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A linear (k + 1)th-order discrete delayed equation Δx(n) = −p(n)x(n − k) where p(n) a positive
sequence is considered for n → ∞. This equation is known to have a positive solution if the
sequence p(n) satisfies an inequality. Our aim is to show that, in the case of the opposite inequality
for p(n), all solutions of the equation considered are oscillating for n → ∞.

1. Introduction

The existence of positive solutions of difference equations is often encountered when
analysing mathematical models describing various processes. This is a motivation for an
intensive study of the conditions for the existence of positive solutions of discrete or
continuous equations. Such analysis is related to investigating the case of all solutions being
oscillating (for investigation in both directions, we refer, e.g., to [1–30] and to the references
therein). The existence of monotonous and nontrivial solutions of nonlinear difference
equations (the first one implies the existence of solutions of the same sign) also has attracted
some attention recently (see, e.g., several, mostly asymptotic methods in [31–42] and the
related references therein). In this paper, sharp conditions are derived for all the solutions
being oscillating for a class of linear (k + 1)-order delayed discrete equations.

We consider the delayed (k + 1)-order linear discrete equation

Δx(n) = −p(n)x(n − k), (1.1)
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where n ∈ Z
∞
a := {a, a+1, . . .}, a ∈ N := {1, 2, . . .} is fixed,Δx(n) = x(n+1)−x(n), p : Z

∞
a → R,

k ∈ N. In what follows, we will also use the sets N0 = {0} ∪ N and Z
b
a := {a, a + 1, . . . , b} for

a, b ∈ N, a < b. A solution x = x(n) : Z
∞
a → R of (1.1) is positive (negative) on Z

∞
a if x(n) > 0

(x(n) < 0) for every n ∈ Z
∞
a . A solution x = x(n) : Z

∞
a → R of (1.1) is oscillating on Z

∞
a if it is

not positive or negative on Z
∞
a1 for an arbitrary a1 ∈ Z

∞
a .

Definition 1.1. Let us define the expression lnqt, q ≥ 1, by lnqt = ln(lnq−1t), ln0t ≡ t, where t >
expq−21 and expst = exp(exps−1t), s ≥ 1, exp0t ≡ t, and exp−1t ≡ 0 (instead of ln0t, ln1t, we
will only write t and ln t).

In [4] difference equation (1.1) is considered and the following result on the existence
of a positive solution is proved.

Theorem 1.2 (see [4]). Let q ∈ N0 be a fixed integer, let a ∈ N be sufficiently large and

0 < p(n) ≤
(

k

k + 1

)k

×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2
]

(1.2)

for every n ∈ Z
∞
a . Then there exists a positive integer a1 ≥ a and a solution x = x(n), n ∈ Z

∞
a1 of

equation (1.1) such that

0 < x(n) ≤
(

k

k + 1

)n

·
√
n lnn ln2n · · · lnqn (1.3)

holds for every n ∈ Z
∞
a1 .

Our goal is to answer the open question whether all solutions of (1.1) are oscillating if
inequality (1.2) is replaced with the opposite inequality

p(n) ≥
(

k

k + 1

)k

×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + kθ

8
(
n lnn · · · lnqn

)2
]

(1.4)

assuming θ > 1, and n is sufficiently large. Below we prove that if (1.4) holds and θ > 1, then
all solutions of (1.1) are oscillatory. This means that the result given by Theorem 1.2 is a final
in a sense. This is discussed in Section 4. Moreover, in Section 3, we show that all solutions of
(1.1) will be oscillating if (1.4) holds only on an infinite sequence of subintervals of Z

∞
a .

Because of its simple form, equation (1.1) (as well as its continuous analogue) attracts
permanent attention of investigators. Therefore, in Section 4 we also discuss some of the
known results.

The proof of ourmain result will use the next consequence of one of Domshlak’s results
[13, Theorem 4, page 66].

Lemma 1.3. Let s and r be fixed natural numbers such that r − s > k. Let {ϕ(n)}∞1 be a bounded
sequence of real numbers and ν0 be a positive number such that there exists a number ν ∈ (0, ν0)
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satisfying

0 ≤
i∑

n=s+1

ϕ(n) ≤ π

ν
, i ∈ Z

r
s+1,

π

ν
≤

i∑
n=s+1

ϕ(n) ≤ 2π
ν

, i ∈ Z
r+k
r+1 , (1.5)

ϕ(i) ≥ 0, i ∈ Z
r
r+1−k,

i+k∑
n=i+1

ϕ(n) > 0, i ∈ Z
∞
a ,

i+k∑
n=i

ϕ(n) > 0, i ∈ Z
∞
a . (1.6)

Then, if p(n) ≥ 0 for n ∈ Z
s+k
s+1 and

p(n) ≥ R :=

⎛
⎜⎝

n∏
�=n−k

sin
(
ν
∑�+k

i=�+1 ϕ(i)
)

sin
(
ν
∑�+k

i=� ϕ(i)
)
⎞
⎟⎠ · sin

(
νϕ(n − k)

)
sin
(
ν
∑n

i=n+1−k ϕ(i)
) (1.7)

for n ∈ Z
r
s+k+1, any solution of (1.1) has at least one change of sign on Z

r
s−k.

Throughout the paper, symbols “o” and “O” (for n → ∞)will denote the well-known
Landau order symbols.

2. Main Result

In this section, we give sufficient conditions for all solutions of (1.1) to be oscillatory as n →
∞. It will be necessary to develop asymptotic decompositions of some auxiliary expressions.
As the computations needed are rather cumbersome, some auxiliary computations are
collected in the appendix to be utilized in the proof of the main result (Theorem 2.1)
below.

Theorem 2.1. Let a ∈ N be sufficiently large, q ∈ N0 and θ > 1. Assuming that the function p :
Z
∞
a → (0,∞) satisfies inequality (1.4) for every n ∈ Z

∞
a , all solutions of (1.1) are oscillating as

n → ∞.

Proof. As emphasized above, in the proof, we will use Lemma 1.3. We define

ϕ(n) :=
1

n lnn ln2n ln3n · · · lnqn
, (2.1)

where n is sufficiently large, and q ≥ 0 is a fixed integer. Although the idea of the proof
is simple, it is very technical and we will refer to notations and auxiliary computations
contained in the appendix. We will develop an asymptotic decomposition of the right-hand
side R of inequality (1.7)with the function ϕ(n) defined by (2.1). We show that this will lead
to the desired inequality (1.4). We set

R1 :=
∏k

i=1V (n + i)∏k
i=0V

+(n + i)
· ϕ(n − k), (2.2)
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where V and V + are defined by (A.4) and (A.5). Moreover, R can be expressed as

R =
sin
(
ν
∑n

i=n+1−k ϕ(i)
)∏n

�=n−k+1 sin
(
ν
∑�+k

i=�+1 ϕ(i)
)

∏n
�=n−k sin

(
ν
∑�+k

i=� ϕ(i)
) · sin

(
νϕ(n − k)

)
sin
(
ν
∑n

i=n+1−k ϕ(i)
)

=

∏n
�=n−k+1 sin

(
ν
∑�+k

i=�+1 ϕ(i)
)

∏n
�=n−k sin

(
ν
∑�+k

i=� ϕ(i)
) · sin(νϕ(n − k)

)

=

∏k
p=1 sin

(
νV
(
n + p

))
∏k

p=0 sin
(
νV +
(
n + p

)) · sin(νϕ(n − k)
)
.

(2.3)

Recalling the asymptotic decomposition of sinxwhen x → 0: sinx = x+O(x3), we get (since
limn→∞ϕ(n−k) = 0, limn→∞V (n+ p) = 0, p = 1, . . . , k, and limn→∞V +(n+ p) = 0, p = 0, . . . , k)

sin νϕ(n − k) = νϕ(n − k) +O
(
ν3ϕ3(n − k)

)
,

sin νV
(
n + p

)
= νV

(
n + p

)
+O
(
ν3V 3(n + p

))
, p = 1, . . . , k,

sin νV +(n + p
)
= νV +(n + p

)
+O
(
ν3(V +)3

(
n + p

))
, p = 0, . . . , k

(2.4)

as n → ∞. Then, it is easy to see that, by (A.13), we have ϕ(n − �) = O(ϕ(n)), n → ∞ for
every � ∈ R and

R = R1 ·
(
1 +O

(
ν2ϕ2(n)

))
, n −→ ∞. (2.5)

Moreover, forR1, wewill get an asymptotic decomposition as n → ∞. Using formulas (A.13),
(A.57), and (A.60), we get

R1 =
kk

(k + 1)k+1
· 1−kα(n)−(k/24)

(
k2 − 12k + 11

)
α2(n)+(k/6)

(
k2 + 5

)∑q

i=0 ωi(n)+O
(
1/n3)

1 − (k/24)(k2 + 3k + 2)α2(n) + (k/6)(k2 + 3k + 2)
∑q

i=0 ωi(n) +O(1/n3)

×
(
1 + kα(n) + k2

q∑
i=0

ωi(n) +O

(
1
n3

))
.

(2.6)

Since limn→∞α(n) = 0, limn→∞ωi(n) = 0, i = 1, . . . , q, we can decompose the denominator of
the second fraction as the sum of the terms of a geometric sequence. Keeping only terms with
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the order of accuracy necessary for further analysis (i.e. with order O(1/n3)), we get

(
1 − k

24

(
k2 + 3k + 2

)
α2(n) +

k

6

(
k2 + 3k + 2

) q∑
i=0

ωi(n) +O

(
1
n3

))−1

= 1 +
k

24

(
k2 + 3k + 2

)
α2(n) − k

6

(
k2 + 3k + 2

) q∑
i=0

ωi(n) +O

(
1
n3

)
.

(2.7)

We perform an auxiliary computation in R1,
(
1 − kα(n) − k

24

(
k2 − 12k + 11

)
α2(n) +

k

6

(
k2 + 5

) q∑
i=0

ωi(n) +O

(
1
n3

))

×
(
1 +

k

24

(
k2 + 3k + 2

)
α2(n) − k

6

(
k2 + 3k + 2

) q∑
i=0

ωi(n) +O

(
1
n3

))

×
(
1 + kα(n) + k2

q∑
i=0

ωi(n) +O

(
1
n3

))

=

(
1 − kα(n) − k

24

(
k2 − 12k + 11

)
α2(n) +

k

6

(
k2 + 5

) q∑
i=0

ωi(n) +O

(
1
n3

))

×
(
1 + kα(n) +

k

24

(
k2 + 3k + 2

)
α2(n) − k

6

(
k2 − 3k + 2

) q∑
i=0

ωi(n) +O

(
1
n3

))

= 1 − 3
8
k(k + 1)α2(n) +

1
2
k(k + 1)

q∑
i=0

ωi(n) +O

(
1
n3

)
= (we use formula (A.15))

= 1 +
1
8
k(k + 1)Ω(n) +O

(
1
n3

)

= 1 +
1
8
k(k + 1)

(
1
n2

+
1

(n lnn)2
+

1

(n lnn ln2n)
2
+ · · · + 1(

n lnn ln2n · · · lnqn
)2
)

+O

(
1
n3

)
.

(2.8)

Thus, we have

R1 =
kk

(k + 1)k+1
×
[
1 +

1
8
k(k + 1)

(
1
n2

+
1

(n lnn)2
+

1

(n lnn ln2n)
2
+ · · ·

+
1(

n lnnln2n · · · lnqn
)2
)]

+O

(
1
n3

)

=
(

k

k + 1

)k

×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2
]
+O

(
1
n3

)
.

(2.9)
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Finalizing our decompositions, we see that

R = R1 ·
(
1 +O

(
ν2ϕ2(n)

))

=

((
k

k + 1

)k

×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2
]
+O

(
1
n3

))

×
(
1 +O

(
ν2ϕ2(n)

))

=
(

k

k + 1

)k

×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2
]

+O

(
ν2(

n lnn · · · lnqn
)2
)
.

(2.10)

It is easy to see that inequality (1.7) becomes

p(n) ≥
(

k

k + 1

)k

×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2
]

+O

(
ν2(

n lnn · · · lnqn
)2
) (2.11)

and will be valid if (see (1.4))

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + kθ

8
(
n lnn · · · lnqn

)2

≥ 1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2 +O

(
ν2(

n lnn · · · lnqn
)2
) (2.12)

or

θ ≥ 1 +O
(
ν2
)

(2.13)

for n → ∞. If n ≥ n0, where n0 is sufficiently large, (2.13) holds for ν ∈ (0, ν0) with ν0
sufficiently small because θ > 1. Consequently, (2.11) is satisfied and the assumption (1.7)
of Lemma 1.3 holds for n ∈ Z

∞
n0
. Let s ≥ n0 in Lemma 1.3 be fixed, r > s + k + 1 be so large

(and ν0 so small if necessary) that inequalities (1.5) hold. Such choice is always possible since
the series

∑∞
n=s+1 ϕ(n) is divergent. Then Lemma 1.3 holds and any solution of (1.1) has at

least one change of sign on Z
r
s−k. Obviously, inequalities (1.5) can be satisfied for another pair

of (s, r), say (s1, r1) with s1 > r and r1 > s1 + k sufficiently large and, by Lemma 1.3, any
solution of (1.1) has at least one change of sign on Z

r1
s1−k. Continuing this process, we will get

a sequence of pairs (sj , rj) with limj→∞sj = ∞ such that any solution of (1.1) has at least one
change of sign on Z

rj
sj−k. This concludes the proof.
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3. A Generalization

The coefficient p in Theorem 2.1 is supposed to be positive on Z
∞
a . For all sufficiently large

n, the expression R, as can easily be seen from (2.10), is positive. Then, as follows from
Lemma 1.3, any solution of (1.1) has at least one change of sign on Z

r
s−k if p is nonnegative on

Z
s+k
s+1 and satisfies inequality (1.4) on Z

r
s+k+1.

Owing to this remark, Theorem 2.1 can be generalized because (and the following
argumentation was used at the end of the proof of Theorem 2.1) all solutions of (1.1) will be
oscillating as n → ∞ if a sequence of numbers {si, ri}, ri > si + k + 1, s1 ≥ a, i = 1, 2, . . . exists
such that si+1 > ri (i.e., the sets Z

ri
si , Z

ri+1
si+1 are disjoint and limi→∞si = ∞), and, for every pair

(si, ri), all assumptions of Lemma 1.3 are satisfied (because of the specification of function ϕ
by (2.1), inequalities (1.6) are obviously satisfied). This means that, on the set

M := Z
∞
a \

∞⋃
i=1

Z
ri
si , (3.1)

function p can assume even negative values, and, moreover, there is no restriction on the
behavior of p(n) for n ∈ M. This leads to the following generalization of Theorem 2.1 with a
proof similar to that of Theorem 2.1 and, therefore, omitted.

Theorem 3.1. Let a ∈ N be sufficiently large, q ∈ N0, ν0 be a positive number, θ > 1 and p : Z
∞
a →

R. Let there exists a sequence on integers {sj , rj}, rj > sj + k + 1, j = 1, 2, . . ., s1 ≥ a, s1 sufficiently
large and sj+1 > rj such that, for function ϕ (defined by (2.1)) and for each pair (sj , rj), j = 1, 2, . . .,
there exists a number νj ∈ (0, ν0) such that

0 ≤
i∑

n=sj+1

ϕ(n) ≤ π

νj
, i ∈ Z

rj
sj+1

,
π

νj
≤

i∑
n=sj+1

ϕ(n) ≤ 2π
νj

, i ∈ Z
rj+k
rj+1

, (3.2)

p(n) ≥ 0 for n ∈ Z
sj+k
sj+1

, and (1.4) holds for n ∈ Z
rj
sj+k+1

, then all solutions of (1.1) are oscillating as
n → ∞.

4. Comparisons, Concluding Remarks, and Open Problems

Equation (1.1) with k = 1 was considered in [5], where a particular case of Theorem 2.1 is
proved. In [4], a hypothesis is formulated together with the proof of Theorem 1.2 (Conjecture
1) about the oscillation of all solutions of (1.1) almost coinciding with the formulation of
Theorem 2.1. For its simple form, (1.1) is often used for testing new results and is very
frequently investigated.

Theorems 1.2 and 2.1 obviously generalize several classical results. Wemention at least
some of the simplest ones (see, e.g., [16, Theorem 7.7] or [19, Theorem 7.5.1]),

Theorem 4.1. Let p(n) ≡ p = const. Then every solution of (1.1) oscillates if and only if

p >
kk

(k + 1)k+1
. (4.1)

Or the following result holds as well (see, e.g., [16, Theorem 7.6]) [18, 19]).



8 Abstract and Applied Analysis

Theorem 4.2. Let p(n) ≥ 0 and

sup
n

p(n) <
kk

(k + 1)k+1
. (4.2)

Then (1.1) has a nonoscillatory solution.

In [9] a problem on oscillation of all solutions of equation

Δu(n) + p(n)u(τ(n)) = 0, n ∈ N (4.3)

is considered where p : N → R+, τ : N → N, and limn→∞τ(n) = +∞. Since in (4.3) delay τ is
variable, we can formulate

Open Problem 1. It is an interesting open question whether Theorems 1.2 and 2.1 can be
extended to linear difference equations with a variable delay argument of the form, for
example,

Δu(n) = −p(n)u(h(n)), n ∈ Z
∞
a , (4.4)

where 0 ≤ n − h(n) ≤ k. For some of the related results for the differential equation

ẋ(t) = −p(t)x(h(t)), (4.5)

see the results in [3, 12] that are described below.

Open Problem 2. It is well known [19, 22] that the following condition is also sufficient for the
oscillation of all solutions of (4.5)with h(n) = n − k:

lim inf
n→∞

1
k

n−1∑
i=n−k

pi >
kk

(k + 1)k+1
. (4.6)

The right-hand side of (4.6) is a critical value for this criterion since this number cannot be
replaced with a smaller one.

In [30] equation (1.1) is considered as well. The authors prove that all solutions
oscillate if p(n) ≥ 0, ε > 0 and

lim sup
n→∞

p(n) >
kk

(k + 1)k+1
− ε

k
+ 4kε1/4, (4.7)

where

ε =
(

k

k + 1

)k+1

− lim inf
n→∞

n−1∑
i=n−k

pi. (4.8)
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An open problem is to obtain conditions similar to Theorem 2.1 for this kind of oscillation
criteria. Some results on this problem for delay differential equations were also obtained in
paper [3].

In [26] the authors establish an equivalence between the oscillation of (1.1) and the
equation

Δ2y(n − 1) +
2(k + 1)k

kk+1

(
p(n) − kk

(k + 1)k+1

)
y(n) = 0 (4.9)

under the critical state

lim inf
n→∞

p(n) =
kk

(k + 1)k+1
, (4.10)

p(n) ≥ kk

(k + 1)k+1
. (4.11)

Then they obtain some sharp oscillation and nonoscillation criteria for (1.1). One of the results
obtained there is the following.

Theorem 4.3. Assume that, for sufficiently large n, inequality (4.11) holds. Then the following
statements are valid.

(i) If

lim inf
n→∞

[(
p(n) − kk

(k + 1)k+1

)
n2

]
>

kk+1

8(k + 1)k
, (4.12)

then every solution of (1.1) is oscillatory.

(ii) If, on the other hand,

(
p(n) − kk

(k + 1)k+1

)
n2 ≤ kk+1

8(k + 1)k
, (4.13)

then (1.1) has a nonoscillatory solution.

Regarding our results, it is easy to see that statement (i) is a particular case of
Theorem 2.1 while statement (ii) is a particular case of Theorem 1.2.

In [27], the authors investigate (1.1) for n ≥ n0 and prove that (1.1) is oscillatory if

∞∑
i=n0

p(i)

⎧⎨
⎩

k + 1
k

· k+1

√√√√ i+k∑
j=i+1

p
(
j
) − 1

⎫⎬
⎭ = ∞. (4.14)



10 Abstract and Applied Analysis

Comparing (4.14) with Theorem 2.1, we can see that (4.14) gives not sharp sufficient
condition. Set, for example, k = 1, θ > 1 and

p(n) =
1
2

[
1
2
+

θ

8n2

]
. (4.15)

Then,

k + 1
k

· k+1

√√√√ i+k∑
j=i+1

p
(
j
) − 1 = 2 ·

√√√√1
4

(
1 +

θ

4(i + 1)2

)
− 1 =

θ/4(i + 1)2

1 +
√
1 + θ/4(i + 1)2

(4.16)

and the series in the left-hand side of (4.14) converges since

∞∑
i=n0

p(i)

⎧⎨
⎩

k + 1
k

k+1

√√√√ i+k∑
j=i+1

p
(
j
) − 1

⎫⎬
⎭

=
∞∑
i=n0

1
2

[
1
2
+

θ

8i2

]
θ/4(i + 1)2

1 +
√
1 + θ/4(i + 1)2

≤ θ
∞∑
i=n0

1
i2

[
1 +

θ

i2

]
< ∞.

(4.17)

But, by Theorem 2.1 all solutions of (1.1) are oscillating as n → ∞. Nevertheless (4.14) is not
a consequence of Theorem 2.1.

Let us consider a continuous variant of (1.1): a delayed differential linear equation of
the form

ẋ(t) = −a(t)x(t − τ), (4.18)

where τ > 0 is a constant delay and a : [t0,∞) → (0,∞) (or a : [t0,∞) → R), t0 ∈ R. This
equation, too, for its simple form, is often used for testing new results and is very frequently
investigated. It is, for example, well known that a scalar linear equation with delay

ẋ(t) +
1
e
x(t − 1) = 0 (4.19)

has a nonoscillatory solution as t → ∞. This means that there exists an eventually positive
solution. The coefficient 1/e is called critical with the following meaning: for any α > (1/e),
all solutions of the equation

ẋ(t) + αx(t − 1) = 0 (4.20)

are oscillatory while, for α ≤ (1/e), there exists an eventually positive solution. In [10], the
third author considered (4.18), where a : [t0,∞) → (0,∞) is a continuous function, and t0 is
sufficiently large. For the critical case, he obtained the following result (being a continuous
variant of Theorems 1.2 and 2.1).
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Theorem 4.4. (a) Let an integer k ≥ 0 exist such that a(t) ≤ ak(t) if t → ∞ where

ak(t) :=
1
eτ

+
τ

8et2
+

τ

8e(t ln t)2
+ · · · + τ

8e(t ln t ln2t · · · lnkt)
2
. (4.21)

Then there exists an eventually positive solution x of (4.18).
(b) Let an integer k ≥ 2 and θ > 1, θ ∈ R exist such that

a(t) > ak−2(t) +
θτ

8e(t ln t ln2t · · · lnk−1t)
2
, (4.22)

if t → ∞. Then all solutions of (4.18) oscillate.

Further results on the critical case for (4.18) can be found in [1, 11, 14, 17, 24].
In [12], Theorem 7 was generalized for equations with a variable delay

ẋ(t) + a(t)x(t − τ(t)) = 0, (4.23)

where a : [t0,∞) → (0,∞) and τ : [t0,∞) → (0,∞) are continuous functions. The main
results of this paper include the following.

Theorem 4.5 (see [12]). Let t − τ(t) ≥ t0 − τ(t0) if t ≥ t0. Let an integer k ≥ 0 exist such that
a(t) ≤ akτ(t) for t → ∞, where

akτ(t) :=
1

eτ(t)
+
τ(t)
8et2

+
τ(t)

8e(t ln t)2
+ · · · + τ(t)

8e(t ln t ln2t · · · lnkt)
2
. (4.24)

If moreover
∫ t

t−τ(t)

1
τ(ξ)

dξ ≤ 1 when t −→ ∞,

lim
t→∞

τ(t) ·
(
1
t
ln t ln2t · · · lnkt

)
= 0,

(4.25)

then there exists an eventually positive solution x of (4.23) for t → ∞.

Finally, the last results were generalized in [3]. We reproduce some of the results given
there.

Theorem 4.6. (A) Let τ > 0, 0 ≤ τ(t) ≤ τ for t → ∞, and let condition (a) of Theorem 4.4 holds.
Then (4.23) has a nonoscillatory solution.

(B) Let τ(t) ≥ τ > 0 for t → ∞, and let condition (b) of Theorem 4.4 holds. Then all solutions
of (4.23) oscillate.

For every integer k ≥ 0, δ > 0 and t → ∞, we define

Ak(t) :=
1

eδτ(t)
+

δ

8eτ(t)s2
+

δ

8eτ(t)(s ln s)2
+ · · · + δ

8eτ(t)(s ln s ln2s · · · lnks)
2
, (4.26)
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where

s = p(t) :=
∫ t

t0

1
τ(ξ)

dξ. (4.27)

Theorem 4.7. Let for t0 sufficiently large and t ≥ t0: τ(t) > 0 a.e., 1/τ(t) be a locally integrable
function,

lim
t→∞

(t − τ(t)) = ∞,

∫∞

t0

1
τ(ξ)

dξ = ∞, (4.28)

and let there exists t1 > t0 such that t − τ(t) ≥ t0, t ≥ t1.

(a) If there exists a δ ∈ (0,∞) such that

∫ t

t−τ(t)

1
τ(ξ)

dξ ≤ δ, t ≥ t1, (4.29)

and, for a fixed integer k ≥ 0,

a(t) ≤ Ak(t), t ≥ t1, (4.30)

then there exists an eventually positive solution of (4.23).

(b) If there exists a δ ∈ (0,∞) such that

∫ t

t−τ(t)

1
τ(ξ)

dξ ≥ δ, t ≥ t1, (4.31)

and, for a fixed integer k ≥ 2 and θ > 1, θ ∈ R,

a(t) > Ak−2(t) +
θδ

8eτ(t)(s ln s ln2s · · · lnk−1s)
2
, (4.32)

if t ≥ t1, then all solutions of (4.23) oscillate.

Appendix

A. Auxiliary Computations

This part includes auxiliary results with several technical lemmas proved. Part of them
is related to the asymptotic decomposition of certain functions and the rest deals with
computing the sums of some algebraic expressions. The computations are referred to in the
proof of the main result (Theorem 2.1) in Section 2.
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First we define auxiliary functions (recalling also the definition of function ϕ given by
(2.1)):

ϕ(n) :=
1

n lnn ln2 n ln3n · · · lnqn
,

α(n) :=
1
n
+

1
n lnn

+
1

n lnn ln2n
+ · · · + 1

n lnn ln2n · · · lnqn
,

ω0(n) :=
1
n2

+
3

2n2 lnn
+

3
2n2 lnn ln2n

+ · · · + 3
2n2 lnn ln2n · · · lnqn

,

ω1(n) :=
1

(n lnn)2
+

3

2(n lnn)2ln2n
+ · · · + 3

2(n lnn)2ln2n · · · lnqn
,

...

ωq−1(n) :=
1(

n lnn · · · lnq−1n
)2 +

3

2
(
n lnn · · · lnq−1n

)2lnqn
,

ωq(n) :=
1(

n lnn · · · lnqn
)2 ,

Ω(n) :=
1
n2

+
1

(n lnn)2
+

1

(n lnn ln2n)
2
+ · · · + 1(

n lnn ln2n · · · lnqn
)2 ,

(A.1)

where n is sufficiently large and q ∈ N0. Moreover, we set (for admissible values of
arguments)

Σ
(
p
)
:=

k∑
�=1

(
k − p − �

)
, (A.2)

Σ+(p) := Σ
(
p
)
+
(
k − p

)
, (A.3)

V
(
n + p

)
:=

k∑
�=1

ϕ
(
n + p − k + �

)
, (A.4)

V +(n + p
)
:= V
(
n + p

)
+ ϕ
(
n + p − k

)
, (A.5)

S
(
p
)
:=

k∑
�=1

(
k − p − �

)2
, (A.6)

S+(p) := S
(
p
)
+
(
k − p

)2
. (A.7)

A.1. Asymptotic Decomposition of Iterative Logarithms

In the proof of the main result, we use auxiliary results giving asymptotic decompositions of
iterative logarithms. The following lemma is proved in [11].
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Lemma A.1. For fixed r, σ ∈ R \ {0} and a fixed integer s ≥ 1, the asymptotic representation

lnσ
s (n − r)
lnσ

s n
= 1 − rσ

n lnn · · · lnsn
− r2σ

2n2 lnn · · · lnsn

− r2σ

2(n lnn)2ln2n · · · lnsn
− · · · − r2σ

2(n lnn · · · lns−1n)
2lnsn

+
r2σ(σ − 1)

2(n lnn · · · lnsn)
2
− r3σ(1 + o(1))
3n3 lnn · · · lnsn

(A.8)

holds for n → ∞.

A.2. Formulas for Σ(p) and for Σ+(p)

Lemma A.2. The following formulas hold:

Σ
(
p
)
=

k

2
· (k − 2p − 1

)
, (A.9)

Σ+(p) = k + 1
2

· (k − 2p
)
. (A.10)

Proof. It is easy to see that

Σ
(
p
)
=

k−p−1∑
�=−p

� =
(
k − p − 1

)
+
(
k − p − 2

)
+ · · · + (−p)

=
(
k − (p + 1

))
+
(
k − (p + 2

))
+ · · · + (k − (p + k

))
=

k

2
· (k − 2p − 1

)
,

Σ+(p) = Σ
(
p
)
+
(
k − p

)
=

k + 1
2

· (k − 2p
)
.

(A.11)

A.3. Formula for the Sum of the Terms of an Arithmetical Sequence

Denote by u1, u2, . . . , ur the terms of an arithmetical sequence of kth order (kth differences
are constant), d′

1, d
′
2, d

′
3, . . ., the first differences (d′

1 = u2 − u1, d′
2 = u3 − u2,. . .), d′′

1, d
′′
2, d

′′
3, . . .,

the second differences (d′′
1 = d′

2 − d′
1,. . .), and so forth. Then the following result holds (see,

e.g., [43]).

Lemma A.3. For the sum of r terms of an arithmetical sequence of kth order, the following formula
holds

r∑
i=1

ui =
r!

(r − 1)! · 1! · u1 +
r!

(r − 2)! · 2! · d
′
1 +

r!
(r − 3)! · 3! · d

′′
1 + · · · . (A.12)
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A.4. Asymptotic Decomposition of ϕ(n − l)

Lemma A.4. For fixed � ∈ R and q ∈ N0, the asymptotic representation

ϕ(n − �) = ϕ(n)

(
1 + �α(n) + �2

q∑
i=0

ωq(n)

)
+O

(
ϕ(n)
n3

)
(A.13)

holds for n → ∞.

Proof. The function ϕ(n) is defined by (2.1). We develop the asymptotic decomposition of
ϕ(n − �) when n is sufficiently large and � ∈ R. Applying Lemma A.1 (for σ = −1, r = � and
s = 1, 2, . . . , q), we get

ϕ(n − �) =
1

(n − �) ln(n − �)ln2(n − �)ln3(n − �) · · · lnq(n − �)

=
1

n(1 − �/n) ln(n − �)ln2 (n − �)ln3(n − �) · · · lnq(n − �)

= ϕ(n) · 1
1 − �/n

· lnn
ln(n − �)

· ln2n

ln2 (n − �)
· ln3n

ln3(n − �)
· · · lnqn

lnq (n − �)

= ϕ(n)

(
1 +

�

n
+
�2

n2
+O

(
1
n3

))

×
(
1 +

�

n lnn
+

�2

2n2 lnn
+

�2

(n lnn)2
+O

(
1
n3

))

×
(
1 +

�

n lnn ln2n
+

�2

2n2 lnn ln2n
+

�2

2(n lnn)2ln2n
+

�2

(n lnn ln2n)
2
+O

(
1
n3

))

×
(
1 +

�

n lnn ln2n ln3n
+

�2

2n2 lnn ln2n ln3n
+

�2

2(n lnn)2ln2n ln3n

+
�2

2(n lnn ln2n)
2ln3n

+
�2

(n lnn ln2n ln3n)
2
+O

(
1
n3

))

× · · · ×
(
1 +

�

n lnn ln2n ln3n · · · lnqn
+

�2

2n2 lnn · · · lnqn
+

�2

2(n lnn)2ln2 · · ·n lnqn

+ · · · + �2

2
(
n lnn · · · lnq−1n

)2lnqn
+

�2(
n lnn · · · lnqn

)2 +O

(
1
n3

))
.

(A.14)

Finally, gathering the same functional terms and omitting the terms having a higher order of
accuracy than is necessary, we obtain the asymptotic decomposition (A.13).
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A.5. Formula for α2(n)

Lemma A.5. For fixed q ∈ N0, the formula

α2(n) =
4
3

q∑
i=0

ωi(n) − 1
3
Ω(n) (A.15)

holds for all sufficiently large n.

Proof. It is easy to see that

α2(n) =
1
n2

+
2

n2 lnn
+

2
n2 lnn ln2n

+ · · · + 2
n2 lnn ln2n · · · lnqn

+
1

(n lnn)2
+

2

(n lnn)2ln2n
+ · · · + 2

(n lnn)2ln2n · · · lnqn

+
1

(n lnn ln2n)
2
+

2

(n lnn ln2n)
2ln3n

+ · · · + 2

(n lnn ln2n)
2 · · · lnqn

+ · · · + 1(
n lnnln2n · · · lnqn

)2

=
4
3

(
1
n2

+
3

2n2 lnn
+

3
2n2 lnn ln2n

+ · · · + 3
2n2 lnn ln2n · · · lnqn

+
1

(n lnn)2
+

3

2(n lnn)2ln2n
+ · · · + 3

2(n lnn)2ln2n · · · lnqn

+
1

(n lnn ln2n)
2
+

2

(n lnn ln2n)
2ln3n

+ · · · + 2

(n lnn ln2n)
2 · · · lnqn

+ · · · + 1(
n lnn ln2n · · · lnqn

)2
)

− 1
3

(
1
n2

+
1

(n lnn)2
+

1

(n lnn ln2n)
2
+ · · · + 1(

n lnn ln2n · · · lnqn
)2
)

=
4
3

q∑
i=0

ωi(n) − 1
3
Ω(n).

(A.16)

A.6. Asymptotic Decomposition of V (n + p)

Lemma A.6. For fixed p ∈ N and q ∈ N0, the asymptotic representation

V
(
n + p

)
= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O

(
ϕ(n)
n3

)
(A.17)

holds for n → ∞.
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Proof. It is easy to deduce from formula (A.13)with � = k − p − 1, k − p − 2, . . . ,−p that

V
(
n + p

)
:= ϕ
(
n + p − k + 1

)
+ ϕ
(
n + p − k + 2

)
+ · · · + ϕ

(
n + p

)
=

k−p−1∑
�=−p

ϕ(n − �) = ϕ(n)

×
k−p−1∑
�=−p

(
1 +

�

n
+

�

n lnn
+

�

n lnn ln2n
+ · · · + �

n lnn ln2n · · · lnqn

+
�2

n2
+

3�2

2n2 lnn
+ · · · + 3�2

2n2 lnn ln2n · · · lnqn
+

�2

(n lnn)2

+
3�2

2(n lnn)2ln2n
+

3�2

2(n lnn)2ln3n
+ · · · + 3�2

2(n lnn)2ln3n · · · lnqn

+
�2

(n lnn ln2n)
2
+

3�2

2(n lnn ln2n)
2ln3n

+ · · · + 3�2

2(n lnn ln2n)
2ln3n · · · lnqn

+
�2

(n lnn ln2n ln3n)
2
+ · · · + 3�2

2(n lnn ln2n ln3n)
2ln4n · · · lnqn

+ · · · + �2(
n lnn ln2n · · · lnq−1n

)2 +
3�2

2
(
n lnn ln2n · · · lnq−1n

)2lnqn

+
�2(

n lnn ln2n · · · lnqn
)2 +O

(
1
n3

))
.

(A.18)

Then

V
(
n + p

)
:= ϕ(n)

k−p−1∑
�=−p

[
1 + �α(n) + �2

q∑
i=0

ωi(n) +O

(
1
n3

)]

= ϕ(n)

⎡
⎣k−p−1∑

�=−p
1 + α(n) ·

k−p−1∑
�=−p

� +
k−p−1∑
�=−p

�2 ·
q∑
i=0

ωi(n) +O

(
1
n3

)⎤
⎦

= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) ·

q∑
i=0

ωi(n) +O

(
1
n3

)]

= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O

(
ϕ(n)
n3

)
.

(A.19)
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A.7. Asymptotic Decomposition of V +(n + p)

Lemma A.7. For fixed p ∈ N0 and q ∈ N0, the asymptotic representation

V +(n + p
)
= ϕ(n)

[
k + 1 + Σ+(p)α(n) + S+(p)

q∑
i=0

ωi(n)

]
+O

(
ϕ(n)
n3

)
(A.20)

holds for n → ∞.

Proof. By (A.5), (A.13), (A.17), (A.10), and (A.7), we get

V +(n + p
)
:= V
(
n + p

)
+ ϕ
(
n + p − k

)

= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O

(
ϕ(n)
n3

)
+ ϕ
(
n + p − k

)

= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O

(
ϕ(n)
n3

)

+ ϕ(n)
(
1 +
(
k − p

)
α(n) +

(
k − p

)2
ω0(n) +

(
k − p

)2
ω1(n)

+ · · · + (k − p
)2
ωq−1(n) +

(
k − p

)2
ωq(n) +O

(
1
n3

))

= ϕ(n)

[
k + 1 +

(
Σ
(
p
)
+
(
k − p

))
α(n) +

(
S
(
p
)
+
(
k − p

)2) q∑
i=0

ωi(n)

]
+O

(
ϕ(n)
n3

)

= ϕ(n)

[
k + 1 + Σ+(p)α(n) + S+(p)

q∑
i=0

ωi(n)

]
+O

(
ϕ(n)
n3

)
.

(A.21)

A.8. Formula for
∑k

p=1 Σ(p)

Lemma A.8. For the above sum, the following formula holds:

k∑
p=1

Σ
(
p
)
= −k2. (A.22)

Proof. Using formula (A.9), we get

k∑
p=1

Σ
(
p
)
= Σ(1) + Σ(2) + Σ(3) + · · · + Σ(k)

=
k

2
· [(k − 3) + (k − 5) + (k − 7) + · · · + (k − (2k + 1))]

=
k

2
· (−2k) = −k2.

(A.23)
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A.9. Formula for
∑k

p=1 Σ
2(p)

Lemma A.9. For the above sum, the following formula holds:

k∑
p=1

Σ2(p) = k3

12

(
k2 + 11

)
. (A.24)

Proof. Using formula (A.9), we get

k∑
p=1

Σ2(p) = k2

4

k∑
p=1

(
k − 2p − 1

)2

=
k2

4
·
[
(k − 3)2 + (k − 5)2 + (k − 7)2 + · · · + (k − (2k + 1))2

]
.

(A.25)

We compute the sum in the square brackets. We use formula (A.12). In our case,

r = k, u1 = (k − 3)2, u2 = (k − 5)2, u3 = (k − 7)2, . . . , uk = (k − 2k − 1)2 = (k + 1)2,

d′
1 = u2 − u1 = (k − 5)2 − (k − 3)2 = −4k + 16,

d′
2 = u3 − u2 = (k − 7)2 − (k − 5)2 = −4k + 24,

(A.26)

the second differences are constant, and

d′′
1 = d′

2 − d′
1 = (−4k + 24) − (−4k + 16) = 8. (A.27)

Then the sum in the square brackets equals

k!
(k − 1)! · 1! · (k − 3)2 +

k!(−4)
(k − 2)! · 2! · (k − 4) +

k!
(k − 3)! · 3! · 8 =

k

3

(
k2 + 11

)
, (A.28)

and formula (A.24) is proved.

A.10. Formula for 2
∏k

i,j= 0,i >jΣ(i)Σ(j)

Lemma A.10. For the above product, the following formula holds:

2
k∏

i,j=0
i>j

Σ(i)Σ
(
j
)
= k4 − k3

12

(
k2 + 11

)
. (A.29)
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Proof. We have

2
k∏

i,j=0
i>j

Σ(i) Σ
(
j
)
=

⎛
⎝ k∑

p=1

Σ
(
p
)
⎞
⎠

2

−
k∑

p=1

(
Σ
(
p
))2

. (A.30)

Then, using formulas (A.22), and (A.24), we get

⎛
⎝ k∑

p=1

Σ
(
p
)
⎞
⎠

2

−
k∑

p=1

(
Σ
(
p
))2 = (−k2

)2 − k3

12

(
k2 + 11

)
= k4 − k3

12

(
k2 + 11

)
. (A.31)

A.11. Formula for
∑k

p=0 Σ
+(p)

Lemma A.11. For the above sum, the following formula holds:

k∑
p=0

Σ+(p) = 0. (A.32)

Proof. Using formulas (A.9), (A.10), and (A.22), we get

k∑
p=0

Σ+(p) = Σ(0) +
k∑

p=1

Σ
(
p
)
+

k∑
p=0

(
k − p

)
=

k

2
(k − 1) − k2 +

k

2
(k + 1) = 0. (A.33)

A.12. Formula for
∑k

p=0 (Σ
+(p))2

Lemma A.12. For the above sum, the following formula holds:

k∑
p=0

(
Σ+(p))2 = (k + 1)2k

12
·
(
k2 + 3k + 2

)
. (A.34)

Proof. Using formula (A.10), we get

k∑
p=0

(
Σ+(p))2 = (k + 1)2

4

[
(k − 0)2 + (k − 2)2 + (k − 4)2 + · · · + (k − 2k)2

]
. (A.35)

We compute the sum in the square brackets. We use formula (A.12). In our case,

r = k + 1, u1 = k2, u2 = (k − 2)2, u3 = (k − 4)2, . . . , uk+1 = (k − 2k)2 = k2,

d′
1 = u2 − u1 = (k − 2)2 − k2 = −4k + 4,

d′
2 = u3 − u2 = (k − 4)2 − (k − 2)2 = −4k + 12,

(A.36)
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the second differences are constant, and

d′′
1 = d′

2 − d′
1 = (−4k + 12) − (−4k + 4) = 8. (A.37)

Then, the sum in the square brackets equals

(k + 1)!
k! · 1! · k2 +

4(k + 1)!
(k − 1)! · 2! · (−k + 1) +

(k + 1)!
(k − 2)! · 3! · 8 =

k

3

(
k2 + 3k + 2

)
, (A.38)

and formula (A.34) is proved.

A.13. Formula for 2
∏k

i,j=0, i>jΣ
+(i)Σ+(j)

Lemma A.13. For the above product, the following formula holds:

2
k∏

i,j=0
i>j

Σ+(i)Σ+(j) = − (k + 1)2k
12

(
k2 + 3k + 2

)
. (A.39)

Proof. We have

2
k∏

i,j=0
i>j

Σ+(i)Σ+(j) =
⎛
⎝ k∑

p=0

Σ+(p)
⎞
⎠

2

−
k∑

p=0

(
Σ+(p))2. (A.40)

Then, using formulas (A.32), and (A.34), we get

⎛
⎝ k∑

p=1

Σ+(p)
⎞
⎠

2

−
k∑

p=1

(
Σ+(p))2 = −

k∑
p=1

(
Σ+(p))2 = − (k + 1)2k

12
·
(
k2 + 3k + 2

)
. (A.41)

A.14. Formula for S(p)

Lemma A.14. For a fixed integer p, the formula

S
(
p
)
=

k

6

[
2k2 − 3

(
1 + 2p

)
k +
(
6p2 + 6p + 1

)]
(A.42)

holds.
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Proof. We use formula (A.12). In our case

r = k, u1 =
(
k − p − 1

)2
, . . . , uk =

(
k − p − k

)2 = p2,

d′
1 = u2 − u1 =

(
k − p − 2

)2 − (k − p − 1
)2 = (2k − 2p − 3

)
(−1),

d′
2 = u3 − u2 =

(
k − p − 3

)2 − (k − p − 2
)2 = (2k − 2p − 5

)
(−1),

(A.43)

the second differences are constant, and

d′′
1 = d′

2 − d′
1 =
(
2k − 2p − 5

)
(−1) − (2k − 2p − 3

)
(−1) = 2. (A.44)

Then the formula

S
(
p
)
=

k!
(k − 1)! · 1! ·

(
k − p − 1

)2 + k!(−1)
(k − 2)! · 2! ·

(
2k − 2p − 3

)
+

k!
(k − 3)! · 3! · 2 (A.45)

directly follows from (A.12). After some simplification, we get

S
(
p
)
= k · (k − p − 1

)2 − k(k − 1)
2

· (2k − 2p − 3
)
+
k(k − 1)(k − 2)

3

=
k

6
·
[
6
(
k2 − 2k

(
p + 1

)
+
(
p + 1

)2) − 3
(
2k2 − k

(
2p + 5

)
+
(
2p + 3

))
+ 2
(
k2 − 3k + 2

)]

=
k

6

[
2k2 − 3

(
1 + 2p

)
k +
(
6p2 + 6p + 1

)]
.

(A.46)

Formula (A.42) is proved.

A.15. Formula for
∑k

p=1 S(p)

Lemma A.15. For a fixed integer p, the formula

k∑
p=1

S
(
p
)
=

k

6

(
k3 + 5k

)
(A.47)

holds.

Proof. Since, by (A.42),

6
k
S
(
p
)
= 2k2 − 3

(
1 + 2p

)
k +
(
6p2 + 6p + 1

)
, (A.48)
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we get

6
k

k∑
p=1

S
(
p
)
= 2

k∑
p=1

k2 − 3k
k∑

p=1

(
1 + 2p

)
+ 6

k∑
p=1

p2 + 6
k∑

p=1

p +
k∑

p=1

1

= 2k3 − 3k
(
k2 + 2k

)
+ k
(
2k2 + 3k + 1

)
+ 3
(
k2 + k

)
+ k

= k3 + 5k.

(A.49)

This yields (A.47).

A.16. Formula for S+(p)

Lemma A.16. The above expression equals

S+(p) = k + 1
6

[
2k2 +

(−6p + 1
)
k + 6p2

]
. (A.50)

Proof. We have the following:

S+(p) = (k − p
)2 + S

(
p
)

=
[(
k − p

)2 + k

6

[
2k2 − 3

(
1 + 2p

)
k +
(
6p2 + 6p + 1

)]

−k + 1
6

[
2k2 +

(−6p + 1
)
k + 6p2

]]
+
k + 1
6

[
2k2 +

(−6p + 1
)
k + 6p2

]

=
1
6

[
6k2 − 12kp + 6p2 + k

[−4k + 6p + 1
] − 2k2 +

(
6p − 1

)
k − 6p2

]

+
k + 1
6

[
2k2 +

(−6p + 1
)
k + 6p2

]

=
k + 1
6

[
2k2 +

(−6p + 1
)
k + 6p2

]
.

(A.51)

This yields (A.50).

A.17. Formula for
∑k

p=0 S
+(p)

Lemma A.17. The above expression equals

k∑
p=0

S+(p) = (k + 1)k
6

(
k2 + 3k + 2

)
. (A.52)

Proof. Since, by (A.50),

6
k + 1

S+(p) = 2k2 +
(−6p + 1

)
k + 6p2, (A.53)
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we get

6
k + 1

k∑
p=0

S+(p) = 2
k∑

p=0

k2 + k
k∑

p=0

(−6p + 1
)
+ 6

k∑
p=0

p2

= 2k2(k + 1) + k(−3k(k + 1) + (k + 1)) + k
(
2k2 + 3k + 1

)

= k3 + 3k2 + 2k.

(A.54)

This yields (A.52).

A.18. Formula for (1/k)
∑k

p=1 S(p) − (1/(k + 1))
∑k

p=0 S
+(p)

Lemma A.18. The above expression equals

1
k

k∑
p=1

S
(
p
) − 1

k + 1

k∑
p=0

S+(p) = 1
2
·
(
−k2 + k

)
. (A.55)

Proof. By (A.47) and (A.50), we obtain

1
k

k∑
p=1

S
(
p
) − 1

k + 1

k∑
p=0

S+(p) = 1
6
·
(
k3 + 5k

)
− 1
6
·
(
k3 + 3k2 + 2k

)

=
1
6
·
(
−3k2 + 3k

)
=

1
2
·
(
−k2 + k

)
.

(A.56)

This yields (A.55).

A.19. Asymptotic Decomposition of
∏k

p=1V (n + p)

Lemma A.19. For a fixed q ∈ N0, the asymptotic representation

k∏
p=1

V
(
n + p

)
= kkϕk(n)

[
1 − kα(n) − k

24

(
k2 − 12k + 11

)
α2(n) +

k

6

(
k2 + 5

) q∑
i=0

ωi(n)

]

+O

(
ϕk(n)
n3

) (A.57)

holds for n → ∞.
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Proof. Using formula (A.17), we get

k∏
p=1

V
(
n + p

)
=

k∏
p=1

[
ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O

(
ϕ(n)
n3

)]

= ϕk(n)

⎡
⎢⎢⎣kk + kk−1α(n)

k∑
i=1

Σ(i) + kk−2α2(n)
k∏

i,j=0
i>j

Σ(i) Σ
(
j
)
+ kk−1

k∑
i=1

S(i)
q∑
j=0

ωj(n)

⎤
⎥⎥⎦

+O

(
ϕk(n)
n3

)
= (∗).

(A.58)

Now, by (A.22), (A.29), and (A.47)

(∗) = ϕk(n)

⎡
⎢⎢⎣kk + kk−1(−k)2α(n) + 1

2
kk−2
(
k4 − k3

12

(
k2 + 11

))
α2(n)

+
1
6
kk−1k

(
k3 + 5k

) q∑
j=0

ωj(n)

⎤
⎥⎥⎦ +O

(
ϕk(n)
n3

)

= kkϕk(n)

⎡
⎢⎢⎣1 − kα(n) − k

24

(
k2 − 12k + 11

)
α2(n)

+
k

6

(
k2 + 5

) q∑
j=0

ωj(n)

⎤
⎥⎥⎦ +O

(
ϕk(n)
n3

)
.

(A.59)

A.20. Asymptotic Decomposition of
∏k

p=0V
+(n + p)

Lemma A.20. For a fixed q ∈ N0, the asymptotic representation

k∏
p=0

V +(n + p
)
= (k + 1)k+1ϕk+1(n)

[
1 − k

24

(
k2 + 3k + 2

)
α2(n) +

k

6

(
k2 + 3k + 2

) q∑
i=0

ωi(n)

]

+O

(
ϕk+1(n)

n3

)

(A.60)

holds for n → ∞.
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Proof. Using formula (A.20), we get

k∏
p=0

V +(n + p
)
=

k∏
p=0

[
ϕ(n)

[
k + 1 + Σ+(p)α(n) + S+(p)

q∑
i=0

ωi(n)

]
+O

(
ϕ(n)
n3

)]

= ϕk+1(n)

⎡
⎢⎢⎣(k + 1)k+1 + (k + 1)kα(n)

k∑
i=0

Σ+(i)

+ (k + 1)k−1α2(n)
k∏

i,j = 0
i > j

Σ+(i)Σ+(j)

+(k + 1)k
k∑
i=0

S+(i)
q∑
j=0

ωj(n)

⎤
⎥⎥⎦ +O

(
ϕk+1(n)

n3

)
= (∗).

(A.61)

Now, by (A.32), (A.39), and (A.52), we derive

(∗) = ϕk+1(n)

⎡
⎢⎢⎣(k + 1)k+1 − (k + 1)k−1

(k + 1)2k
24

(
k2 + 3k + 2

)
α2(n)

+(k + 1)k
(k + 1)k

6

(
k2 + 3k + 2

) q∑
j=0

ωj(n)

⎤
⎥⎥⎦ +O

(
ϕk+1(n)

n3

)

= (k + 1)k+1ϕk+1(n)

⎡
⎣1 − k

24

(
k2 + 3k + 2

)
α2(n) +

k

6

(
k2 + 3k + 2

) q∑
j=0

ωj(n)

⎤
⎦

+O

(
ϕk+1(n)

n3

)
.

(A.62)
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[3] J. Baštinec, L. Berezansky, J. Diblı́k, and Z. Šmarda, “On the critical case in oscillation for differential
equations with a single delay andwith several delays,”Abstract and Applied Analysis, vol. 2010, Article
ID 417869, 20 pages, 2010.
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