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We applied a new approach to obtain natural frequency of the nonlinear oscillator with discon-
tinuity. He’s Hamiltonian approach is modified for nonlinear oscillator with discontinuity for
which the elastic force term is proportional to sgn(u). We employed this method for higher-
order approximate solution of the nonlinear oscillator equation. This property is used to obtain
approximate frequency-amplitude relationship of a nonlinear oscillator with high accuracy. Many
numerical results are given to prove the efficiency of the suggested technique.

1. Introduction

The study of nonlinear oscillator problems is of crucial importance not only in all areas
of physics but also in engineering and other disciplines. It is of great importance to study
analytically nonlinear oscillators to obtain approximate frequency-amplitude relationship
because of their wide applications. Traditional perturbation method provides us with a
simple approach to the determination of the frequency-amplitude relationship, but the results
are valid only for special cases, that is, for weakly nonlinear systems or for the case when
the amplitude is very small. In order to overcome the shortcomings arising in traditional
perturbation methods, various alternative approaches have been proposed, for example,
variational iteration method [1–3], homotopy perturbation method [4–7], Lindstedt-Poincare
method [8], variational approach [9, 10], parameter-expanding method [11] and max-min
approach [12], harmonic balance method [13], and Hamiltonian approach [14].
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In the present study, the mentioned parameters are those undetermined values in
the assumed solution. In the three-parameters technique, the motion is assumed as u =
A0 cosωt + A1 cos 3ωt, where ω, A0, A1 are the angular frequency of motion and Fourier
coefficients, respectively. The three undetermined parameters are determined by using the
governing equation of motion and the initial conditions imposed. The way for obtaining the
parameters inHe’s Hamiltonian technique is quite different from that in the harmonic balance
method. Therefore, the present technique is not the same as the harmonic balance method.
Finally, the paper provides a lot of higher accurate results for the angular frequency ω of the
motion.

2. Analysis

In this paper, we consider a general form of nonlinear oscillator

ü + f(u) = 0 (2.1)

with initial conditions u(0) = A and u̇(0) = 0.
The variational principle for (2.1) suggested by He [9] can be written as

J(u) =
∫T/4

0

(
u̇2

2
− F(u)

)
dt, (2.2)

where T is period of the nonlinear oscillator, ∂F/∂u = f . In the functional (2.2), u̇2/2 is the
kinetic energy, so that the functional (2.2) is the least Lagrangian action, from which we can
write the Hamiltonian

H =
u̇2

2
+ F(u) = constant. (2.3)

In previous work [14], the trail function u = A coswt. In this paper, we consider a general
trail function is of the form u =

∑n
i=0 Ai cos((2i + 1)ωt). From (2.3), we have

∂H

∂Ai
= 0. (2.4)

Introducing a new function, Ĥ(u) defined as

Ĥ(u) =
∫T/4

0

(
u̇2

2
+ F(u)

)
dt =

1
4
TH. (2.5)

It is obvious that

∂Ĥ

∂T
=

H

4
. (2.6)
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Equation (2.4) is, then, equivalent to the following one

∂

∂Ai

(
∂Ĥ

∂T

)
= 0 (2.7a)

or

∂

∂Ai

(
∂Ĥ

∂(1/w)

)
= 0, i = 0, 1, 2, . . . , n. (2.7b)

From system of (2.7a) and (2.7b), we can obtain approximate frequency-amplitude relation-
ship of a nonlinear oscillator up to higher order.

3. Approximation by Multiple-Parameter Hamiltonian Technique

Consider the following nonlinear oscillator with discontinuity

ü + sgn(u) = 0 (3.1)

with initial conditions u(0) = A and u̇(0) = 0.
Here, we suppose that f(u) = sgn(u) such that

sgn(u) =

{
−1, u < 0,

1, u ≥ 0.
(3.2)

Therefore,

f(u) =

{
−1, u < 0,
1, u > 0.

(3.3)

Its variational formulation can be written as

J(u) =
∫T/4

0

(
− u̇

2

2
+ u

)
dt +

∫T/2

T/4

(
− u̇

2

2
− u

)
dt, (3.4)

and Ĥ(u) can be written in the form as

Ĥ(u) =
∫T/4

0

(
u̇2

2
+ u

)
dt +

∫T/2

T/4

(
u̇2

2
− u

)
dt. (3.5)

Using u =
∑n

i=0 Ai cos((2i + 1)ωt) as an approximate solution. Here, we consider second-,
third-, and higher-order Hamiltonian approach. The Hamiltonian approach applied by He
[14] and obtained the frequency-amplitude relationship ω1(app) = 1.128379/

√
A for the first-

order approximation of u = A0 cosωt.



4 International Journal of Differential Equations

To obtain more accurate results assume that the solution can be expressed as

u = A0 cosωt +A1 cos 3ωt. (3.6)

According to the initial conditions:

A = A0 +A1. (3.7)

Inserting (3.6) in (3.5), we obtain

Ĥ(u) =
∫T/4

0

(
1
2
(A0ω sinωt + 3A1ω sin 3ωt)2 + (A0 cosωt +A1 cos 3ωt)

)
dt

+
∫T/2

T/4

(
1
2
(A0ω sinωt + 3A1ω sin 3ωt)2 − (A0 cosωt +A1 cos 3ωt)

)
dt,

Ĥ(u) =
∫π/2

0

(
ω

2
(A0 sin t + 3A1 sin 3t)2 +

1
ω
(A0 cos t +A1 cos 3t)

)
dt

+
∫π

π/2

(
ω

2
(A0 sin t + 3A1 sin 3t)2 − 1

ω
(A0 cos t +A1 cos 3t)

)
dt,

Ĥ(u) =
6A0 − 2A1

3ω
+
πω

(
A2

0 + 9A2
1

)
4

,

(3.8)

setting

∂

∂A0

(
∂Ĥ

∂(1/ω)

)
= 2 − ω2πA0

2
= 0,

∂

∂A1

(
∂Ĥ

∂(1/ω)

)
= −2

3
− 9ω2πA1

2
= 0.

(3.9)

After some mathematical simplification by using Mathematica built-in utilities, we achieved

A0 = 1.038461A, A1 = −0.038461A. (3.10)

We obtained the following frequency-amplitude relationship for nonlinear oscillator with
discontinuity:

ω2(app) =
1.107286√

A
. (3.11)
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Since the accuracy of the obtained results in three-parameters technique is not so high, the
four parameters technique is introduced as follows:

u = A0 cosωt +A1 cos 3ωt +A2 cos 5ωt, (3.12)

where A0, A1, A2, ω are four undetermined parameters. According to the initial conditions:

A = A0 +A1 +A2,

∂

∂A0

(
∂Ĥ

∂(1/ω)

)
= 2 − ω2πA0

2
= 0,

∂

∂A1

(
∂Ĥ

∂(1/ω)

)
= −2

3
− 9ω2πA1

2
= 0,

∂

∂A2

(
∂Ĥ

∂(1/ω)

)
=

2
5
− 25ω2πA2

2
= 0.

(3.13)

After some mathematical simplification by using Mathematica built-in utilities, we achieved

A0 = 1.029905A, A1 = −0.038144A, A2 = 0.008239A. (3.14)

We obtained the following frequency-amplitude relationship for nonlinear oscillator with dis-
continuity

ω3(app) =
1.111876√

A
. (3.15)

which is very close to the exact one [1, 14, 15]

ωExact =
π

2
√
2A

=
1.110721√

A
. (3.16)

4. Discussion and Conclusion

The present method is an extremely simple method, leading to high accuracy of the obtained
results. The main merit of the method is that the obtained results are valid for the whole
solution domain. In this study, we obtained the relative error as 0.309% for the second-
order approximation while the other researchers [1, 8] obtained the relative error as 1.8%.
The reason for the difference in the relative error is that the other researchers take less
precision in the decimal numbers during calculations. We reached 0.103%, 0.046%, 0.024%,
0.014%, 0.009%, and 0.006% relative errors for the third, fourth, fifth, sixth, seventh, and
eighth approximate periods, respectively. However, the calculations of the higher-order
approximation are not presented. One can obtain higher-order accuracy by extending the
idea given in this paper. Comparison of the multiple-parameter Hamiltonian solution with
numerical solution obtained by Mathematica built-in utilities is given in Figure 1.
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Figure 1: Comparison for the u versus u̇ trajectory for the case of A = 1; bold line represents the numerical
solution; and black line represents the multiple-parameter Hamiltonian approach (a) six-parameter (b)
eight-parameter.
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