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Let A and B be nonempty subsets of a metric space X and also T : A ∪ B → A ∪ B and T(A) ⊆ B,
T(B) ⊆ A. We are going to consider element x ∈ A such that d(x, Tx) ≤ d(A,B) + ε for some ε > 0.
We call pair (A,B) an approximate best proximity pair. In this paper, definitions of approximate
best proximity pair for a map and two maps, their diameters, T -minimizing a sequence are given
in a metric space.

1. Introduction

LetX be a metric space andA and B nonempty subsets ofX, and d(A,B) is distance ofA and
B. If d(x0, y0) = d(A,B), then the pair (x0, y0) is called a best proximity pair for A and B and
put

prox(A,B) :=
{(
x, y

) ∈ A × B : d
(
x, y

)
= d(A,B)

}
(1.1)

as the set of all best proximity pair (A,B). Best proximity pair evolves as a generalization of
the concept of best approximation. That reader can find some important result of it in [1–4].

Now, as in [5] (see also [4, 6–11]), we can find the best proximity points of the sets A
and B, by considering a map T : A ∪ B → A ∪ B such that T(A) ⊆ B and T(B) ⊆ A. Best
proximity pair also evolves as a generalization of the concept of fixed point of mappings.
Because if A ∩ B/= ∅, every best proximity point is a fixed point of T .

We say that the point x ∈ A ∪ B is an approximate best proximity point of the pair
(A,B), if d(x, Tx) ≤ d(A,B) + ε, for some ε > 0.

In the following, we introduce a concept of approximate proximity pair that is stronger
than proximity pair.
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Definition 1.1. Let A and B be nonempty subsets of a metric space X and T : A ∪ B → A ∪ B
a map such that T(A) ⊆ B, T(B) ⊆ A. put

Pa
T (A,B) = {x ∈ A ∪ B : d(x, Tx) ≤ d(A,B) + ε for some ε > 0}. (1.2)

We say that the pair (A,B) is an approximate best proximity pair if Pa
T (A,B)/= ∅.

Example 1.2. Suppose that X = R2, A = {(x, y) ∈ X : (x − y)2 + y2 ≤ 1}, and B = {(x, y) ∈ X :
(x + y)2 + y2 ≤ 1} with T(x, y) = (−x, y) for (x, y) ∈ X. Then d((x, y), T(x, y)) ≤ d(A,B) + ε
for some ε > 0. Hence Pa

T (A,B)/= ∅.

2. Approximate Best Proximity

In this section, we will consider the existence of approximate best proximity points for the
map T : A ∪ B → A ∪ B, such that T(A) ⊆ B, T(B) ⊆ A, and its diameter.

Theorem 2.1. Let A and B be nonempty subsets of a metric space X. Suppose that the mapping
T : A ∪ B → A ∪ B is satisfying T(A) ⊆ B, T(B) ⊆ A, and

lim
n→∞

d
(
Tnx, Tn+1x

)
= d(A,B) for some x ∈ A ∪ B. (2.1)

Then the pair (A,B) is an approximate best proximity pair.

Proof. Let ε > 0 be given and x ∈ A ∪ B such that limn→∞d(Tnx, Tn+1x) = d(A,B); then there
exists N0 > 0 such that

∀n ≥ N0 : d
(
Tnx, Tn+1x

)
< d(A,B) + ε. (2.2)

If n = N0, then d(TN0(x), T(TN0 (x))) < d(A,B) + ε, and TN0(x) ∈ Pa
T (A,B) and Pa

T (A,B)/= ∅.

Theorem 2.2. Let A and B be nonempty subsets of a metric space X. Suppose that the mapping
T : A ∪ B → A ∪ B is satisfying T(A) ⊆ B, T(B) ⊆ A and

d
(
Tx, Ty

) ≤ αd
(
x, y

)
+ β

[
d(x, Tx) + d

(
y, Ty

)]
+ γd(A,B) (2.3)

for all x, y ∈ A ∪B, where α, β, γ ≥ 0 and α+ 2β + γ < 1. Then the pair (A,B) is an approximate best
proximity pair.

Proof. If x ∈ A ∪ B, then

d
(
Tx, T2x

)
≤ αd(x, Tx) + β

[
d(x, Tx) + d

(
Tx, T2x

)]
+ γd(A,B). (2.4)
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Therefore,

d
(
Tx, T2x

)
≤ α + β

1 − β
d(x, Tx) +

γ

1 − β
d(A,B). (2.5)

Now if k = (α + β)/(1 − β), then

d
(
Tx, T2x

)
≤ kd(x, Tx) + (1 − k)d(A,B) (2.6)

also

d
(
T2x, T3x

)
≤ k2d(x, Tx) +

(
1 − k2

)
d(A,B). (2.7)

Therefore,

d
(
Tnx, Tn+1x

)
≤ knd(x, Tx) + (1 − kn)d(A,B), (2.8)

and so

d
(
Tnx, Tn+1x

)
−→ d(A,B), as n −→ ∞. (2.9)

Therefore, by Theorem 2.1, Pa
T (A,B)/= ∅; then pair (A,B) is an approximate best proximity

pair.

Definition 2.3. Let A and B be nonempty subsets of a metric space X. Suppose that the
mapping T : A ∪ B → A ∪ B is satisfying T(A) ⊆ B, T(B) ⊆ A. We say that the sequence
{zn} ⊆ A ∪ B is T-minimizing if

lim
n→∞

d(zn, Tzn) = d(A,B). (2.10)

Theorem 2.4. Let A and B be nonempty subsets of a metric space X, suppose that the mapping T :
A ∪ B → A ∪ B is satisfying T(A) ⊆ B, T(B) ⊆ A. If {Tnx} is a T-minimizing for some x ∈ A ∪ B,
then (A,B) is an approximate best pair proximity.

Proof. Since

lim
n→∞

d
(
Tnx, Tn+1x

)
= d(A,B) for some x ∈ A ∪ B, (2.11)

therefore, by Theorem 2.1, Pa
T (A,B)/= ∅; then pair (A,B) is an approximate best proximity

pair.
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Theorem 2.5. Let A and B be nonempty subsets of a normed space X such that A ∪ B is compact.
Suppose that the mapping T : A ∪ B → A ∪ B is satisfying T(A) ⊆ B, T(B) ⊆ A, T is continuous
and

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, (2.12)

where (x, y) ∈ A × B. Then Pa
T (A,B) is nonempty and compact.

Proof. Since A ∪ B compact, there exists a z0 ∈ A ∪ B such that

‖z0 − Tz0‖ = inf
z∈A∪B

‖z − Tz‖· (∗)

If ‖z0 −Tz0‖ > d(A,B), then ‖Tz0 −T2z0‖ < ‖z0 −Tz0‖which contradict to the definition of z0,
(Tz0 ∈ A ∪ B and by (∗) ‖Tz0 − T(Tz0)‖ ≥ ‖z0 − Tz0‖). Therefore, ‖z0 − Tz0‖ = d(A,B) ≤
d(A,B) + ε for some ε > 0 and z0 ∈ Pa

T (A,B). Therefore, Pa
T (A,B) is nonempty.

Also, if {zn} ⊆ Pε
T (A,B), then ‖zn − Tzn‖ < d(A,B) + ε, for some ε > 0, and by

compactness ofA∪B, there exists a subsequence znk and a z0 ∈ A∪B such that znk → z0 and
so

‖z0 − Tz0‖ = lim
k→∞

‖znk − Tznk‖ < d(A,B) + ε (2.13)

for some ε > 0, hence Pa
T (A,B) is compact.

Example 2.6. If A = [−3,−1], B = [1, 3], and T : A ∪ B → A ∪ B such that

T(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − x

2
, x ∈ A,

−1 − x

2
, x ∈ B,

(2.14)

then Pa
T (A,B) is compact, and we have

Pa
T (A,B) = {x ∈ A ∪ B : d(x, Tx) < d(A,B) + ε for some ε > 0}

= {x ∈ A ∪ B : d(x, Tx) < 2 + ε for some ε > 0}
= {1,−1}.

(2.15)

That is compact.

In the following, by diam(Pa
T (A,B)) for a set Pa

T (A,B)/= ∅, we will understand the
diameter of the set Pa

T (A,B).
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Definition 2.7. Let T : A ∪ B → A ∪ B be a continuous map such that T(A) ⊆ B, T(B) ⊆ A and
ε > 0. We define diameter Pa

T (A,B) by

diam
(
Pa
T (A,B)

)
= sup

{
d
(
x, y

)
: x, y ∈ Pa

T (A,B)
}
. (2.16)

Theorem 2.8. Let T : A ∪ B → A ∪ B, such that T(A) ⊆ B, T(B) ⊆ A and ε > 0. If there exists an
α ∈ [0, 1] such that for all (x, y) ∈ A × B

d
(
Tx, Ty

) ≤ αd
(
x, y

)
, (2.17)

then

diam
(
Pa
T (A,B)

) ≤ 2ε
1 − α

+
2d(A,B)
1 − α

. (2.18)

Proof. If x, y ∈ Pa
T (A,B), then

d
(
x, y

) ≤ d(x, Tx) + d
(
Tx, Ty

)
+ d

(
Ty, y

)

≤ ε1 + αd
(
x, y

)
+ 2d(A,B) + ε2.

(2.19)

Put ε = Max{ε1, ε2}, therefore, d(x, y) ≤ 2ε/(1−α)+(2d(A,B))/(1−α). Hence diam(Pa
T (A,B))

≤ 2ε/(1 − α) + (2d(A,B))/(1 − α).

3. Approximate Best Proximity for Two Maps

In this section, we will consider the existence of approximate best proximity points for two
maps T : A ∪ B → A ∪ B and S : A ∪ B → A ∪ B, and its diameter.

Definition 3.1. Let A and B be nonempty subsets of a metric space (X, d) and let T : A ∪ B →
A ∪ BS : A ∪ B → A ∪ B two maps such that T(A) ⊆ B, S(B) ⊆ A. A point (x, y) in A × B is
said to be an approximate-pair fixed point for (T, S) in X if there exists ε > 0

d
(
Tx, Sy

) ≤ d(A,B) + ε. (3.1)

We say that the pair (T, S) has the approximate-pair fixed property in X if Pa
(T,S)(A,B)/= ∅,

where

Pa
(T,S)(A,B) =

{(
x, y

) ∈ A × B : d
(
Tx, Sy

) ≤ d(A,B) + ε for some ε > 0
}
. (3.2)

Theorem 3.2. Let A and B be nonempty subsets of a metric space (X, d) and let T : A ∪B → A ∪B
and S : A ∪ B → A ∪ B be two maps such that T(A) ⊆ B, S(B) ⊆ A. If, for every (x, y) ∈ A × B,

d
(
Tn(x), Sn(y

)) −→ d(A,B), (3.3)

then (T, S) has the approximate-pair fixed property.
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Proof. For ε > 0, Suppose (x, y) ∈ A × B. Since

d
(
Tn(x), Sn

(
y
)) −→ d(A,B),

∃n0 > 0 s.t. ∀n ≥ n0 : d
(
Tn(x), Sn(y

))
< d(A,B) + ε,

(3.4)

then d(T(Tn−1(x), S(Sn−1(y)) < d(A,B) + ε for every n ≥ n0. Put x0 = Tn0−1(x) and y0 =
Sn0−1(y)). Hence d(T(x0), S(y0)) ≤ d(A,B) + ε and Pa

(T,S)(A,B)/= ∅.

Theorem 3.3. Let A and B be nonempty subsets of a metric space (X, d) and let T : A ∪B → A ∪B
and S : A ∪ B → A ∪ B be two maps such that T(A) ⊆ B, S(B) ⊆ A and, for every (x, y) ∈ A × B,

d
(
Tx, Sy

) ≤ αd
(
x, y

)
+ β

[
d(x, Tx) + d

(
y, Sy

)]
+ γd(A,B), (3.5)

where α, β, γ ≥ 0 and α+2β+γ < 1. Then if x is an approximate fixed point for T , or y is an approximate
fixed point for S, then Pa

(T,S)(A,B)/= ∅.

Proof. If (x, y) ∈ A × B, then

d(Tx, S(Tx)) ≤ αd(x, Tx) + β[d(x, Tx) + d(Tx, S(Tx))] + γd(A,B). (3.6)

Therefore,

d(Tx, S(Tx)) ≤ α + β

1 − β
d(x, Tx) +

γ

1 − β
d(A,B). (3.7)

Now if k = (α + β)/(1 − β), then

d(Tx, S(Tx)) ≤ kd(x, Tx) + (1 − k)d(A,B) (∗)

also

d
(
Sy, T

(
Sy

)) ≤ kd
(
y, Sy

)
+ (1 − k)d(A,B). (∗∗)

If x is an approximate fixed point for T , then there exists a ε > 0 and by (∗)

d(Tx, S(Tx)) ≤ kd(x, Tx) + (1 − k)d(A,B)

≤ k(d(A,B) + ε) + (1 − k)d(A,B)

= d(A,B) + kε

< d(A,B) + ε.

(3.8)
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And (x, Tx) ∈ Pa
(T,S)(A,B); also if y is an approximate fixed point for S, then there exists

a ε > 0 and by (∗∗)

d
(
Sy, T

(
Sy

)) ≤ kd
(
y, Sy

)
+ (1 − k)d(A,B)

≤ k(d(A,B) + ε) + (1 − k)d(A,B)

= d(A,B) + kε

< d(A,B) + ε.

(3.9)

And (y, Sy) ∈ Pa
(T,S)(A,B). Therefore, Pa

(T,S)(A,B)/= ∅.

Theorem 3.4. Let A and B be nonempty subsets of a metric space (X, d) and let T : A ∪B → A ∪B
and S : A ∪ B → A ∪ B be two continuous maps such that T(A) ⊆ B, S(B) ⊆ A. If, for every
(x, y) ∈ A × B,

d
(
Tx, Sy

) ≤ αd
(
x, y

)
+ γd(A,B), (3.10)

where α, γ ≥ 0 and α + γ = 1, also let {xn} and {yn} be as follows:

xn+1 = Syn, yn+1 = Txn for some
(
x1, y1

) ∈ A × B, n ∈ N. (3.11)

If {xn} has a convergent subsequence inA, then there exists a x0 ∈ A such that d(x0, Tx0) = d(A,B).

Proof. We have

d
(
xn+1, yn+1

)
= d

(
Txn, Syn

)

≤ αd
(
xn, yn

)
+ γ(d(A,B)

≤ · · ·

≤ αn+1d
(
x0, y0

)
+ (1 + α + · · · + αn)γd(A,B).

(3.12)

If {xnk}k≥1 converges to x1 ∈ A, that is, xnk → x1, then

d
(
xnK+1 , ynk+1

) ≤ αnk+1d
(
x0, y0

)
+
(
1 + α + · · · + αn

k

)
γd(A,B). (3.13)

Since T is continuous, then

d(xnk+1 , Txnk ) −→
γ

1 − α
d(A,B) = d(A,B). (3.14)

Therefore, d(x1, Tx1) = d(A,B).
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Definition 3.5. Let T : A ∪ B → A ∪ B and S : A ∪ B → A ∪ B be continues maps such that
T(A) ⊆ B and S(B) ⊆ A. We define diameter Pa

(T,S)(A,B) by

diam
(
Pa
(T,S)(A,B)

)
= sup

{
d
(
x, y

)
: d

(
Tx, Ty

) ≤ ε + d(A,B) for some ε > 0
}
. (3.15)

Example 3.6. Suppose A = {(x, 0) : 0 ≤ x ≤ 1}, B = {(x, 1) : 0 ≤ x ≤ 1}, T(x, 0) = T(x, 1) =
(1/2, 1), and S(x, 1) = S(x, 0) = (1/2, 0). Then d(T(x, 0), S(y, 1)) = 1 and diam(Pa

(T,S)(A,B)) =

diam(A × B) =
√
2.

Theorem 3.7. Let T : A ∪ B → A ∪ B and S : A ∪ B → A ∪ B be continuous maps such that
T(A) ⊆ B, S(B) ⊆ A. If there exists a k ∈ [0, 1],

d(x, Tx) + d
(
Sy, y

) ≤ kd
(
x, y

)
, (3.16)

then

diam
(
Pa
(T,S)(A,B)

)
≤ ε

1 − k
+
d(A,B)
1 − k

for some ε > 0. (3.17)

Proof. If (x, y) ∈ Pa
(T,S)(A,B), then

d
(
x, y

) ≤ d(x, Tx) + d
(
Tx, Sy

)
+ d

(
Sy, y

)

≤ ε + kd
(
x, y

)
+ d(A,B).

(3.18)

Therefore, d(x, y) ≤ ε/(1 − k) + (d(A,B))/(1 − k). Then diam(Pa
(T,S)(A,B)) ≤ ε/(1 − k) +

(d(A,B))/(1 − k).
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