im(M)

Im(λ)
, (6.15)

for every b ∈ [a,∞)
�
, which is equivalent to inequality (6.14).

Remark 6.6. In [1, Definition 3.4], the notion of a boundary of the limiting Weyl disk D+(λ)
is discussed. This would be a “limiting Weyl circle” according to Definitions 4.9 and 6.2. The
description of matrices M ∈ �

n×n laying on this boundary follows from Theorems 6.5 and
4.10, giving for such matricesM the equality

∫∞

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt =
Im(M)
Im(λ)

. (6.16)

Condition (6.16) is also equivalent to

lim
t→∞

X∗(t, λ, α,M)JX(t, λ, α,M) = 0. (6.17)

This is because, by (4.19) and the Lagrange identity (Corollary 3.6),

X∗(t, λ, α,M)JX(t, λ, α,M)

= 2i Im(λ)

[
Im(M)
Im(λ)

−
∫ t

a

Xσ∗(s, λ, α,M)W̃(s)Xσ(s, λ, α,M)Δs

]

,
(6.18)

for every t ∈ [a,∞)
�
. From this we can see that the integral on the right-hand side

above converges for t → ∞ and (6.16) holds if and only if condition (6.17) is satisfied.
Characterizations (6.16) and (6.17) of the matrices M on the boundary of the limiting Weyl
disk D+(λ) generalize the corresponding results in [1, Theorems 3.8(ii) and 3.9]; see also
[14, Theorem 6.3].

Consider the linear space of square integrable C1
prd functions

L2
W = L2

W[a,∞)
�
:=
{
z : [a,∞)

�
−→ �

2n , z ∈ C1
prd, ‖z(·)‖W < ∞

}
, (6.19)
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where we define

‖z(·)‖W :=
√
〈z(·), z(·)〉W, 〈z(·), z̃(·)〉W :=

∫∞

a

zσ∗(t)W̃(t)z̃σ(t)Δt. (6.20)

In the following result we prove that the space L2
W contains the columns of the Weyl solution

X(·, λ, α,M) when M belongs to the limiting Weyl disk D+(λ). This implies that there are at
least n linearly independent solutions of system (Sλ) in L2

W. This is a generalization of [11,
Theorem 5.1], [14, Theorem 4.1], [2, Theorem 4.10], and [5, page 716].

Theorem 6.7. Let α ∈ Γ, λ ∈ � \ � , and M ∈ D+(λ). The columns of X(·, λ, α,M) form a linearly
independent system of solutions of system (Sλ), each of which belongs to L2

W.

Proof. Let zj(·) := X(·, λ, α,M)ej for j ∈ {1, . . . , n} be the columns of the Weyl solution
X(·, λ, α,M), where ej is the jth unit vector. We prove that the functions z1(·), . . . , zn(·) are
linearly independent. Assume that

∑n
j=1 cjzj(·) = 0 on [a,∞)

�
for some c1, . . . , cn ∈ � . Then

X(·, λ, α,M)c = 0, where c := (c∗1, . . . , c
∗
n)

∗ ∈ � n . It follows by (4.19) that

2ic∗ Im(M)c = c∗X∗(a, λ, α,M)JX(a, λ, α,M)c = 0, (6.21)

which implies the equality c∗δ(λ) Im(M)c = 0. Using that M ∈ D+(λ) ⊆ D(λ, b) for some
b ∈ [b0,∞)

�
, we obtain from Theorem 4.13 that the matrix δ(λ) Im(M) is positive definite.

Hence, c = 0 so that the functions z1(·), . . . , zn(·) are linearly independent. Finally, for every
j ∈ {1, . . . , n} we get from Theorem 6.5 the inequality

∥∥zj(·)
∥∥2
W =
∫∞

a

zσ∗j (t)W̃(t)zσj (t)Δt
(6.14)
≤ e∗j

Im(M)
Im(λ)

ej ≤
‖δ(λ) Im(M)‖

|Im(λ)|
< ∞. (6.22)

Thus, zj(·) ∈ L2
W for every j ∈ {1, . . . , n}, and the proof is complete.

Denote byN(λ) the linear space of all square integrable solutions of system (Sλ), that
is,

N(λ) :=
{
z(·) ∈ L2

W, z(·) solves (Sλ)
}
. (6.23)

Then as a consequence of Theorem 6.7 we obtain the estimate

dimN(λ) ≥ n, for each λ ∈ � \ � . (6.24)

Next we discuss the situation when dimN(λ) = n for some λ ∈ � \ � .

Lemma 6.8. Let α ∈ Γ, λ ∈ � \ � , and dimN(λ) = n. Then the matrix radii of the limiting Weyl
disk D+(λ) satisfy R+(λ) = 0 = R+(λ). Consequently, the set D+(λ) consists of the single matrix
M = P+(λ), that is, the center ofD+(λ), which is given by formula (6.2) of Theorem 6.1.
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Proof. With the matrix radii R+(λ) and R+(λ) of D+(λ) defined in (6.1) and with the
Weyl solution X(·, λ, α,M) given by a matrix M ∈ D+(λ), we observe that the columns
of X(·, λ, α,M) form a basis of the space N(λ). Since the columns of the fundamental
matrix Ψ(·, λ, α) = (Z(·, λ, α) Z̃(·, λ, α)) span all solutions of system (Sλ), the definition of
X(·, λ, α,M) = Z(·, λ, α) + Z̃(·, λ, α)M yields that the columns of Z̃(·, λ, α) together with the
columns ofX(·, λ, α,M) form a basis of all solutions of system (Sλ). Hence, from dimN(λ) =
n and Theorem 6.7, we get that the columns of Z̃(·, λ, α) do not belong to L2

W. Consequently,

by formula (5.5), the Hermitian matrix functions H(·, λ, α) and H(·, λ, α) defined in (5.4) are
monotone nondecreasing on [a,∞)

�
without any upper bound; that is, their eigenvalues—

being real—tend to ∞. Therefore, the functions R(λ, ·) and R(λ, ·) as defined in (5.18) have
limits at∞ equal to zero; that is,R+(λ) = 0 andR+(λ) = 0. The fact that the setD+(λ) = {P+(λ)}
then follows from the characterization of D+(λ) in Corollary 6.3.

In the final result of this section, we establish another characterization of the matrices
M from the limiting Weyl diskD+(λ). In comparison with Theorem 6.5, we now use a similar
condition to the one in Theorem 4.12 for the regular spectral problem. However, a stronger
assumption than Hypothesis 5.2 is now required for this result to hold; compare with [9,
Lemma 2.21] and [2, Theorem 4.16].

Hypothesis 6.9. For every a0, b0 ∈ (a,∞)
�
with a0 < b0 and for every λ ∈ � , we have

∫b0

a0

Ψσ∗(t, λ, α)W̃(t)Ψσ(t, λ, α)Δt > 0. (6.25)

Under Hypothesis 6.9, the Weyl disksD(λ, b) converge to the limiting disk “monoton-
ically” as b → ∞; that is, the limiting Weyl disk D+(λ) is “open” in the sense that all of its
elements lie inside D+(λ). This can be interpreted in view of Theorem 4.12 as E(M, t) < 0 for
all t ∈ [a,∞)

�.

Theorem 6.10. Let α ∈ Γ, λ ∈ � \� , andM ∈ � n×n . Under Hypothesis 6.9, the matrixM ∈ D+(λ)
if and only if

E(M, t) < 0, ∀t ∈ [a,∞)
�
. (6.26)

Proof. If condition (6.26) holds, then M ∈ D+(λ) follows from the definition of D+(λ).
Conversely, suppose that M ∈ D+(λ), and let t ∈ [a,∞)

�
be given. Then for any b ∈ (t,∞)

�

we have by formula (4.18) that

E(M, t) = −2δ(λ) Im(M) + 2|Im(λ)|
∫ t

a

Xσ∗(s, λ, α,M)W̃(s)Xσ(s, λ, α,M)Δs

= E(M,b) − 2|Im(λ)|
∫b

t

Xσ∗(s, λ, α,M)W̃(s)Xσ(s, λ, α,M)Δs,

(6.27)
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where we used the property
∫ t
a
f(s)Δs =

∫b
a
f(s)Δs −

∫b
t
f(s)Δs. Since M ∈ D+(λ) is assumed,

we have M ∈ D(λ, b), that is, E(M,b) ≤ 0, while Hypothesis 6.9 implies the positivity of the
integral over [t, b]

� in (6.27). Consequently, (6.27) yields that E(M, t) < 0.

Remark 6.11. If we partition the Weyl solution X(·, λ) := X(·, λ, α,M) into two n × n blocks
X1(·, λ) andX2(·, λ) as in (4.28), then condition (6.26) can be written as

δ(λ) Im
(
X∗

1(t, λ)X2(t, λ)
)
> 0, ∀t ∈ [a,∞)

�
. (6.28)

Therefore, by Remark 2.2, the matricesX1(t, λ) andX2(t, λ) are invertible for all t ∈ [a,∞)
�
. A

standard argument then yields that the quotientQ(·, λ) := X2(·, λ)X−1
1 (·, λ) satisfies the Riccati

matrix equation (suppressing the argument t in the coefficients)

QΔ − (C +DQ) +Qσ(A + BQ) + λW
[
I + μ(A + BQ)

]
= 0, t ∈ [a,∞)

�
, (6.29)

see [57, Theorem 3], [48, Section 6], and [49].

7. Limit Point and Limit Circle Criteria

Throughout this section we assume that Hypothesis 5.2 is satisfied. The results from
Theorem 6.7 and Lemma 6.8 motivate the following terminology; compare with [4, page 75],
[43, Definition 1.2] in the time scales scalar case n = 1, with [8, page 3486], [36, page 1668],
[30, page 274], [38, Definition 3.1], [37, Definition 1], [67, page 2826] in the continuous case,
and with [14, Definition 5.1], [2, Definition 4.12] in the discrete case.

Definition 7.1 (limit point and limit circle case for system (Sλ)). The system (Sλ) is said to be
in the limit point case at∞ (or of the limit point type) if

dimN(λ) = n, ∀λ ∈ � \ � . (7.1)

The system (Sλ) is said to be in the limit circle case at∞ (or of the limit circle type) if

dimN(λ) = 2n, ∀λ ∈ � \ � . (7.2)

Remark 7.2. According to Remark 6.4 (in which β(b) ≡ β), the center P+(λ) of the limiting
Weyl disk D+(λ) can be expressed in the limit point case as

P+(λ) = M+(λ) = lim
b→∞

M
(
λ, b, α, β

)
, (7.3)

where β ∈ Γ is arbitrary but fixed.

Next we establish the first main result of this section. Its continuous time version
can be found in [30, Theorem 2.1], [11, Theorem 8.5] and the discrete time version in [9,
Lemma 3.2], [2, Theorem 4.13].



Abstract and Applied Analysis 29

Theorem 7.3. Let the system (Sλ) be in the limit point or limit circle case, fix α ∈ Γ, and let λ, ν ∈
� \ � . Then

lim
t→∞

X∗
+(t, λ, α,M+(λ))JX+(t, ν, α,M+(ν)) = 0, (7.4)

whereX+(·, λ, α,M+(λ)) andX+(·, ν, α,M+(ν)) are theWeyl solutions of (Sλ) and (Sν), respectively,
defined by (4.16) through thematricesM+(λ) andM+(ν), which are determined by the limit in (6.12).

Proof. For every t ∈ [a,∞)
�

and matrices β(t) ∈ � n×2n such that β(t)β∗(t) = I and
iδ(λ)β(t)Jβ∗(t) ≥ 0 and for κ ∈ {λ, ν}, we define the matrix (compare with Definition 4.5)

M
(
κ, t, α, β(t)

)
:= −
[
β(t)Z̃(t, κ, α)

]−1
β(t)Z(t, κ, α). (7.5)

Then, by Theorems 4.10 and 4.12, we have M(κ, t, α, β(t)) ∈ D(κ, t). Following the notation
in (4.16), we consider the Weyl solutions X(·, κ) := X(·, κ, α,M(κ, t, α, β(·))). Similarly, let
X+(·, κ) := X(·, κ, α,M+(κ)) be the Weyl solutions corresponding to the matrices M+(κ) ∈
D+(κ) from the statement of this theorem.

First assume that the system (Sλ) is of the limit point type. In this case, by Remark 7.2,
we may take β(t) ∈ Γ for all t ∈ [a,∞)

�
. Hence, from Theorem 4.10, we get that β(·)X(·, κ) = 0

on [a,∞)
�
. By (4.3), for each t ∈ [a,∞)

�
and κ ∈ {λ, ν}, there is a matrix Qκ(t) ∈ � n×n such

that X(·, κ) = Jβ∗(·)Qκ(·) on [a,∞)
�
. Hence, we have on [a,∞)

�

X∗
+(t, λ)JX+(t, ν) + F

(
t, λ, ν, β(t)

)
+G
(
t, λ, ν, β(t)

)

= X∗(t, λ)JX(t, ν) = Q∗
λ(t)β(t)Jβ

∗(t)Qν(t) = 0,
(7.6)

where we define

F
(
t, λ, ν, β(t)

)
:= X∗

+(t, λ)JZ̃(t, ν, α)
[
M
(
ν, t, α, β(t)

)
−M+(ν)

]
,

G
(
t, λ, ν, β(t)

)
:=
[
M∗(λ, t, α, β(t)

)
−M∗

+(λ)
]
Z̃∗(t, λ, α)JX(t, ν).

(7.7)

If we show that

lim
t→∞

F
(
t, λ, ν, β(t)

)
= 0, lim

t→∞
G
(
t, λ, ν, β(t)

)
= 0, (7.8)

then (7.6) implies the result claimed in (7.4). First we prove the second limit in (7.8). Pick any
t ∈ [b0,∞)

�
. By Theorem 5.6, Corollary 6.3, andD+(λ) ⊆ D(λ, t), we have

M
(
λ, t, α, β(t)

)
= P(λ, t) + R(λ, t)U(t)R

(
λ, t
)
, M+(λ) = P(λ, t) + R(λ, t)V (t)R

(
λ, t
)
,

(7.9)
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where U(t) ∈ U and V (t) ∈ V. Therefore,

M
(
λ, t, α, β(t)

)
−M+(λ) = R(λ, t)[U(t) − V (t)]R

(
λ, t
)
. (7.10)

Since Z̃(·, λ, α) and X(·, ν) are, respectively, solutions of systems (Sλ) and (Sν) which satisfy
Z̃∗(a, λ, α)JX(a, ν) = −I, it follows from Corollary 3.6 that

Z̃∗(t, λ, α)JX(t, ν) = −I +
(
λ − ν

)∫ t

a

Z̃σ∗(s, λ, α)W̃(s)Xσ(s, ν)Δs. (7.11)

Hence, we can write

G
(
t, λ, ν, β(t)

)
= R
(
λ, t
)
[U∗(t) − V ∗(t)]R(λ, t)

[(
λ − ν

)∫ t

a

Z̃σ∗(s, λ, α)W̃(s)Xσ(s, ν)Δs − I

]

,

(7.12)

where we used the Hermitian property of R(λ, t) and R(λ, t). Since we now assume that
system (Sλ) is in the limit point case, we know from Lemma 6.8 that limt→∞R(λ, t) = 0 and
limt→∞R(λ, t) = 0. Therefore, in order to establish (7.8)(ii), it is sufficient to show that

R(λ, t)
∫ t

a

Z̃σ∗(s, λ, α)W̃(s)Xσ(s, ν)Δs, (7.13)

is bounded for t ∈ [b0,∞)
�
. Let η ∈ � n be a unit vector, and denote byXj(·, ν) := X(·, ν)ej the

jth column of X(·, ν) for j ∈ {1, . . . , n}. With the definition of R(λ, ·) in (5.18) we have

∣∣∣
∣∣

∫ t

a

η∗R(λ, s)Z̃σ∗(s, λ, α)W̃(s)Xσ
j (s, ν)Δs

∣∣∣
∣∣

≤
∫ t

a

∣∣∣W̃1/2(s)Z̃σ∗(s, λ, α)R(λ, s)η
∣∣∣
∣∣∣W̃1/2(s)Xσ

j (s, ν)
∣∣∣Δs

C-S
≤
(∫ t

a

η∗R(λ, s)Z̃σ∗(s, λ, α)W̃(s)Z̃σ(s, λ, α)R(λ, s)ηΔs

)1/2

×
(∫ t

a

Xσ∗
j (s, ν)W̃(s)Xσ

j (s, ν)Δs

)1/2

,

(7.14)

where the last step follows from the Cauchy-Schwarz inequality (C-S) on time scales. From
(5.5) we obtain

H−1/2(t, λ, α)
∫ t

a

Z̃σ∗(s, λ, α)W̃(s)Z̃σ(s, λ, α)ΔsH−1/2(t, λ, α) =
1

2|Im(λ)|
I, (7.15)
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so that the first term in the product in (7.14) is bounded by 1/
√
2| Im(λ)|. Moreover, from

formula (4.18)we get that the second term in the product in (7.14) is bounded by the number
[e∗j Im(M(ν, t, α, β(t)))ej]/ Im(ν). Hence, upon recalling the limit in (6.12), we conclude that
the product in (7.14) is bounded by

1
2|Im(λ)|

·
e∗j Im(M+(ν))ej

Im(ν)
, (7.16)

which is independent of t. Consequently, the second limit in (7.8) is established. The first limit
in (7.8) is then proven in a similar manner. The proof for the limit point case is finished.

If the system (Sλ) is in the limit circle case, then for κ ∈ {λ, ν} the columns of Z̃(·, κ, α)
and X+(·, κ) belong to L2

W; hence, they are bounded in the L2
W norm. In this case the limits in

(7.8) easily follow from the limit (6.12) for M+(κ), κ ∈ {λ, ν}.

In the next result we provide a characterization of the system (Sλ) being of the limit
point type. Special cases of this statement can be found, for example, in [14, Theorem 6.12]
and [2, Theorem 4.14].

Theorem 7.4. Let α ∈ Γ. The system (Sλ) is in the limit point case if and only if, for every λ ∈ � \ �
and every square integrable solutions z1(·, λ) and z2(·, λ) of (Sλ) and (Sλ), respectively, we have

z∗1(t, λ)Jz2
(
t, λ
)
= 0, ∀t ∈ [b0,∞)

�
. (7.17)

Proof. Let (Sλ) be in the limit point case. Fix any λ ∈ � \ � , and suppose that z1(·, λ) and
z2(·, λ) are solutions of (Sλ) and (Sλ), respectively. Then, by Theorem 6.7 and Remark 6.4,
there are vectors ξ1, ξ2 ∈ � n such that z1(·, λ) = X+(·, λ)ξ1 and z2(·, λ) = X+(·, λ)ξ2 on [a,∞)

�
,

where X+(·, κ) := X+(·, κ, α,M+(κ)) are the Weyl solutions corresponding to some matrices
M+(κ) ∈ D+(κ) for κ ∈ {λ, λ}. In fact, by Lemma 6.8, the matrix M+(κ) is equal to the center
of the disk D+(κ). It follows that for any t ∈ [b0,∞)

�
equality

X∗
+(t, λ)JX+

(
t, λ
)

(4.16)
=
(
I M∗

+(λ)
)
Ψ∗(t, λ, α)JΨ

(
t, λ, α

)(
I M∗

+(λ)
)∗ (3.19)(i)

= M∗
+

(
λ
)
−M∗

+(λ)
(6.13)
= 0,

(7.18)

holds, so that (7.17) is established. Conversely, let ν ∈ � \ � be arbitrary but fixed, set
λ := ν, and suppose that, for every square integrable solutions z1(·, λ) and z2(·, ν) of (Sλ)
and (Sν), condition (7.17) is satisfied. From Theorem 6.7 we know that for M+(κ) ∈ D+(κ)
the columns X[j]

+ (·, κ), j ∈ {1, . . . , n}, of the Weyl solution X+(·, κ) are linearly independent
square integrable solutions of (Sκ), κ ∈ {λ, ν}. Therefore, dimN(λ) ≥ n, and dimN(ν) ≥ n.
Moreover, by identity (3.19)(i), we have

X∗
+(t, λ)JX

[j]
+ (t, ν) = 0, ∀t ∈ [b0,∞)

�
, j ∈ {1, . . . , n}. (7.19)
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Let z(·, ν) be any square integrable solution of system (Sν). Then, by our assumption (7.17),

X∗
+(t, λ)Jz(t, ν) = 0, ∀t ∈ [b0,∞)

�
. (7.20)

From (7.19) and (7.20) it follows that the vectors X[j]
+ (a, ν), j ∈ {1, . . . , n}, and z(a, ν) are

solutions of the linear homogeneous system

X∗
+(a, λ)Jη = 0. (7.21)

Since, by Theorem 6.7, the vectorsX[j]
+ (a, ν) for j ∈ {1, . . . , n} represent a basis of the solution

space of system (7.21), there exists a vector ξ ∈ �
n such that z(a, ν) = X+(a, ν)ξ. By the

uniqueness of solutions of system (Sν) we then get z(·, ν) = X+(·, ν)ξ on [a,∞)
�
. Hence, the

solution z(·, ν) is square integrable and dimN(ν) = n. Since ν ∈ � \� was arbitrary, it follows
that the system (Sλ) is in the limit point case.

As a consequence of the above result, we obtain a characterization of the limit point
case in terms of a condition similar to (7.17), but using a limit. This statement is a general-
ization of [30, Corollary 2.3], [9, Corollary 3.3], [14, Theorem 6.14], [2, Corollary 4.15], [1,
Theorem 3.9], [3, Theorem 4.16].

Corollary 7.5. Let α ∈ Γ. The system (Sλ) is in the limit point case if and only if, for every λ, ν ∈ � \�
and every square integrable solutions z1(·, λ) and z2(·, ν) of (Sλ) and (Sν), respectively, we have

lim
t→∞

z∗1(t, λ)Jz2(t, ν) = 0. (7.22)

Proof. The necessity follows directly from Theorem 7.3. Conversely, assume that condition
(7.22) holds for every λ, ν ∈ � \� and every square integrable solutions z1(·, λ) and z2(·, ν) of
(Sλ) and (Sν). Fix λ ∈ � \ � , and set ν := λ. By Corollary 3.7 we know that z∗1(·, λ)Jz2(·, ν) is
constant on [a,∞)

�
. Therefore, by using condition (7.22), we can see that identity (7.17)must

be satisfied, which yields by Theorem 7.4 that the system (Sλ) is of the limit point type.

8. Nonhomogeneous Time Scale Symplectic Systems

In this section we consider the nonhomogeneous time scale symplectic system

zΔ(t, λ) = S(t, λ)z(t, λ) − JW̃(t)fσ(t), t ∈ [a,∞)�, (8.1)

where the matrix function S(·, λ) and W̃(·) are defined in (3.3) and (3.1), f ∈ L2
W, and where

the associated homogeneous system (Sλ) is either of the limit point or limit circle type at ∞.
Together with system (8.1)we consider a second system of the same form but with a different
spectral parameter and a different nonhomogeneous term

yΔ(t, ν) = S(t, ν)y(t, ν) − JW̃(t)gσ(t), t ∈ [a,∞)
�
, (8.2)

with g ∈ L2
W. The following is a generalization of Theorem 3.5 to nonhomogeneous systems.
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Theorem 8.1 (Lagrange identity). Let λ, ν ∈ � and m ∈ � be given. If z(·, λ) and y(·, ν) are
2n ×m solutions of systems (8.1) and (8.2), respectively, then

[
z∗(t, λ)Jy(t, ν)

]Δ

=
(
λ − ν

)
zσ∗(t, λ)W̃(t)yσ(t, ν) − fσ∗(t)W̃(t)yσ(t, ν) + zσ∗(t, λ)W̃(t)gσ(t), t ∈ [a,∞)

�
.

(8.3)

Proof. Formula (8.3) follows by the product rule (2.1) with the aid of the relation

zσ(t, λ) =
[
I + μ(t)S(t, λ)

]
z(t, λ) + μ(t)W̃(t)fσ(t), (8.4)

and identity (3.6).

For α ∈ Γ, λ ∈ � \ � , and t, s ∈ [a,∞)
�
, we define the function

G(t, s, λ, α) :=

⎧
⎨

⎩

Z̃(t, λ, α)X∗
+

(
s, λ, α

)
, for t ∈ [a, s)

�
,

X+(t, λ, α)Z̃∗
(
s, λ, α

)
, for t ∈ [s,∞)

�
,

(8.5)

where Z̃(·, λ, α) is the solution of system (Sλ) given in (4.10), that is, Z̃(a, λ, α) = −Jα∗, and
X+(·, λ, α) := X(·, λ, α,M+(λ)) is the Weyl solution of (Sλ) as in (4.16) determined by a matrix
M+(λ) ∈ D+(λ). This matrixM+(λ) ∈ D+(λ) is arbitrary but fixed throughout this section. By
interchanging the order of the arguments t and s, we have

G(t, s, λ, α) =

⎧
⎨

⎩

X+(t, λ, α)Z̃∗
(
s, λ, α

)
, for s ∈ [a, t]

�
,

Z̃(t, λ, α)X∗
+

(
s, λ, α

)
, for s ∈ (t,∞)

�
.

(8.6)

In the literature the function G(·, ·, λ, α) is called a resolvent kernel, compare with [30,
page 283], [32, page 15], [2, equation (5.4)], and in this section it will play a role of the Green
function.

Lemma 8.2. Let α ∈ Γ and λ ∈ � \ � . Then

X+(t, λ, α)Z̃∗
(
t, λ, α

)
− Z̃(t, λ, α)X∗

+

(
t, λ, α

)
= J, ∀t ∈ [a,∞)

�
. (8.7)

Proof. Identity (8.7) follows by a direct calculation from the definition of X+(·, λ, α) via (4.16)
with a matrix M+(λ) ∈ D+(λ) by using formulas (3.21) and (6.13).

In the next lemma we summarize the properties of the function G(·, ·, λ, α), which
together with Proposition 8.4 and Theorem 8.5 justifies the terminology “Green function” of
the system (8.1); compare with [68, Section 4]. A discrete version of the following result can
be found in [2, Lemma 5.1].
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Lemma 8.3. Let α ∈ Γ and λ ∈ � \ � . The function G(·, ·, λ, α) has the following properties:

(i) G∗(t, s, λ, α) = G(s, t, λ, α) for every t, s ∈ [a,∞)
�
, t /= s,

(ii) G∗(t, t, λ, α) = G(t, t, λ, α) − J for every t ∈ [a,∞)
�
,

(iii) G(σ(t), σ(t), λ, α) = [I + μ(t)S(t, λ)]G(t, σ(t), λ, α) + J for every right-scattered point
t ∈ [a,∞)

�
,

(iv) for every t, s ∈ [a,∞)
�
such that t /∈ T(s), the function G(·, s, λ, α) solves the homogene-

ous system (Sλ) on the set T(s), where

T(s) :=
{
τ ∈ [a,∞)

�
, τ /= ρ(s) if s is left-scattered

}
, (8.8)

(v) the columns of G(·, s, λ, α) belong to L2
W for every s ∈ [a,∞)

�
, and the columns of

G(t, ·, λ, α) belong to L2
W for every t ∈ [a,∞)

�
.

Proof. Condition (i) follows from the definition of G(·, s, λ, α) in (8.5). Condition (ii) is a
consequence of Lemma 8.2. Condition (iii) is proven from the definition of G(σ(t), σ(t), λ, α)
in (8.5) by using Lemma 8.2 and Z̃(t, λ, α) = Z̃σ(t, λ, α) − μ(t)S(t, λ)Z̃(t, λ, α). Concerning
condition (iv), the function G(·, s, λ, α) solves the system (Sλ) on [s,∞)

�
because X+(·, λ, α)

solves this system on [s,∞)
�
. If s ∈ (a,∞)

�
is left-dense, then G(·, s, λ, α) solves (Sλ) on

[a, s)
�
, since Z̃(·, λ, α) solves this system on [a, s)

�
. For the same reason G(·, s, λ, α) solves

(Sλ) on [a, ρ(s))
�
if s ∈ (a,∞)

�
is left-scattered. Condition (v) follows from the definition

of G(·, s, λ, α) in (8.5) used with t ≥ s and from the fact that the columns of X+(·, λ, α)
belong to L2

W, by Theorem 6.7. The columns of G(t, ·, λ, α) then belong to L2
W by part (i) of

this lemma.

Since by Lemma 8.3(v) the columns of G(t, ·, λ, α) belong to L2
W, the function

ẑ(t, λ, α) := −
∫∞

a

G(t, σ(s), λ, α)W̃(s)fσ(s)Δs, t ∈ [a,∞)�, (8.9)

is well defined whenever f ∈ L2
W. Moreover, by using (8.6), we can write ẑ(t, λ, α) as

ẑ(t, λ, α) = −X+(t, λ, α)
∫ t

a

Z̃σ∗
(
s, λ, α

)
W̃(s)fσ(s)Δs

− Z̃(t, λ, α)
∫∞

t

Xσ∗
+

(
s, λ, α

)
W̃(s)fσ(s)Δs, t ∈ [a,∞)

�
.

(8.10)

Proposition 8.4. For α ∈ Γ, λ ∈ � \ � , and f ∈ L2
W, the function ẑ(·, λ, α) defined in (8.9) solves

the nonhomogeneous system (8.1) with the initial condition αẑ(a, λ, α) = 0.
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Proof. By the time scales product rule (2.1) when we Δ-differentiate expression (8.10), we
have for every t ∈ [a,∞)

�
(suppressing the dependence on α in the the following calculation)

ẑΔ(t, λ) = −XΔ
+ (t, λ)

∫ t

a

Z̃σ∗
(
s, λ
)
W̃(s)fσ(s)Δs − Xσ

+(t, λ)Z̃
σ∗
(
t, λ
)
W̃(t)fσ(t)

− Z̃Δ(t, λ)
∫∞

t

Xσ∗
+

(
s, λ
)
W̃(s)fσ(s)Δs + Z̃σ(t, λ)Xσ∗

+

(
t, λ
)
W̃(t)fσ(t)

= S(t, λ)ẑ(t, λ) −
[
Xσ

+(t, λ)Z̃
σ∗
(
t, λ
)
− Z̃σ(t, λ)Xσ∗

+

(
t, λ
)]

W̃(t)fσ(t)

(8.7)
= S(t, λ)ẑ(t, λ) − JW̃(t)fσ(t).

(8.11)

This shows that ẑ(·, λ, α) is a solution of system (8.1). From (8.10) with t = a, we get

αẑ(a, λ, α) = −αZ̃(a, λ, α)
∫∞

a

Xσ∗
+

(
s, λ, α

)
W̃(s)fσ(s)Δs = 0, (8.12)

where we used the initial condition Z̃(a, λ, α) = −Jα∗ and αJα∗ = 0 coming from α ∈ Γ.

The following theorem provides further properties of the solution ẑ(·, λ, α) of system
(8.1). It is a generalization of [10, Lemma 4.2], [11, Theorem 7.5], [2, Theorem 5.2] to time
scales.

Theorem 8.5. Let α ∈ Γ, λ ∈ � \ � , and f ∈ L2
W. Suppose that system (Sλ) is in the limit point or

limit circle case. Then the solution ẑ(·, λ, α) of system (8.1) defined in (8.9) belongs to L2
W and satisfies

‖ẑ(·, λ, α)‖W ≤ 1
|Im(λ)|

∥∥f
∥∥
W , (8.13)

lim
t→∞

X∗
+(t, ν, α)Jẑ(t, λ, α) = 0, for every ν ∈ � \ � . (8.14)

Proof. To shorten the notation we suppress the dependence on α in all quantities appearing
in this proof. Assume first that system (Sλ) is in the limit point case. For every r ∈ [a,∞)

�
we

define the function fr(·) := f(·) on [a, r]
�
and fr(·) := 0 on (r,∞)

�
and the function

ẑr(t, λ) := −
∫∞

a

G(t, σ(s), λ)W̃(s)fσ
r (s)Δs = −

∫ r

a

G(t, σ(s), λ)W̃(s)fσ(s)Δs. (8.15)

For every t ∈ [r,∞)
�
we have as in (8.10) that

ẑr(t, λ) = −X+(t, λ)g(r, λ), g(r, λ) :=
∫ r

a

Z̃σ∗
(
s, λ
)
W̃(s)fσ(s)Δs. (8.16)
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Since by Theorem 6.7 the solution X+(·, λ) ∈ L2
W, (8.16) shows that ẑr(·, λ), being a multiple

of X+(·, λ), also belongs to L2
W. Moreover, by Theorem 7.3,

lim
t→∞

ẑ∗r(t, λ)Jẑr(t, λ)
(8.16)
= g∗(r, λ) lim

t→∞
X∗

+(t, λ)JX+(t, λ)g(r, λ)
(7.4)
= 0. (8.17)

On the other hand, ẑ∗r(a, λ)Jẑr(a, λ) = 0, and for any t ∈ [a,∞)
�
identity (8.3) implies

ẑ∗r(t, λ)Jẑr(t, λ)

= −2i Im(λ)
∫ t

a

ẑσ∗r (s, λ)W̃(s)ẑσr (s, λ)Δs + 2i Im

(∫ t

a

ẑσ∗r (s, λ)W̃(s)fσ
r (s)Δs

)

.
(8.18)

Combining (8.18), where t → ∞, formula (8.17), and the definition on fr(·) yields

‖ẑr(·, λ)‖2W =
∫∞

a

ẑσ∗r (s, λ)W̃(s)ẑσr (s, λ)Δs =
1

Im(λ)
Im
(∫ r

a

ẑσ∗r (s, λ)W̃(s)fσ(s)Δs

)
. (8.19)

By using the Cauchy-Schwarz inequality (C-S) on time scales and W̃(·) ≥ 0, we then have

‖ẑr(·, λ)‖2W =
1

2i Im(λ)

[∫ r

a

ẑσ∗r (s, λ)W̃(s)fσ(s)Δs −
∫ r

a

fσ∗(s)W̃(s)ẑσr (s, λ)Δs

]

≤ 1
|Im(λ)|

∣
∣∣∣

∫ r

a

ẑσ∗r (s, λ)W̃(s)fσ(s)Δs

∣
∣∣∣

C-S
≤ 1

|Im(λ)|

(∫ r

a

ẑσ∗r (s, λ)W̃(s)ẑσr (s, λ)Δs

)1/2(∫ r

a

fσ∗(s)W̃(s)fσ(s)Δs

)1/2

≤ 1
|Im(λ)| ‖

ẑr(·, λ)‖W
∥∥f
∥∥
W.

(8.20)

Since ‖ẑr(·, λ)‖W is finite by ẑr(·, λ) ∈ L2
W, we get from the above calculation that

‖ẑr(·, λ)‖W ≤ 1
|Im(λ)|

∥∥f
∥∥
W. (8.21)

We will prove that (8.21) implies estimate (8.13) by the convergence argument. For any t, r ∈
[a,∞)

�we observe that

ẑ(t, λ) − ẑr(t, λ) = −
∫∞

r

G(t, σ(s), λ)W̃(s)fσ(s)Δs. (8.22)

Now we fix q ∈ [a, r)
�
. By the definition of G(·, ·, λ) in (8.5) we have for every t ∈ [a, q]

�

ẑ(t, λ) − ẑr(t, λ) = −Z̃(t, λ)
∫∞

r

X∗
+

(
σ(s), λ

)
W̃(s)fσ(s)Δs. (8.23)
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Since the functions X+(·, λ) and f(·) belong to L2
W, it follows that the right-hand side of (8.23)

converges to zero as r → ∞ for every t ∈ [a, q]
�
. Hence, ẑr(·, λ) converges to the function

ẑ(·, λ) uniformly on [a, q]
�
. Since ẑ(·, λ) = ẑr(·, λ) on [a, q]

�
, we have by W̃(·) ≥ 0 and (8.21)

that

∫q

a

ẑσ∗(s, λ)W̃(s)ẑσ(s, λ)Δs ≤ ‖ẑr(·, λ)‖2W
(8.21)
≤ 1

|Im(λ)|2
∥
∥f
∥
∥2
W. (8.24)

Since q ∈ [a,∞)
�
was arbitrary, inequality (8.24) implies the result in (8.13). In the limit circle

case inequality (8.13) follows by the same argument by using the fact that all solutions of
system (Sλ) belong to L2

W.
Now we prove the existence of the limit (8.14). Assume that the system (Sλ) is in the

limit point case, and let ν ∈ � \ � be arbitrary. Following the argument in the proof of [30,
Lemma 4.1] and [2, Theorem 5.2], we have from identity (8.3) that for any r, t ∈ [a,∞)

�

X∗
+(t, ν)Jẑr(t, λ) = X∗

+(a, ν)Jẑr(a, λ) + (ν − λ)
∫ t

a

Xσ∗
+ (s, ν)W̃(s)ẑσr (s, λ)Δs

+
∫ t

a

Xσ∗
+ (s, ν)W̃(s)fσ

r (s)Δs.

(8.25)

Since for t ∈ [r,∞)
�
equality (8.16) holds, it follows that

lim
t→∞

X∗
+(t, ν)Jẑr(t, λ) = − lim

t→∞
X∗

+(t, ν)JX+(t, λ)g(r, λ)
(7.4)
= 0. (8.26)

Hence, by (8.25),

X∗
+(a, ν)Jẑr(a, λ) = (λ − ν)

∫∞

a

Xσ∗
+ (s, ν)W̃(s)ẑσr (s, λ)Δs −

∫ r

a

Xσ∗
+ (s, ν)W̃(s)fσ(s)Δs. (8.27)

By the uniform convergence of ẑr(·, λ) to ẑ(·, λ) on compact intervals, we get from (8.27)with
r → ∞ the equality

X∗
+(a, ν)Jẑ(a, λ) = (λ − ν)

∫∞

a

Xσ∗
+ (s, ν)W̃(s)ẑσ(s, λ)Δs −

∫∞

a

Xσ∗
+ (s, ν)W̃(s)fσ(s)Δs. (8.28)

On the other hand, by (8.3), we obtain for every t ∈ [a,∞)
�

X∗
+(t, ν)Jẑ(t, λ) = X∗

+(a, ν)Jẑ(a, λ) + (ν − λ)
∫ t

a

Xσ∗
+ (s, ν)W̃(s)ẑσ(s, λ)Δs

+
∫ t

a

Xσ∗
+ (s, ν)W̃(s)fσ(s)Δs.

(8.29)
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Upon taking the limit in (8.29) as t → ∞ and using equality (8.28), we conclude that the limit
in (8.14) holds true.

In the limit circle case, the limit in (8.14) can be proved similarly as above, because all
the solutions of system (Sλ) now belong to L2

W. However, in this case, we can apply a direct
argument to show that (8.14) holds. By formula (8.10) we get for every t ∈ [a,∞)

�

X∗
+(t, ν)Jẑ(t, λ) = −X∗

+(t, ν)JX+(t, λ)
∫ t

a

Z̃σ∗
(
s, λ
)
W̃(s)fσ(s)Δs

− X∗
+(t, ν)JZ̃(t, λ)

∫∞

t

Xσ∗
+

(
s, λ
)
W̃(s)fσ(s)Δs.

(8.30)

The limit of the first term in (8.30) is zero becauseX∗
+(t, ν)JX+(t, λ) tends to zero for t → ∞

by (7.4), and it is multiplied by a convergent integral as t → ∞. Since the columns of Z̃(·, λ)
belong to L2

W, the function X∗
+(·, ν)JZ̃(·, λ) is bounded on [a,∞)

�
, and it is multiplied by an

integral converging to zero as t → ∞. Therefore, formula (8.14) follows.

In the last result of this paper we construct another solution of the nonhomogeneous
system (8.1) satisfying condition (8.14) and such that it starts with a possibly nonzero initial
condition at t = a. It can be considered as an extension of Theorem 8.5.

Corollary 8.6. Let α ∈ Γ and λ ∈ � \ � . Assume that (Sλ) is in the limit point or limit circle case.
For f ∈ L2

W and v ∈ � n we define

z̃(t, λ, α) := X+(t, λ, α)v + ẑ(t, λ, α), ∀t ∈ [a,∞)�, (8.31)

where ẑ(·, λ, α) is given in (8.9). Then z̃(·, λ, α) solves the system (8.1) with αz̃(a, λ, α) = v,

‖z̃(·, λ, α)‖W ≤ 1
|Im(λ)|

∥∥f
∥∥
W + ‖X+(·, λ, α)v‖W, (8.32)

lim
t→∞

X∗
+(t, ν, α)Jz̃(t, λ, α) = 0, for every ν ∈ � \ � . (8.33)

In addition, if the system (Sλ) is in the limit point case, then z̃(·, λ, α) is the only L2
W solution of (8.1)

satisfying αz̃(a, λ, α) = v.

Proof. As in the previous proof we suppress the dependence on α. Since the functionX+(·, λ)v
solves (Sλ), it follows fromProposition 8.4 that z̃(·, λ, α) solves the system (8.1) and αz̃(a, λ) =
αX+(a, λ)v = v. Next, z̃(·, λ) ∈ L2

W as a sum of two L2
W functions. The limit in (8.33) follows

from the limit (8.14) of Theorem 8.5 and from identity (7.4), because

lim
t→∞

X∗
+(t, ν)Jz̃(t, λ) = lim

t→∞
{X∗

+(t, ν)JX+(t, λ)v +X∗
+(t, ν)Jẑ(t, λ)} = 0. (8.34)

Inequality (8.32) is obtained from estimate (8.13) by the triangle inequality.
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Now we prove the uniqueness of z̃(·, λ) in the case of (Sλ) being of the limit point
type. If z1(·, λ) and z2(·, λ) are two L2

W solutions of (8.1) satisfying αz1(a, λ) = v = αz2(a, λ),
then their difference z(·, λ) := z1(·, λ)−z2(·, λ) also belongs to L2

W and solves system (Sλ)with
αz(·, λ) = 0. Since z(·, λ) = Ψ(·, λ)c for some c ∈ � 2n , the initial condition αz(·, λ) = 0 implies
through (4.7) that z(·, λ) = Z̃(·, λ)d for some d ∈ � n . If d /= 0, then z(·, λ) /∈ L2

W, because

in the limit point case the columns of Z̃(·, λ) do not belong to L2
W, which is a contradiction.

Therefore, d = 0 and the uniqueness of z̃(·, λ) is established.
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Entwicklungen willkürlicher Funktionen,” Mathematische Annalen, vol. 68, no. 2, pp. 220–269, 1910.

[16] E. C. Titchmarsh, “On expansions in eigenfunctions,” Journal of the LondonMathematical Society, vol. 14,
pp. 274–278, 1939.



40 Abstract and Applied Analysis

[17] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I,
Clarendon Press, Oxford, UK, 2nd edition, 1962.

[18] C. Bennewitz and W. N. Everitt, “The Titchmarsh-Weyl eigenfunction expansion theorem for
Sturm-Liouville differential equations,” in Sturm-Liouville Theory. Past and Presen, Proceedings of the
International Colloquium (Geneva, 2003), W. O. Amrein, A. M. Hinz, and D. B. Pearson, Eds., pp. 137–
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