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A mathematical model is proposed to study the role of distributed delay on plankton ecosystem
in the presence of a toxic producing phytoplankton. The model includes three state variables,
namely, nutrient concentration, phytoplankton biomass, and zooplankton biomass. The release
of toxic substance by phytoplankton species reduces the growth of zooplankton and this plays an
important role in plankton dynamics. In this paper, we introduce a delay (time-lag) in the digestion
of nutrient by phytoplankton. The stability analysis of all the feasible equilibria are studied and the
existence of Hopf-bifurcation for the interior equilibrium of the system is explored. From the above
analysis, we observe that the supply rate of nutrient and delay parameter play important role in
changing the dynamical behaviour of the underlying system. Further, we have derived the explicit
algorithm which determines the direction and the stability of Hopf-bifurcation solution. Finally,
numerical simulation is carried out to support the theoretical result.

1. Introduction

The study of plankton system is an important area of research in marine ecology.
Phytoplankton perform great service for earth. They provide food for marine life, oxygen
for human being and also absorb half of the carbon dioxide which may be contributing to
the global warming [1]. The dynamics of rapid (massive) increase or almost equal decrease
of phytoplankton population is a common feature in marine plankton ecology and known
as bloom. Blooms of red tide produce chemical toxin, a type of paralytic poison which can
be harmful to zooplankton, fin fish, shellfish, fish, birds, marine mammals, and humans
also. Some species, such as the dinoflagellate Alexandrium tamarense and the diatom Pseudo-
nitzschia australis [2] produce potent toxins which are liberated into the water before
they are eaten, and they may well affect zooplankton when they are in water. It is now
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well established that a significant number of phytoplankton species produce toxin, such as
Pseudo-nitzschia, Gambierdiscus toxicus, Prorocentrum, Ostrepsis, Coolia monotis, Thecadinium,
Amphidinium carterae, Dinophysis, Gymnodinium breve, Alexandrium, Gymodinium catenatum,
Pyrodinium bahamense, Pfiesteria piscicida, Chrysochromulina polylepis, Prymnesium patelliferum,
and P. parvum [3, 4]. Reduction of grazing pressure due to toxin is an important phenomena
in plankton ecology [5, 6]. In aquatic system, toxin-producing phytoplankton may act as
controlling factor in the phytoplankton-zooplankton interaction dynamics. Efforts have been
made to study the role of toxin producing phytoplankton on the phytoplankton-zooplankton
dynamics [7–9]. Toxicity may be the strong mediator of zooplankton feeding rate as shown
by field studies [4, 10] and laboratory study [11].

Many researchers have been showing keen interest to investigate the direction and
stability of Hopf-bifurcation of the system as refer their in [12, 13].

Our current study is motivated by [7, 8, 14], who have considered nutrient interaction
with phytoplankton, phytoplankton interaction with zooplankton. The study of interacting
species systemwith nutrient cycling which contributes to the growth of nutrient is carried out
in [9, 14, 15]. Amodel can bemore realistic if a delay effect (or time-lag) is being considered in
the conversion from one species to another species [15–17]. The prey-predator systems with
time delay are deeply considered by [18, 19] and many researchers have used distributed
delay in their models [15, 16].

2. Mathematical Model Formulation

Let N(t) denote the concentration of nutrient at time t, x(t) denotes the biomass of toxic
producing phytoplankton in the habitat that are partially harmful to zooplankton biomass,
y(t). We assume a constant supply rate of nutrient (i.e.,N0) in the system. The loss of nutrient
due to leaching is assumed to be given by the term aN. We take a1 as the growth rate
of phytoplankton biomass, w as the rate of predation of phytoplankton by zooplankton,
and w1 denotes the corresponding conversion rate of zooplankton. The phytoplankton and
zooplankton interaction is assumed to follow the Holling type-II functional response [20, 21]
with D as half saturation constant. Again, the specific rate of nutrient uptake by per unit
biomass of phytoplankton in unit time is considered to be bN and depletion of zooplankton
biomass due to toxin-producing phytoplankton is given by the term c1xy. We further assume
that phytoplankton and zooplankton biomass deplete due to natural mortality at the rate
of b1 and a2, respectively, and k is the fraction of dead phytoplankton biomass that is
being recycled back to the nutrient pool. With these assumption and notations, the resultant
dynamics of the system under consideration is given by the following set of differential
equations [14]:

dN

dt
= N0 − aN − bNx + kb1x,

dx

dt
= a1Nx − b1x − wxy

D + x
,

dy

dt
=

w1xy

D + x
− a2y − c1xy,

(2.1)

with nonnegative initial conditions N(0), x(0), y(0) > 0. The above system of equations can
be nondimensionalised using the relations x1 = N/D, x2 = x/D, x3 = y/D, τ = at, and
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introducing the new parameters α = N0/aD, β = bD/a, γ = b1/a, β1 = a1D/a, μ = w/a,
μ1 = w1/a, ξ = a2/a, and ξ1 = c1D/a. The non-dimensionalised equations of the above
system (2.1) are as follows in which we have replaced τ by t and get

dx1

dt
= α − x1 − βx1x2 + kγx2,

dx2

dt
= β1x1x2 − γx2 −

μx2x3

1 + x2
,

dx3

dt
=

μ1x2x3

1 + x2
− ξx3 − ξ1x2x3,

(2.2)

with initial conditions: x1(0) > 0, x2(0) > 0, x3(0) > 0, where, α, β, γ , β1, μ, μ1, ξ, ξ1, and
0 < k < 1 are positive constants.

In this paper, our mathematical model is an extension of the system (2.2) which is
studied earlier [14]. Now, we have introduced distributed delay in the digestion of nutrient
by phytoplankton. The system (2.2) can be written as

dx1

dt
= α − x1 − βx1x2 + kγx2,

dx2

dt
= β1x2

∫ t

−∞
α1 exp(−α1(t − s))f(s)ds − γx2 −

μx2x3

1 + x2
,

(2.3)

where f(s) = f(x1) = x1(s), α1 is delay parameter,

dx3

dt
=

μ1x2x3

1 + x2
− ξx3 − ξ1x2x3, (2.4)

putting

R(t) =
∫ t

−∞
α1 exp(−α1(t − s))f(s)ds. (2.5)

The above system of delay differential equation can be written as

dx1

dt
= α − x1 − βx1x2 + kγx2,

dx2

dt
= β1x2R − γx2 −

μx2x3

1 + x2
,

dx3

dt
=

μ1x2x3

1 + x2
− ξx3 − ξ1x2x3,

dR

dt
= α1(x1 − R),

(2.6)

with the additional initial condition: R(0) > 0.
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3. Boundedness and Equilibria of the System

In this section, wewill establish that the system (2.6) is bounded.We begin with the following
lemma.

Lemma 3.1. The system (2.6) is uniformly bounded in Ω1, where

Ω1 =
{
(x1, x2, x3, R) : 0 ≤ x1(t) + x2(t) + x3(t) + R(t) ≤ α

η1

}
, (3.1)

η1 = min{(1 − α), γ(1 − kβ1/β), ξ, α1}.

Proof. Let us consider a time dependent function:

W1(t) = x1(t) +
β

β1
x2(t) +

βμ

β1μ1
x3(t) + R(t). (3.2)

Clearly,

dW1

dt
=

dx1

dt
+

β

β1

dx2

dt
+

βμ

β1μ1

dx3

dt
+
dR

dt
. (3.3)

Using (2.6) in the above expression we obtain

dW1

dt
=
[
α − x1 − βx1x2 + kγx2

]
+

β

β1

[
β1x2R − γx2 −

μx2x3

1 + x2

]

+
μβ

μ1β1

[
μ1x2x3

1 + x2
− ξx3 − ξ1x2x3

]
+ [α1(x1 − R)],

= α − (1 − α1)x1 − γ

(
1 − k

β1
β

)
β

β1
x2 − ξ

μβ

μ1β1
x3 − ξ1

μβ

μ1β1
x2x3 − α1R + (R − x1)βx2

≤ α − η1W1(t) + (R − x1)βx2,

(3.4)

where η1 is chosen as the minimum of {(1 − α1), γ(1 − kβ1/β), ξ, α1}. Thus,

dW1

dt
+ η1W1 ≤ α + (R − x1)βx2. (3.5)

Now applying the theorem of differential inequalities [22], we obtain

0 < W1(t) ≤ W1(0)e−η1t +
α

η1
+
∫
(R − x1)βx2e

−η1tdt, (3.6)
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as t → ∞, R → x1, which gives

0 ≤ W1 ≤ α

η1
. (3.7)

Hence the solution of the system (2.6) is bounded in Ω1.

We now consider the existence of possible equilibria of the system (2.6). The system of
(2.6) has three feasible equilibria, namely,

(i) boundary equilibrium: E1 ≡ (α, 0, 0, α),

(ii) boundary equilibrium: E2 ≡ (γ/β1, (αβ1 − γ)/(β − kβ1)γ, 0, γ/β1). The boundary
equilibrium E2 exists if either γ/α < β1 < β/k or β/k < β1 < γ/α is satisfied, that
is, growth rate of phytoplankton biomass lies between the fraction of natural death
rate of phytoplankton biomass to constant supply rate of nutrient and the fraction
of nutrient uptake by phytoplankton biomass to fraction of dead phytoplankton
biomass,

(iii) positive interior equilibrium: E3 ≡ (x∗
1, x

∗
2, x

∗
3, R

∗), where

x∗
1 =

α + kγx∗
2

1 + βx∗
2
, x∗

3 =
1
μ

[(
β1x

∗
1 − γ

)(
1 + x∗

2
)]
, R∗ =

α + kγx∗
2

1 + βx∗
2
,

x∗
2 =

−s2 ±
√
s22 − 4s1s3

2s1
, s1 = ξ1, s2 = −(μ1 − (ξ + ξ1)

)
, s3 = ξ.

(3.8)

The positive interior equilibrium E3 exists if μ1 > ξ + ξ1, that is, the growth rate of
zooplankton biomass is greater than the sum of natural death rate and death due to
harmful phytoplankton, and also if x∗

1 > γ/β1 means that concentration of nutrient
at equilibrium is greater than the fraction of natural death rate of phytoplankton
biomass to the depletion rate of nutrient uptake by phytoplankton biomass.

4. Dynamic Behaviour and Hopf-Bifurcation

In the previous section we observed that the system of (2.6) have three equilibria, namely,
E1(α, 0, 0, α), E2(γ/β, (αβ1 − γ)/(β−kβ1)γ, 0, γ/β), and E3(x∗

1, x
∗
2, x

∗
3, R

∗). We will now examine
the dynamical behaviour of the system about all the feasible equilibria.

The variational matrix for the system of (2.6) evaluated at E1 is

V1 =

⎡
⎢⎢⎢⎢⎢⎣

−1 −(αβ − kγ
)

0 0

0
(
αβ1 − γ

)
0 0

0 0 −ξ 0

α1 0 0 −α1

⎤
⎥⎥⎥⎥⎥⎦
. (4.1)

The eigenvalues of the characteristic equation of V1 are λ1 = −1, λ2 = (αβ1 − γ),
λ3 = −ξ, and λ4 = −α1. It is seen from these eigenvalues that the equilibrium E1 is locally
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asymptotically stable if β1 < γ/α, which means that the growth rate of phytoplankton due
to the availability of nutrient is less than the fraction of natural death rate of phytoplankton
biomass to the constant input rate of nutrient.

The variational matrix for the system of (2.6) evaluated about E2 is

V2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β1
(
αβ − kγ

)
γ
(
β − kβ1

) −(β − kβ1
)
γ

β1
0 0

0 0
−μ(αβ1 − γ

)
γ
(
β − kβ1

)
+
(
αβ1 − γ

) β1
(
αβ1 − γ

)
γ
(
β − kβ1

)
0 0 j33 0

α1 0 0 −α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.2)

where

j33 =
−
[(√

ξγ
(
β − kβ1

) −√ξ1
(
αβ1 − γ

))2
+
((√

ξ +
√
ξ1
)2 − μ1

)
γ
(
αβ1 − γ

)(
β − kβ1

)]
(
γ
(
β − kβ1

)
+
(
αβ1 − γ

))(
γ
(
β − kβ1

)) .

(4.3)

The eigenvalues λ1, λ2, and λ3 of the above matrix are the roots of the following cubic
equation:

λ3 +

[
β1
(
αβ − kγ

)
γ
(
β − kβ1

) + α1

]
λ2 +

α1β1
(
αβ − kγ

)
γ
(
β − kβ1

) λ + α1
(
αβ1 − γ

)
= 0, (4.4)

and the fourth eigenvalue is given by λ4 = j33.
Clearly, λ1, λ2, and λ3 have negative real parts if (αβ − kγ)(β − kβ1) > 0, β1 > γ/α,

that is, growth rate of phytoplankton biomass is greater then the fraction of natural death
rate of phytoplankton biomass to constant supply rate of nutrient and β1(αβ − kγ)(β1(αβ −
kγ) + α1γ(β − kβ1)) > (β − kβ1)

2(αβ1 − γ)γ2 are satisfied, the eigenvalue λ4 is negative when
ξ + ξ1 + 2

√
ξ
√
ξ1 > μ1. Thus, we can state the following theorem.

Theorem 4.1. The second boundary equilibrium E2 is linearly asymptotically stable if

(i)
(
αβ − kγ

)(
β − kβ1

)
> 0,

(ii) β1 >
γ

α
,

(iii) ξ + ξ1 + 2
√
ξ
√
ξ1 > μ1,

(iv) β1
(
αβ − kγ

)(
β1
(
αβ − kγ

)
+ α1γ

(
β − kβ1

))
>
(
β − kβ1

)2(
αβ1 − γ

)
γ2,

(4.5)

are satisfied.



International Journal of Differential Equations 7

For the sake of convenience, the equilibrium points (x∗
1, x

∗
2, x

∗
3, R

∗) of the system is
shifted to new points (n1, n2, n3, n4) through transformations n1 = x1 − x∗

1, n2 = x2 − x∗
2,

n3 = x3 − x∗
3, n4 = R − R∗.

In terms of the new variables, the dynamical equations (2.6) can be written as inmatrix
form as

Ẋ = AX + B, (4.6)

where dot(·) cover X denotes the derivative with respect to time. Here AX is the linear part
of the system and B represents the nonlinear part. Moreover,

X =

⎛
⎜⎜⎜⎜⎜⎝

n1

n2

n3

n4

⎞
⎟⎟⎟⎟⎟⎠

, A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(1 + βx∗
2

) −(βx∗
1 − kγ

)
0 0

0
μx∗

2x
∗
3(

1 + x∗
2

)2
−μx∗

2

1 + x∗
2

β1x
∗
2

0

(
μ1(

1 + x∗
2

)2 − ξ1

)
x∗
3 0 0

α1 0 0 −α1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−βn1n2(
β1n2n4 + p2p3p

2
4n

3
2 − p2p3n

2
2 + p2p4n2n3 − p2p

2
4n

2
2n3 + p2p

3
4n

3
2n3

+p3p4μn2
2 − μp24p3n

3
2 − μp4n2n3 + μp24n

2
2n3
)

(
p3p5x

∗
2n

2
2 − p3p4p5x

∗
2n

3
2 − p5x

∗
2n2n3 + p4p5x

∗
2n

2
2n3 − p24p5x

∗
2n

3
2n3

−p5x∗
3n

2
2 + p5p3n

3
2 − ξ1n2n3

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.7)

The eigenvalues of the matrix A help to understand the stability of the system. The
characteristic equation for the variational matrix A is given by

λ4 +A1λ
3 +A2λ

2 +A3λ +A4 = 0, (4.8)

where

A1 = p1 − p2p3, A2 = g2α1 + p2p5x
∗
3 − p2

(
p1p3 + ξ1x

∗
3
)
,

A3 = α1β1p6x
∗
2 + p1p2p5x

∗
3 − p2

(
p1ξ1x

∗
3 + g2p3α1

)
, A4 = p2

(
p5 − ξ1

)
α1g2x

∗
3,

p1 = 1 + βx∗
2 + α1, p2 =

μx∗
2

1 + x∗
2
, p3 =

x∗
3

1 + x∗
2
, p4 =

1
1 + x∗

2
g2 = 1 + βx∗

2,

p5 =
μ1(

1 + x∗
2

)2 , p6 =
αβ − kγ

1 + βx∗
2
.

(4.9)
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Using the Routh-Hurwitz criteria [21, 23], we derive that the equilibrium E3 is locally
asymptotically stable, if A1 > 0, A3 > 0, A1A2 > A3, and A1A2A3 − A2

3 − A2
1A4 > 0. Here the

conditions A1 > 0, A3 > 0, A1A2 > A3, and A1A2A3 −A2
3 −A2

1A4 > 0 requires

μ1p1 > ξ1μx
∗
2x

∗
3, r1 + r3 > r2 + r4, p1p4α1 + L1 > p22p3p5x

∗
3 + L2,

r1L1 + r2L3 + r3L4 + r4L2 > r1L3 + r2L1 + r3L3 + r4L4,
(4.10)

where r1 = p1p2p5x
∗
3, r2 = p1p2ξ1x

∗
3, r3 = α1β1p6x

∗
2, r4 = p2p3g2α1, L1 = p1p

2
2p3 + p22p3ξ1x

∗
3,

L2 = p21p2p3 + α1β1p6x
∗
2, L3 = L2 + p22p3p5x

∗
3, L4 = L1 + p1g2α1.

Thus, we can state the following theorem.

Theorem 4.2. The interior equilibrium E3 if it exists is linearly asymptotically stable when

(i) μ1p1 > ξ1μx
∗
2x

∗
3,

(ii) r1 + r3 > r2 + r4,

(iii) p1g2α1 + L1 > p22p3p5x
∗
3 + L2,

(iv) r1L1 + r2L3 + r3L4 + r4L2 > r1L3 + r2L1 + r3L3 + r4L4,

(4.11)

are satisfied.

Now, we will study the Hopf-bifurcation [24, 25] of the system given by (2.6), taking α
(i.e., constant input rate of nutrient) as the bifurcation parameter. The necessary and sufficient
conditions for the existence of the Hopf-bifurcation for α = α∗, if it exists, are (i) Ai(α∗) > 0,
i = 1, 2, 3, 4 (ii) A1(α∗)A2(α∗) > A3(α∗) (iii) A1(α∗)A2(α∗)A3(α∗) −A2

3(α
∗) −A2

1(α
∗)A4(α∗) = 0,

and (iv) the eigenvalues of the characteristic equation (4.8) should be of the form λi = ui + ivi,
where dui/dα/= 0, i = 1, 2, 3, 4. The condition A1A2A3 −A2

3 −A2
1A4 = 0 becomes

−G1α
3 +G2α

2 +G3α +G4 = 0, (4.12)

where G1 = h1 + f1, G2 = h2 − q25 − f2, G3 = h3 − 2q5q6 − f3, G4 = h4 − q26 − f4, f1 = q22q7,
f2 = q22q8 − 2q1q2q7, f3 = q21q7 − 2q1q2q8, f4 = q21q8, h1 = l2q5, h2 = l1q5 − l2q6, h3 = l1q6 + l3q5,
h4 = l3q6, q1 = p1 − k2g6, q2 = k2g5, q3 = (p2k6 − p1k2)g5, q4 = (p2k6 − p1k2)g6 + g2α1, q5 =
(p2k6p1−g2α1k2)g5+ββ1α1g3x

∗
2, q6 = (p2k6p1−g2α1k2)g6+(βg4−kγ)β1α1x

∗
2, q7 = p2g2α1k6g5, q8 =

p2k6g2α1g6, g1 = kγx∗
2, g3 = 1/g2, g4 = g1/g2, g5 = (1 + x∗

2)g3β1/μ1, g6 = (1 + x∗
2)(g4β1 − γ)/μ,

k2 = μx∗
2/(1+x

∗
2)

2, k6 = μ1/(1+x∗
2)

2−ξ1. Therefore, one pair of eigenvalues of the characteristic
equation (4.8) at α = α∗ are of the form λ1,2 = ±iv, where v is positive real number.

Now, we will verify the Hopf-bifurcation condition (iv), putting λ = u+ iv in (4.8), we
get

(u + iv)4 +A1(u + iv)3 +A2(u + iv)2 +A3(u + iv) +A4 = 0. (4.13)
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On separating the real and imaginary parts and eliminating v between real and imaginary
parts, we have

u4 + v4 − 6u2v2 +A1u
3 − 3A1uv

2 +A2

(
u2 − v2

)
+A3u +A4 = 0, (4.14)

−4uv3 + 4u3v −A1v
3 + 3A1u

2v + 2A2uv +A3v = 0. (4.15)

Substituting the value of v2 from (4.15) in (4.14), we get

u4(4u +A1)2 +
(
4u3 + 3A1u

2 + 2A2u +A3

)2
+
(
4u3 + 3A1u

2 + 2A2u +A3

)

×
(
−6u2 − 3A1u −A2

)
(4u +A1) +

(
A1u

3 +A2u
2 +A3u +A4

)
(4u +A1)2 = 0,

(4.16)

differentiating with respect to α and putting α = α∗, we have

[
du

dα

]
α=α∗

=
(−d/dα)(A1A2A3 −A2

3 −A2
1A4
)

4A3(A2 −A3) − 2A1
(
A2

2 −A1A3
)
+ 8A1A2

/= 0. (4.17)

Hence we can state the following theorem.

Theorem 4.3. The system (2.6) has a Hopf-bifurcation at α∗ > 0 such that

A1(α∗)A2(α∗)A3(α∗) −A2
3(α

∗)2 −A2
1(α

∗)A4(α∗) = 0,
[
du

dα

]
α=α∗

/= 0. (4.18)

At the Hopf-bifurcation point, the equilibrium state loses its stability and bifurcates
to a periodic orbit. We obtain the value of α at the Hopf-bifurcation point denoted as α∗ and
solve the equation

A1A2A3 −A2
3 −A2

1A4 = 0. (4.19)

At theHopf-bifurcation point, where the real parts of complex conjugate eigenvalues are zero,
the roots of (4.8) are

λ1,2 = ±vi, λ3 = −m1, λ4 = −m2, (4.20)

where v =
√
A3/
√
A1, m1 = (−A2

1 −
√
A1

√
A3

1 − 4A1A2 + 4A3)/2A1, and m2 = (−A2
1 +√

A1

√
A3

1 − 4A1A2 + 4A3)/2A1.
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Next, we seek a transformation matrix P which reduces the matrix A to the form

P−1AP =

⎛
⎜⎜⎜⎜⎜⎝

0 −v 0 0

v 0 0 0

0 0 −m1 0

0 0 0 −m2

⎞
⎟⎟⎟⎟⎟⎠

, (4.21)

where the nonsingular matrix P is given as

P =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14

0 a22 a23 a24

a31 0 a31 a31

a41 a42 a43 a44

⎞
⎟⎟⎟⎟⎟⎠

, (4.22)

where, a11 = v2c − edα1 − α1v, a12 = α1vc + v3 + edω, a13 = (α1 − m1)(cm1 + m2
1 − ed),

a14 = (α1 − m2)(cm2 + m2
2 − ed), a22 = α1vβ1x

∗
2, a23 = α1m1β1x

∗
2, a24 = α1m2β1x

∗
2, a31 =

α1eβ1x
∗
2, a41 = (ω2 + ed)α1, a42 = vcα1, a43 = (ed − cm1 − m2

1)α1, a44 = (ed − cm2 − m2
2)α1,

c = μx∗
2x

∗
3/(1 + x∗

2)
2, d = −μx∗

2/(1 + x∗
2), e = (μ1/(1 + x∗

2)
2 − ξ1)x∗

3.
To achieve the normal form of (4.6), we make another change of variable, that is, X =

PY , where Y =

(
y1
y2
y3
y4

)
.

Through some algebraic manipulations, (4.6) takes the form

Ẏ = ΩY + F, (4.23)

where Ω = P−1AP and

F = P−1f =

⎛
⎜⎜⎜⎜⎜⎝

F1(y1, y2, y3, y4
)

F2(y1, y2, y3, y4
)

F3(y1, y2, y3, y4
)

F4(y1, y2, y3, y4
)

⎞
⎟⎟⎟⎟⎟⎠

, f is given by f =

⎛
⎜⎜⎜⎜⎜⎝

f1(y1, y2, y3, y4
)

f2(y1, y2, y3, y4
)

f3(y1, y2, y3, y4
)

f4(y1, y2, y3, y4
)

⎞
⎟⎟⎟⎟⎟⎠

, (4.24)

where, f1(y1, y2, y3, y4) = −β(a11y1 + a12y2 + a13y3 + a14y4)(a22y2 + a23y3 + a24y4),
f2(y1, y2, y3, y4) = −μp4(a22y2 + a23y3 + a24y4)(a31y1 + a31y3 + a31y4) + μp24(a22y2 + a23y3 +
a24y4)

2(a31y1+a31y3+a31y4)−p2p24(a22y2+a23y3+a24y4)
2(a31y1+a31y3+a31y4)+p2p34(a22y2+

a23y3 +a24y4)
3(a31y1 +a31y3 +a31y4)+ (a22y2 +a23y3 +a24y4)(a41y1 +a42y2 +a43y3 +a44y4)β1 +

p2p4(a22y2 + a23y3 + a24y4)x∗
3 + μp24(a22y2 + a23y3 + a24y4)

2x∗
3 − p2p

2
4(a22y2 + a23y3 + a24y4)

2x∗
3 −

μp34(a22y2 +a23y3 +a24y4)
3x∗

3 +p2p
3
4(a22y2 +a23y3 +a24y4)

3x∗
3, f

3(y1, y2, y3, y4) = −p2p4(a22y2 +
a23y3 + a24y4)(a31y1 + a31y3 + a31y4) + p2p

2
4(a22y2 + a23y3 + a24y4)

2(a31y1 + a31y3 + a31y4) −
(a22y2 + a23y3 + a24y4)(a31y1 + a31y3 + a31y4)ξ1 − p2p

3
4(a22y2 + a23y3 + a24y4)

2(a31y1 + a31y3 +
a31y4)x∗

2 −p2p4(a22y2 +a23y3 +a24y4)
2x∗

3 +p2p
2
4(a22y2 +a23y3 +a24y4)

2x∗
3 +p2p

2
4(a22y2 +a23y3 +

a24y4)
3x∗

3 − p2p
3
4(a22y2 + a23y3 + a24y4)

3x∗
3, f

4(y1, y2, y3, y4) = 0.
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Equation (4.23) is the normal form of (4.6) from which the stability coefficient can
be computed. In (4.6), on the right hand side the first term is linear and the second one is
nonlinear in y’s. For evaluating the direction of bifurcating solution, we can evaluate the
following quantities at α = α∗ and origin

g11 =
1
4

(
∂2F1

∂y2
1

+
∂2F1

∂y2
2

+ i

(
∂2F2

∂y2
1

+
∂2F2

∂y2
2

))
, (4.25)

g02 =
1
4

(
∂2F1

∂y2
1

− ∂2F1

∂y2
2

− 2
∂2F2

∂y1∂y2
+ i

(
∂2F2

∂y2
1

− ∂2F2

∂y2
2

+ 2
∂2F1

∂y1∂y2

))
, (4.26)

g20 =
1
4

(
∂2F1

∂y2
1

− ∂2F1

∂y2
2

+ 2
∂2F2

∂y1∂y2
+ i

(
∂2F2

∂y2
1

− ∂2F2

∂y2
2

− 2
∂2F1

∂y1∂y2

))
, (4.27)

G21 =
1
8

(
∂3F1

∂y3
1

+
∂3F2

∂y3
2

+
∂3F2

∂y2
1∂y2

+
∂3F1

∂y1∂y
2
2

+ i

(
∂3F2

∂y3
1

+
∂3F1

∂y3
2

+
∂3F1

∂y2
1∂y2

+
∂3F2

∂y1∂y
2
2

))
,

h1
11 =

1
4

(
∂2F3

∂y2
1

+
∂2F3

∂y2
2

)
, h2

11 =
1
4

(
∂2F4

∂y2
1

+
∂2F4

∂y2
2

)
,

h1
20 =

1
4

(
∂2F3

∂y2
1

− ∂2F3

∂y2
2

− 2i
∂2F3

∂y1∂y2

)
, h2

20 =
1
4

(
∂2F4

∂y2
1

− ∂2F4

∂y2
2

− 2i
∂2F4

∂y1∂y2

)
,

w1
11 =

h1
11

m1
, w2

11 =
h2
11

m2
, w1

20 =
h1
20

m1 + 2iw
, w2

20 =
h2
20

m2 + 2iw
,

G1
110 =

1
2

(
∂2F1

∂y1∂y3
+

∂2F2

∂y2∂y3
+ i

(
∂2F2

∂y1∂y3
− ∂2F1

∂y2∂y3

))
,

G2
110 =

1
2

(
∂2F1

∂y1∂y4
+

∂2F2

∂y2∂y4
+ i

(
∂2F2

∂y1∂y4
− ∂2F1

∂y2∂y4

))
,

G1
101 =

1
2

(
∂2F1

∂y1∂y3
− ∂2F2

∂y2∂y3
+ i

(
∂2F2

∂y1∂y3
+

∂2F1

∂y2∂y3

))
,

G2
101 =

1
2

(
∂2F1

∂y1∂y4
− ∂2F2

∂y2∂y4
+ i

(
∂2F2

∂y1∂y4
+

∂2F1

∂y2∂y4

))
,

(4.28)

g21 = G21 +
(
2G1

110w
1
11 +G1

101w
1
20 + 2G2

110w
2
11 +G2

101w
2
20

)
. (4.29)

Thus, we can determine g11, g20, g02, g21 from (4.25), (4.26), (4.27), and (4.29), respectively.
Thus, we can compute the following values:

C1(0) =
i

2w

[
g20g11 −

∣∣g11∣∣2 − 1
3
∣∣g02∣∣2

]
+
g21
2

,

μ2 =
−ReC1(0)
Reλ′(α∗)

, τ2 = −
(
ImC1(0) + μ2 Imλ′(α∗)

)
vα∗ , β2 = 2ReC1(0),

(4.30)
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Figure 1: Phase-space diagram for nutrient, phytoplankton, and zooplankton at α = 1.1.
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Figure 2: Phase-space diagram for nutrient, phytoplankton, and zooplankton at α = 1.1775.

which determine the qualities of bifurcation periodic solution in the center manifold at the
critical value α∗.

Theorem 4.4. The parameter μ2 determines the direction of the Hopf-bifurcation if μ2 > 0 (μ2 < 0),
then the Hopf-bifurcation is supercritical (subcritical) and the bifurcation periodic solutions exist for
α > α∗(α > α∗); β2 determines the stability of bifurcating periodic solution; the bifurcation periodic
solutions are orbitally asymptotically stable (unstable) if β2 < 0 (β2 > 0); τ2 determines the periodic
of the bifurcating periodic solution; the period increases (decreases) if τ2 > 0 (τ2 < 0).

5. Numerical Example

In this section, we have performed numerical simulation for both systems (2.2) aswell as (2.6)
using MATLAB. We are taking parametric values β = 0.3, γ = 0.2, k = 0.3, β1 = 0.25, μ =
0.2, μ1 = 0.19, ξ = 0.05, ξ1 = 0.01 for both systems. The behavior of the system (2.2) with
different values of α. From Figures 1, 2, 3, 4, it is observed that as α increases, the stable
system starts oscillating. Again, with these set of values and α1 = 0.12, we get a positive root
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Figure 3: Stable phase-space diagram for the system with nutrient, phytoplankton, and zooplankton at
α = 1.25.
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Figure 4: Phase-space diagram for nutrient, phytoplankton, and zooplankton at α = 1.3.

0.4
0.6

0.8
1

1.2
1.4

5

10

15
0

1

2

3

4

0 Nutrien
t

Phase space graph

Phytoplankton biomass

Z
oo

pl
an

kt
on

bi
om

as
s

0

Figure 5: Phase-space diagram for nutrient, phytoplankton, and zooplankton at α = 1.1, α1 = 0.01.
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Figure 6: Phase-space diagram for nutrient, phytoplankton, and zooplankton at α = 1.1, α1 = 0.07.
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Figure 7: Stable phase-space diagram for the system with nutrient, phytoplankton, and zooplankton at
α = 1.1, α1 = 0.12.
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Figure 8: Phase-space diagram for nutrient, phytoplankton, and zooplankton at α = 1.1775, α1 = 0.12.
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of (4.12) is α = α∗ = 1.1680. Therefore, one pair of eigenvalues of the characteristic equation
(4.8) at α = α∗ = 1.1680 are of the form λ1,2 = ±iv, where v is positive real number. Here
the positive interior equilibrium is E3(1.06505, 0.3967, 0.462745). It follows from Section 4,
Theorem 4.3, that α∗ = 1.1680, the positive equilibrium E3 is stable when α < α∗ (see Figure 7)
and the system (2.6) undergoes a Hopf-bifurcation at α > α∗ (see Figure 8). Now keeping
α = 1.1, further reduction of α1 at 0.01 and 0.07 are shown on Figures 5-6. Moreover, we can
determine the stability and direction of periodic bifurcation from the positive equilibrium at
the critical point α∗. For instance, when α = α∗ = 1.1680, g11 = −0.0000105695 − 0.0000200596i,
g20 = 0.0000362402 − 5.6110710−6i, g02 = −0.0000151012 + 0.0000457302i, g21 = −6.90210−8 −
4.0204810−8i, C1(0) = −4.0826910−8 + 1.6292810−9i, u′(α∗) = 0.00115975. It follows from (4.30)
that μ2 > 0 and β2 < 0. Therefore, the bifurcation takes place when α crosses α∗ to the right
(α > α∗), and the corresponding periodic orbits are orbitally asymptotically stable, as depicted
in Figure 8.

6. Conclusion

In this paper, we have studied the role of delay on plankton ecosystem in the presence
of a toxic producing phytoplankton. In this system, it has been assumed that the toxic
phytoplankton reduces the growth of zooplankton and studied the effect of delay in
the digestion of nutrient by phytoplankton biomass. The local stability conditions of all
the feasible equilibria of the system are established. The interior equilibrium are locally
asymptotically stable under certain conditions. We have shown numerically with the set
of parameters that at α1 = 0.01, the system exhibits the chaotic behavior (see Figure 5).
Figure 6 exhibits the oscillatory behavior of the system and further it is observed that the
increase in α1 makes the system stable (see Figure 7). For the comparison of the system (2.6),
without delay in the system, a numerical simulation of the system (2.2) is shown in Figures
1, 2, 3, 4. By applying the normal form theory and the center manifold theorem, we define
the explicit formulae that determine the stability and direction of the bifurcating periodic
solutions. For numerical experiment, it is observed that when the input rate of nutrient, α,
exceeds the critical value α∗(1.1680), the system (2.6) leads to oscillatory behaviour shown in
Figure 8. Thus, the quantitative level of abundance of system populations depends crucially
on the input rate of nutrient. Further from Theorem 4.4, we can determine the direction and
stability of Hopf-bifurcation. For these chosen set of parametric values, the Hopf-bifurcation
is supercritical and stable. Hence, we conclude that the supply rate (α) of nutrient and delay
parameter (α1) play an important role in changing the dynamical behaviour of the system.
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