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Let A be an algebra, and let θ, φ be ring automorphisms of A. An additive mapping H : A → A
is called a (θ, φ)-derivation if H(xy) = H(x)θ(y) + φ(x)H(y) for all x, y ∈ A. Moreover, an
additive mapping F : A → A is said to be a generalized (θ, φ)-derivation if there exists a (θ, φ)-
derivation H : A → A such that F(xy) = F(x)θ(y) + φ(x)H(y) for all x, y ∈ A. In this paper,
we investigate the superstability of generalized (θ, φ)-derivations in non-Archimedean algebras
by using a version of fixed point theorem via Cauchy’s functional equation.

1. Introduction and Preliminaries

In 1897, Hensel [1] has introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications [2, 3].

A non-Archimedean field is a field K equipped with a function (valuation) | · | from K

into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤ max{|r|, |s|} for all
r, s ∈ K. An example of a non-Archimedean valuation is the mapping | · | taking everything
but 0 into 1 and |0| = 0. This valuation is called trivial (see [4]).
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Definition 1.1. Let X be a vector space over a scalar field K with a non-Archimedean non-
trivial valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it
satisfies the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0,

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X,

(NA3) ‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X (the strong triangle inequality).

A sequence {xm} in a non-Archimedean space is Cauchy’s if and only if {xm+1 − xm}
converges to zero. By a complete non-Archimedean space, we mean one in which every
Cauchy’s sequence is convergent. A non-Archimedean-normed algebra is a non-Archime-
dean-normed space A with a linear associative multiplication, satisfying ‖xy‖ ≤ ‖x‖‖y‖ for
all x, y ∈ A. A non-Archimedean complete normed algebra is called a non-Archimedean
Banach’s algebra (see [5]).

Definition 1.2. Let X be a nonempty set, and let d : X × X → [0,∞] satisfy the following
properties:

(D1) d(x, y) = 0 if and only if x = y,

(D2) d(x, y) = d(y, x) (symmetry),

(D3) d(x, z) ≤ max{d(x, y), d(y, z)} (strong triangle inequality),

for all x, y, z ∈ X. Then (X, d) is called a non-Archimedean generalized metric space. (X, d)
is called complete if every d-Cauchy’s sequence in X is d-convergent.

Definition 1.3. LetA be a non-Archimedean algebra, and let θ, φ be ring automorphisms ofA.
An additive mapping H : A → A is called a (θ, φ)-derivation in case H(xy) = H(x)θ(y) +
φ(x)H(y) holds for all x, y ∈ A. An additive mapping F : A → A is said to be a generalized
(θ, φ)-derivation if there exists a (θ, φ)-derivationH : A → A such that

F
(
xy

)
= F(x)θ

(
y
)
+ φ(x)H

(
y
)

(1.1)

for all x, y ∈ A.

We need the following fixed point theorem (see [6, 7]).

Theorem 1.4 (Non-Archimedean Alternative Contraction Principle). Suppose (X, d) is a non-
Archimedean generalized complete metric space and Λ : X → X is a strictly contractive mapping;
that is,

d
(
Λx,Λy

) ≤ Ld(x, y) (
x, y ∈ X)

(1.2)

for some L < 1. If there exists a nonnegative integer k such that d(Λk+1x,Λkx) <∞ for some x ∈ X,
then the followings are true.

(a) The sequence {Λnx} converges to a fixed point x∗ of Λ.

(b) x∗ is a unique fixed point of Λ in

X∗ =
{
y ∈ X | d

(
Λkx, y

)
<∞

}
. (1.3)
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(c) If y ∈ X∗, then

d
(
y, x∗) ≤ d(Λy, y). (1.4)

A functional equation (ξ) is superstable if every approximately solution of (ξ) is an exact
solution of it.

The stability of functional equations was first introduced by Ulam [8] during his talk
before a mathematical colloquium at the University of Wisconsin in 1940. In 1941, Hyers [9]
gave a first affirmative answer to the question of Ulam for Banach spaces. In 1978, Rassias
[10] generalized the theorem of Hyers by considering the stability problem with unbounded
Cauchy’s differences ‖f(x + y) − f(x) − f(y)‖ ≤ ε(‖x‖p + ‖y‖p), (ε > 0, p ∈ [0, 1)). Moreover,
John Rassias [11–13] investigated the stability of some functional equations when the control
function is the product of powers of norms. In 1991, Gajda [14] answered the question for
the case p > 1, which was raised by Rassias. This new concept is known as the Hyers-Ulam-
Rassias or the generalized Hyers-Ulam stability of functional equations ([11–13, 15–35]).

In 1992, Gǎvruţa [36] generalized the Rassias theorem as follows.
Suppose (G,+) is an ablian group, X is a Banach space, ϕ : G ×G → [0,∞) satisfies

ϕ̃
(
x, y

)
=

1
2

∞∑

n=0

2−nϕ
(
2nx, 2ny

)
<∞, (1.5)

for all x, y ∈ G. If f : G → X is a mapping with

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ϕ(x, y), (1.6)

for all x, y ∈ G, then there exists a uniquemapping T : G → X such that T(x+y) = T(x)+T(y)
and ‖f(x) − T(x)‖ ≤ ϕ̃(x, x) for all x, y ∈ G.

In 1949, Bourgin [37] proved the following result, which is sometimes called the
superstability of ring homomorphisms: suppose that A and B are Banach algebras with unit.
If f : A → B is a surjective mapping such that

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ε,
∥∥f

(
xy

) − f(x)f(y)∥∥ ≤ δ,
(1.7)

for some ε ≥ 0, δ ≥ 0 and for all x, y ∈ A, then f is a ring homomorphism.
The first superstability result concerning derivations between operator algebras was

obtained by Šemrl in [38]. Badora [39] proved the superstability of the functional equation
f(xy) = xf(y)+f(x)y, where f is a mapping on normed algebraAwith unit. Ansari-Piri and
Anjidani [40] discussed the superstability of generalized derivations on Banach’s algebras.
Recently, Eshaghi Gordji et al. [41] investigated the stability and superstability of higher
ring derivations on non-Archimedean Banach’s algebras (see also [42]). In this paper, we
investigate the superstability of generalized (θ, φ)-derivations on non-Archimedean Banach
algebras by using the fixed point methods.
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2. Non-Archimedean Superstability of Generalized (θ,φ)-Derivations

In this paper, we assume that A is a non-Archimedean Banach’s algebra, with unit over a
non-Archimedean field K, and θ, φ are ring automorphisms of A.

Theorem 2.1. Let ϕ, ψ : A ×A → [0,∞) be functions. Suppose that f : A → A is a mapping such
that

∥
∥f

(
x + y

) − f(x) − f(y)∥∥ ≤ ϕ(x, y), (2.1)
∥
∥f

(
xy

) − f(x)θ(y) − φ(x)g(y)∥∥ ≤ ψ(x, y), (2.2)

for all x, y ∈ A. If there exist constants K,L < 1 and a natural number k ∈ K,

|k|−1ϕ(kx, ky) ≤ Lϕ(x, y), |k|−1ψ(kx, y), |k|−1ψ(x, ky) ≤ Kψ(x, y), (2.3)

for all x, y ∈ A, then f is a generalized (θ, φ)-derivation and g is a (θ, φ)-derivation.

Proof. By induction on i, we prove that for each n ∈ N0, for all x ∈ A and i ≥ 2,

∥∥f(ix) − if(x)∥∥ ≤ max
{
ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ((i − 1)x, x)

}
. (2.4)

Let x = y in (2.1), then

∥∥f(2x) − 2f(x)
∥∥ ≤ max

{
ϕ(0, 0), ϕ(x, x)

}
, n ∈ N0, x ∈ A. (2.5)

This proves (2.4) for i = 2. Let (2.4) hold for i = 1, 2, . . . , J . Replacing x by jx and y by x in
(2.1) for each n ∈ N0, and for all x ∈ A, we get

∥∥f
((
j + 1

)
x
) − f(jx) − f(x)∥∥ ≤ max

{
ϕ(0, 0), ϕ

(
jx, x

)}
. (2.6)

Since

f
((
j + 1

)
x
) − f(jx) − f(x) = f((j + 1

)
x
) − (

j + 1
)
f(x) +

(
j + 1

)
f(x) − f(jx) − f(x)

= f
((
j + 1

)
x
) − (

j + 1
)
f(x) + jf(x) − f(jx),

(2.7)

for all x ∈ A, it follows from induction hypothesis and (2.6) that, for all x ∈ A,

∥∥f
((
j + 1

)
x
) − (

j + 1
)
f(x)

∥∥ ≤ max
{∥∥f

((
j + 1

)
x
) − f(jx) − f(x)∥∥,∥∥jf(x) − f(jx)∥∥}

≤ max
{
ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ

((
j
)
x, x

)}
.

(2.8)
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This proves (2.4) for all i ≥ 2. In particular, for all x ∈ A,

∥
∥f(kx) − kf(x)∥∥ ≤ Φ(x), (2.9)

where

Φ(x) = max
{
ϕ(0, 0), ϕ(x, x), ϕ(2x, x), . . . , ϕ((k − 1)x, x)

}
(x ∈ A). (2.10)

Let us define a set X of all functions r : A → A by

X = {r : A −→ A} (2.11)

and introduce d on X as follows:

d(r, s) = inf{α > 0 : ‖r(x) − s(x)‖ ≤ αΦ(x)∀x ∈ A}. (2.12)

It is easy to see that d defines a generalized complete metric on X. Define J : X → X by
J(r)(x) = k−1r(kx). Then J is strictly contractive on X, in fact if

‖r(x) − s(x)‖ ≤ αΦ(x) (x ∈ A), (2.13)

then, by (2.3),

‖J(r)(x) − J(s)(x)‖ = |k|−1‖r(kx) − s(kx)‖ ≤ α|k|−1Φ(kx) ≤ LαΦ(x) (x ∈ A). (2.14)

It follows that

d(J(r), J(s)) ≤ Ld(r, s) (
g, h ∈ X)

. (2.15)

Hence, J is strictly contractive mapping with the Lipschitz constant L. By (2.9),

∥∥(Jf
)
(x) − f(x)∥∥ =

∥∥∥k−1f(kx) − f(x)
∥∥∥,

|k|−1∥∥f(kx) − kf(x)∥∥ ≤ |k|−1Φ(x) (x ∈ A).
(2.16)

This means that d(J(f), f) ≤ 1/|k|. By Theorem 1.4, J has a unique fixed point h : A → A in
the set

U =
{
r ∈ X : d

(
r, J

(
f
))

<∞}
, (2.17)

and, for each x ∈ A,

h(x) = lim
m→∞

Jm
(
f(x)

)
= lim k−mf(kmx). (2.18)
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Therefore, each x, y ∈ A,

∥
∥h

(
x + y

) − h(x) − h(y)∥∥ = lim
m→∞

|k|−m∥∥f(km(x + y
)) − f(kmx) − f(kmy)∥∥

≤ lim
m→∞

|k|−mmax
{
ϕ(0, 0), ϕ

(
knx, kny

)}

≤ lim
m→∞

Lmϕ
(
x, y

)
= 0.

(2.19)

This shows that h is additive.
Replacing y by kny in (2.2), we get

∥
∥f

(
knxy

) − f(x)θ(kny) − φ(x)g(kny)∥∥ ≤ ψ(x, kny), (2.20)

and so

∥∥∥∥∥
f
(
knxy

)

kn
− f(x)θ(y) − φ(x)g

(
kny

)

kn

∥∥∥∥∥
≤ 1

|k|n ψ
(
x, kny

) ≤ Knψ
(
x, y

)
, (2.21)

for all x, y ∈ A and each n ∈ N. By taking n → ∞, we have

h
(
xy

)
= f(x)θ

(
y
)
+ lim
n→∞

φ(x)
g
(
kny

)

kn
, (2.22)

for all x, y ∈ A.
Fixm ∈ N. By (2.22), we have

f(kmx)θ
(
y
)
= h

(
kmxy

) − lim
n→∞

φ(kmx)

(
g
(
kny

)

kn

)

= f(x)θ
(
kmy

)
+ lim
n→∞

φ(x)
(
g(knkmx)

kn

)
− km lim

n→∞
φ(x)

(
g(knx)
kn

)

= kmf(x)θ
(
y
)
+ km lim

n→∞
φ(x)

(
g(kn+mx)
kn+m

)
− km lim

n→∞
φ(x)

(
g(knx)
kn

)

= kmf(x)θ
(
y
)
,

(2.23)

for all x, y ∈ A. Then f(x)θ(y) = (f(kmx)/km)θ(y) for all x, y ∈ A and each m ∈ N, and so,
by takingm → ∞, we have f(x)θ(y) = h(x)θ(x). Now we obtain h = f , since A is with unit.
Replacing x by knx in (2.2), we obtain

∥∥f
(
kn

(
xy

)) − f(knx)θ(y) − φ(knx)g(y)∥∥ ≤ ψ(knx, y), (2.24)
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and; hence,

∥
∥
∥
∥
∥
f
(
knxy

)

kn
− f(knx)

kn
θ
(
y
) − φ(x)g(y)

∥
∥
∥
∥
∥
≤ 1

|k|n ψ
(
knx, y

) ≤ Knψ
(
x, y

)
, (2.25)

for all x, y ∈ A and each n ∈ N. Sending n to infinite, we have

f
(
xy

)
= f(x)θ

(
y
)
+ φ(x)g

(
y
)
. (2.26)

By (2.26), we get

φ(z)g
(
xy

)
= f

(
zxy

) − f(z)θ(xy)

= f(zx)θ
(
y
)
+ φ(zx)g

(
y
) − f(z)θ(xy)

=
[
f(z)θ(x) + φ(z)g(x)

]
θ
(
y
)
+ φ(zx)g

(
y
) − f(z)θ(xy)

= φ(z)
[
g(x)θ

(
y
)
+ φ(x)g

(
y
)]
,

(2.27)

for all x, y, z ∈ A. Therefore, we have g(xy) = g(x)θ(y) + φ(x)g(y).
Since f(xy) = f(x)θ(y) +φ(x)g(y), f is additive, andA is with unit, g is additive.

The proof of the following theorem is similar to that in Theorem 2.1; hence, it is omit-
ted.

Theorem 2.2. Let ϕ, ψ : A ×A → [0,∞) be functions. Suppose that f : A → A and g : A → A
are mappings such that

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ϕ(x, y),
∥∥f

(
xy

) − xf(y) − g(x)y∥∥ ≤ ψ(x, y),
(2.28)

for all x, y ∈ A. If there exists constants K,L < 1 and a natural number k ∈ K,

|k|ϕ
(
k−1x, k−1y

)
≤ Lϕ(x, y), |k|ψ

(
k−1x, y

)
, |k|ψ

(
x, k−1y

)
≤ Kψ(x, y), (2.29)

for all x, y ∈ A, then f is a generalized (θ, φ)-derivation and g is a (θ, φ)-derivation.

In the following corollaries Qp is the field of p-adic numbers.

Corollary 2.3. Let A be a non-Archimedean Banach algebra over Qp, ε > 0, and let p1, p2 ∈ (1,∞).
Suppose that

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p1∥∥y∥∥p2),
∥∥f

(
xy

) − xf(y) − g(x)y∥∥ ≤ ε(‖x‖p1∥∥y∥∥p2),
(2.30)

for all x, y ∈ A. Then f is a generalized (θ, φ)-derivation and g is a (θ, φ)-derivation.
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Proof. Let ϕ(x, y) = ψ(x, y) = ε(‖x‖p1‖y‖p2) for all x, y ∈ A; then

∣
∣p
∣
∣−1ϕ

(
px, py

)
=
∣
∣p
∣
∣p1+p2−1ε

(‖x‖p1∥∥y∥∥p2),
∣
∣p
∣
∣−1ϕ

(
px, y

)
=
∣
∣p
∣
∣p1−1ε

(‖x‖p1∥∥y∥∥p2),
∣
∣p
∣
∣−1ϕ

(
x, py

)
=
∣
∣p
∣
∣p2−1ε

(‖x‖p1∥∥y∥∥p2).

(2.31)

Put

L = K = max
{∣
∣p
∣
∣p1−1,

∣
∣p
∣
∣p2−1,

∣
∣p
∣
∣p1+p2−1

}

= max
{
p1−p1 , p1−p2 , p1−p1−p2

}
.

(2.32)

So, by Theorem 2.1, f is a generalized (θ, φ)-derivation and g is a (θ, φ)-derivation.

Corollary 2.4. Let A be a non-Archimedean Banach algebra over Qp, ε > 0, and let p1, p2, p1 + p2 ∈
(−∞, 1). Suppose that

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p1∥∥y∥∥p2),
∥∥f

(
xy

) − xf(y) − g(x)y∥∥ ≤ ε(‖x‖p1∥∥y∥∥p2),
(2.33)

for all x, y ∈ A. Then f is a generalized (θ, φ)-derivation and g is a (θ, φ)-derivation.

Proof. Let ϕ(x, y) = ψ(x, y) = ε(‖x‖p1‖y‖p2) for all x, y ∈ A, then

∣∣p
∣∣ϕ

(
p−1x, p−1y

)
=
∣∣p
∣∣1−p1−p2 ε

(‖x‖p1∥∥y∥∥p2),
∣∣p
∣∣ϕ

(
p−1x, y

)
=
∣∣p
∣∣1−p1ε

(‖x‖p1∥∥y∥∥p2),
∣∣p
∣∣ϕ

(
x, p−1y

)
=
∣∣p
∣∣1−p2ε

(‖x‖p1∥∥y∥∥p2).

(2.34)

Put

L = K = max
{∣∣p

∣∣1−p1 ,
∣∣p
∣∣1−p2 ,

∣∣p
∣∣1−p1−p2

}

= max
{
pp1−1, pp2−1, pp1+p2−1

}
.

(2.35)

So, by Theorem 2.2, f is a generalized (θ, φ)-derivation and g is a (θ, φ)-derivation.
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Similarly, we can obtain the following results.

Corollary 2.5. Let A be a non-Archimedean Banach’s algebra over Qp, ε > 0, δ > 0, and let p1, p2 ∈
(1,∞). Suppose that

∥
∥f

(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p1 + ∥
∥y

∥
∥p2),

∥
∥f

(
xy

) − xf(y) − g(x)y∥∥ ≤ δ(‖x‖p1∥∥y∥∥p2),
(2.36)

for all x, y ∈ A. Then f is a generalized (θ, φ)-derivation and g is a (θ, φ)-derivation.

Corollary 2.6. Let A be a non-Archimedean Banach’s algebra over Qp, ε > 0, δ > 0, and let p1, p2 ∈
(1,∞). Suppose that

max
{∥∥f

(
x + y

) − f(x) − f(y)∥∥,∥∥f(xy) − xf(y) − g(x)y∥∥}

≤ εmin
{(‖x‖p1 + ∥∥y

∥∥p2), ‖x‖p1∥∥y∥∥p2},
(2.37)

for all x, y ∈ A. Then f is a generalized (θ, φ)-derivation and g is a (θ, φ)-derivation.

Corollary 2.7. Let A be a non-Archimedean Banach’s algebra over Qp, ε > 0, δ > 0, and let
p1, p2, p1 + p2 ∈ (−∞, 1). Suppose that

∥∥f
(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p1 + ∥∥y
∥∥p2),

∥∥f
(
xy

) − xf(y) − g(x)y∥∥ ≤ δ(‖x‖p1∥∥y∥∥p2),
(2.38)

for all x, y ∈ A. Then f is a generalized (θ, φ)-derivation and g is a (θ, φ)-derivation.
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