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We translate into the language of semi-group theory Bismut’s Calculus on boundary processes
(Bismut (1983), Lèandre (1989)) which gives regularity result on the heat kernel associated with
fractional powers of degenerated Laplacian. We translate into the language of semi-group theory
the marriage of Bismut (1983) between the Malliavin Calculus of Bismut type on the underlying
diffusion process and the Malliavin Calculus of Bismut type on the subordinator which is a jump
process.

1. Introduction
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∂
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+X1
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be an Hoermander’s type operator on R
1+d. Let

L
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∂
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+X2
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be a second Hoermander’s operator on R
1+d. Bismut [1] considers the generator

A = −1
2

√
−2L1 − 1

2

√
−2L2 (1.3)
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and the Markov semi-group exp[tA]. This semi-group has a probabilistic representation. We
consider a Brownian motion t → zt independent of the others Brownian motions Bi

t. Bismut
introduced the solution of the stochastic differential equation starting at x in Stratonovitch
sense:

dxt(x) = Izt<0

(
X1

0(xt(x))dt +
∑

i>0

X1
i (xt(x))dBi

t

)

+ Izt>0

(
X2

0(xt(x))dt +
∑

i>0

X2
i (xt(x))dBi

t

)
,

(1.4)

where t → Bi
t are m independent Brownian motions.

Let us introduce the local time t → Lt associated with t → zt and its right inverse
t → At (see [2, 3]). Then,

exp[tA]f(0, x) = E
[
f(At, xAt(x))

]
. (1.5)

Such operator is classically related to the Dirichlet Problem [3].
Classically [4],

exp
[
tL1
]
f(x) = E

[
f
(
x1
t (x)

)]
, (1.6)

where x1
t (x) is the solution of the Stratonovitch differential equation starting at x:

dx1
t (x) = X1

0

(
x1
t (x)

)
dt +

∑
X1

i

(
x1
t (x)

)
dBi

t, (1.7)

The question is as following: is there an heat-kernel associated with the semi-group exp[tL1]?
This means that

exp
[
tL1
]
f(x) =

∫

Rd

f
(
y
)
pt
(
x, y

)
dy. (1.8)

There are several approaches in analysis to solve this problem, either by using tools
of microlocal analysis or tools of harmonic analysis. Malliavin [5] uses the probabilistic
representation of the semi-group. Malliavin uses a heavy apparatus of functional analysis
(number operator on Fock space or equivalently Ornstein-Uhlenbeck operator on the Wiener
space, Sobolev spaces on the Wiener space) in order to solve this problem.

Bismut [6] avoids using this machinery to solve this hypoellipticity problem. In
particular, Bismut’s approach can be adapted immediately to the case of the Poisson process
[7]. The main difficulty to treat in the case of a Poisson process is the following: in general the
solution of a stochastic differential equation with jumps is not a diffeomorphism when the
starting point is moving (see [8–10]).

The main remark of Bismut in [1] is that if we consider the jump process t → x1
At
(x),

then it is a diffeomorphism almost surely in x. So, Bismut mixed the tools of the Malliavin
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Calculus for diffusion (on the process t → x1
t (x)) and the tools of the Malliavin Calculus for

Poisson process (on the jump process t → At) in order to show that this is the problem if

E
[
f(At, xAt(x))

]
=
∫

R1+d
qt
(
s, y

)
f
(
s, y

)
dsdy. (1.9)

Developments on Bismut’s idea was performed by Léandre in [9, 11]. Let us remark that this
problem is related to study the regularity of the Dirichlet problem (see [1, page 598]) (see
[12–14] for related works).

Recently, we have translated into the language of semi-group theory the Malliavin
Calculus of Bismut type for diffusion [15]. We have translated in semi-group theory a lot
of tools on Poisson processes [16–22]. Especially, we have translated the Malliavin Calculus
of Bismut type for Poisson process in semi-group theory in [17]. It should be tempting to
translate in semi-group theory Bismut’s Calculus on boundary process. It is the object of this
work.

On the general problematic on this work, we refer to the review papers of Léandre
[23–25]. It enters in the general program to introduce stochastic analysis tools in the theory
of partial differential equation (see [26–28]).

2. Statements of the Theorems

Let us recall some basis on the study of fractional powers of operators [29]. Let L be a
generator of a Markovian semi-group Ps. Then,

−
√
−L = C

∫∞

0
s−3/2(Ps − I)ds. (2.1)

The results of this paper could be extended to generators of the type

A =
∫∞

0
g(s)(Ps − I)ds, (2.2)

where
∫∞
0 g(t) ∧ 1dt < ∞ and g ≥ 0, but we have chosen the operator of the type (1.3) to be

more closely related to the original intuition on Bismut’s Calculus on boundary process. Let
be Ed = R

1+d×Gd×Md where Gd is the space of invertible matrices on R
d and Md the space of

symmetric matrices on R
d. (s, x,U, V ) is the generic element of Ed. V is called the Malliavin

matrix.
On Ed, we consider the vector fields:

X̂1
i =

(
0, Xi,DX1

i (x)U, 0
)
,

Ŷ 1 =

(
0, 0, 0,

m∑

i=1

〈
U−1Xi, ·

〉2
)
.

(2.3)
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We consider the Malliavin generator L̂
1 on Ed:

L̂1 =
∂

∂s
+ X̂1

0 +
1
2

∑

i>0

(
X̂1

i

)2
+ Ŷ 1. (2.4)

We consider the Malliavin semi-group P̂ 1
t associated and

√
−L̂1.

We perform the same algebraic considerations on L
2. We get L̂2, P̂ 2

t , and
√
−L̂2. Let us

consider the total generator

Â = −
√
−L̂1 −

√
−L̂2 (2.5)

and the Malliavin semi-group exp[tÂ].
We get a theorem which enters in the framework of the Malliavin Calculus for heat-

kernel.

Theorem 2.1. Let one suppose that the Malliavin condition in x is checked:

exp
[
tÂ
][
detV −p](0, x, I, 0) < ∞ (2.6)

holds for all p, then

exp[tA]f(0, x) =
∫

R1+d
f
(
s, y

)
qt
(
s, y

)
dsdy, (2.7)

where qt(s, y) is the density of a probability measure on R
1+d.

Theorem 2.2. If the quadratic form

∑

i>0

〈
X1

i (x), ·
〉2

+
∑

i>0

〈
X2

i (x), ·
〉2

(2.8)

is invertible in x, then the Malliavin condition holds in x.

Remark 2.3. We give simple statements to simplify the exposition. It should be possible by the
method of this paper to translate the results of [9, part III], got by using stochastic analysis as
a tool.

3. Integration by Parts on the Underlying Diffusion

We consider the vector fields on R
1+d+1,

X
j,1
i,s,t =

(
0, Xj

i (x), Z
j

i,s,t

)
, (3.1)
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where Zj

i,s,t = 〈φ(x), hj
s,t〉i (φ(x) is a convenient matrix on R

m which depends smoothly on x

and whose derivatives at each order are bounded. (s, t) → h
j
s,t does not depend on x, and

h
j
s,t belong to R

m). Let f̃ be a smooth function on R
1+d+1, D̃f̃ denotes its gradient, and D̃2f̃

denotes its Hessian.
We consider the generator L

j,1
s,t acting on smooth functions on R

1+d+1,

L
j,1
s,t f̃ =

∂

∂s
f̃ +

〈
X

j

0(x), D̃f̃
〉
+
1
2

∑

i>0

〈
DX

j

i (x)X
j

i (x), D̃f̃
〉

+
1
2

∑

i>0

〈
X

j,1
i,s,t, D̃

2f̃ , X
j,1
i,s,t

〉
.

(3.2)

In (3.2), the generator is written under Itô’s form. It generates a time inhomogeneous in the
parameter s semi-group P

j,1
s,t . We can consider

−
√
−L

j,1
·,t = C

∫∞

0
s−3/2

(
P
j,1
s,t − I

)
ds. (3.3)

We put

A
1
t = −

√
−L

j,1
·,t −

√
−L

j,2
·,t . (3.4)

It generates a semi-group P 1
t .

Let us consider theHoermander’s type generator associatedwith the smooth Lipschitz
vector fields on R

1+d+d((s, x,U) on R
1+d+d):

X
j,2
i =

(
0, Xj

i , DX
j

iU
)
,

Y
j,2
0,s,t =

(
0, 0,

∑
X

j

i (x)Z
j

i,s,t

)
=
(
0, 0, Y j

i,s,t

)
,

L
j,2
s,t = X

j,2
0 +

1
2

∑

i>1

(
X

j,2
i

)2
+ Y

j,2
0,s,t.

(3.5)

We consider the heat semi-group associated with L
j,2
s,t

∂

∂s
P
j,2
s,t f̃ = L

j,2
s,tP

j,2
s,t f̃ . (3.6)

Let us recall [15, Theorem 2.2] that

P
j,1
s,t

[
uf
]
(s0, x0, 0) = P

j,2
s,t

[〈
Df,U

〉]
(s0, x0, 0), (3.7)
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where f depends only on (s, x). In the left-hand side of (3.7), we apply the enlarged semi-
group to the test function (s, x, u) → f(s, x)u and in the right-hand side we apply the semi-
group to the test function (s, x,U) → 〈Df,U〉. u belongs to R and U belongs to R

d. From
this, we deduce the following.

Lemma 3.1. One has the relation

−L
j,1
·,t
[
uf
]
(s0, x0, 0) = −L

j,2
·,t
[〈
Df,U

〉]
(s0, x0, 0). (3.8)

Let us consider the semi-group P 2
t associated with

A
2
t = −

√
−L

1,2
·,t −

√
−L

2,2
·,t . (3.9)

We get, with the same notations for (s, x, u,U) the following.

Theorem 3.2. For f bounded continuous with compact support in (s, x), one has the following
relation:

P 2
t

[〈
Df,U

〉]
(s0, x0, 0) = P 1

t

[
fu
]
(s0, x0, 0). (3.10)

Proof. For the integrability conditions, we refer to the appendix.
We remark that ∂/∂u commute with A

1
t , therefore with P 1

t . We deduce that

P 1
t

[
fu
]
(s0, x0, u0) = u0 exp[tA]

[
f
]
(s0, x0) + P 1

t

[
fu
]
(s0, x0, 0). (3.11)

By the method of variation of constants,

P 1
t

[
fu
]
(s0, x0, 0) =

∫ t

0
exp[(t − s)A]

[
A

1
s

[
u exp[sA]

[
f
]
(·, ·, 0)]

]
(s0, x0)ds. (3.12)

In order to show that, we follow the lines of (2.17) and (2.18) in [15]. We apply A
1
t to (3.11).

By Lemma 3.1,

A
1
s

[
u exp[sA]

[
f
]
(·, ·)](s1, x1, 0) = A

2
s

[〈
D
(
exp[sA]

)
, U
〉]
(s1, x1, 0). (3.13)

Let us consider the vector fields on R
1+d × Gd,

X
j,3
i =

(
0, Xj

i , DX
j

iU
)
. (3.14)

We consider the Hoermander’s type operator associated with these vector fields:

L
j,3 = X

j,3
0 +

1
2

∑

i>0

(
X

j,3
i

)2
. (3.15)
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We consider the generator

A
3
t = −

√
−L

1,3
s,t −

√
−L

2,3
s,t
. (3.16)

It generates a semi-group P 3
t . By lemma 3.2 of [15], we have

D exp[sA]
[
f
]
(s1, x1) = P 3

s

[
DfV

]
(s1, x1, I). (3.17)

By [15, Equation (3.18)],

P
j,2
s,t

[
P 3
t

[
DfU

]
(·, I)V

]
(s1, x1, 0) =

∑

i

∫ s

0
P
j
s−v,t

[
∑

i

〈
Y

j

i,v,t, P
j,3
v,t

[
P 3
t

[
DfU

]
(·, I)

]〉]
(s1, x1, 0).

(3.18)

In [15, Equation (3.18)], we consider the semi-group P
′
t instead of the semi-group P

j,2
s,t and the

test function Df instead as of the test function P 3
t [DfU](·, I) here. Yj

i,v,t is considered as an
element of R and not as a one-order differential operator:

∂

∂s
P
j,3
s,t f̃ = L

j,3
s,tP

j,3
s,t f̃ . (3.19)

Therefore,

A
2
t

[
P 3
t

[
DfV

]
(·, I)V

]
(s1, x1, 0)

=
∑

i,j

C

∫∞

0
s−3/2

∫ s

0
P
j
s−v,t

[〈
∑

i

Y
j

i,v,t, P
j,3
v,t

[
P 3
t

[
DfU

]
(·, I)

]〉]
(s1, x1, 0)dv ds.

(3.20)

We write

A
2
t = A

3
t + Ã3

t , (3.21)

where

Ã3
t

[
fU

]
(s0, x0, U0) =

∑

j

C

∫∞

0
s−3/2

(
P
j,2
s,t − P

j,3
s,t

)[
fU

]
(s0, x0, U0)ds. (3.22)

The Volterra expansion (see [15, Equation (3.17)]) if it converges gives the following formula:

P
j,2
s,t

[
fU

]
(s0, x0, U0) =

∑∫

0<s1<s2<···<sn<t
ds1 · · ·dsnPj,3

s1

∑
Y

j

i,s1,t
· · ·Pj,3

sn−sn−1

×
∑

Y
j

i,sn,t
· · ·Pj,3

t−sn
[
fU

]
(s0, x0, U0).

(3.23)
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But u0 → P
j,3
s,t [fU](s0, x0, U0) is linear in u0. Therefore:

P
j,2
s,t

[
fU

]
(s0, x0, U0) = P

j,3
s,t

[
fU

]
(s0, x0, U0) +

∫s

0
P
j
v

〈
∑

i

Y
j

i,v,t, P
j,3
s−v,t

[
fU

]
〉
(s0, x0, U0)dv.

(3.24)

In this last formula, Yj

i,s,t are considered as differential operators.
Therefore, Ã3

t [fU](s0, x0, U0) does not depend on U0 and is equal to

∑

i,j

C

∫∞

0
s−3/2

∫ s

0
P
j
v

〈
∑

i

Y
j

i,v,t, P
j,3
s−v,t

[
fU

]
(s0, x0, I)

〉
dsdv, (3.25)

where Yj

i,s,t are considered as elements of R
d. We deduce as in [15, Equation (3.17)],

P 2
t

[
fU

]
(s0, x0, 0) =

∫ t

0
exp[(t − s)A]Ã3

sP
3
s

[
fU

]
(s0, x0, 0)ds. (3.26)

But U0 → P 3
s [fU](s0, x0, U0) is linear. Therefore,

Ã3
t P

3
t

[
fU

]
(s0, x0, 0) =

∑

i,j

C

∫∞

0
s−3/2

∫s

0
P
j
v

〈
∑

i

Y
j

i,v,t, P
j,3
s−v,t

[
P 3
t

[
fU

]]
(s0, x0, I)

〉
dsdv.

(3.27)

It remains to replace f by Df in this last equation and to compare (3.26) with (3.13) and
(3.20).

We consider the Malliavin generator Â. We can perform the same algebraic
construction as in Theorem 3.2. We get two semi-groups P̂ 2

t and P̂ 1
t . Ŷ

j

i,s,t and Ẑ
j

i,s,t are smooth
with bounded derivatives in x̂ = (x,U,U−1, V ). We get by the same procedure the following.

Theorem 3.3. If f̂ is bounded with bounded derivatives and with compact support in s, then one gets

P̂ 2
t

[〈
Df̂, Û

〉]
(s0, x̂, 0) = P̂ 1

t

[
f̂ û
]
(s0, x̂, 0), (3.28)

where one take does not derivative in the direction of s in Df̂ .

We can perform the same improvements as in [15, page 512]. We define on R
d × R

d1 ×
· · · × R

dk some vectors fields:

X
j,tot
i =

(
X

j,1
i (x1), . . . , X

j,l

i (x1, . . . , xl), X
j,k

i (x1, . . . , xk)
)
, (3.29)
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where

X
j,l

i

(
x1, . . . , xl

)
= X

j,l

1,i

(
x1, . . . , xl−1

)
xl ∂

∂xl
+Xl

2,i

(
x1, . . . , xl

) ∂

∂xl
+Xl

3,i

(
x1, . . . , xl−1

)
(3.30)

where X
j,l

1,i, X
j,l

2,i have derivatives bounded at each order and X
j,l

3,i has derivative with
polynomial growth.

We can consider the generator Â
tot associated with these vector fields and perform the

same algebraic computations as in Theorem 3.2. We get two semi-groups P̂ 2,tot
t and P̂ 1,tot

t · Ŷ j

i,s,t

and Ẑ
j

i,s,t are smooth with bounded derivatives in x̂ = (x,U,U−1, V ). We get by the same
procedure the following.

Theorem 3.4. If f̂ tot is bounded with bounded derivatives and with compact support in s, then one
gets

P̂ 2,tot
t

[〈
Df̂ tot, Û

〉](
s0, x̂

tot, 0
)
= P̂ 1,tot

t

[
f̂ totû

](
s0, x̂

tot, 0
)
, (3.31)

where Df̂ tot does not include derivative in the direction of s.

We refer to the appendix for the proof and the subsequent estimates.

Remark 3.5. Let us show from where come these identities, by using (1.4): we consider a
time interval [At−, At]. On this random time interval, we do the following translation on the
leading Brownian motion Bi

s:

(i) if zs > 0 on this time interval, then dBi
s is transformed in dBi

s + λ〈φ(xs), h2
s,t〉ids for

a small parameter λ,

(ii) if zs < 0 on this time interval, then dBi
s is transformed in dBi

s + λ〈φ(xs), h1
s,t〉ids for

a small parameter λ.

According to the fact that f has compact support (this means that we consider
bounded values of At), the transformed Brownian motion has an equivalent law through
the Girsanov exponential to the original Brownian motions. The term in u in Theorem 3.2
come that from the fact we take the derivative in λ = 0 of the Girsanov exponential. When
we do this transformation, we get a random process xλ

t (x). Derivation of it in λ = 0 is done
classically according to the stochastic flow theorem, which leads to the study of generators of
the type L

j,2
s,t and of the type L

j,3.

4. Integration by Parts on the Subordinator

Let us consider diffusion type generator of the previous part:

L = Y0 +
1
2

∑
Y 2
i ,

L

√
t =
(√

t
)2
Y0 +

1
2

∑

i>0

(√
tYi

)2
.

(4.1)
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Let us consider the semi-group

∂

∂t
Pt = LPt (4.2)

and the semi-group

∂

∂s
P
√
t

s = L

√
tP

√
t

s . (4.3)

We have classically

Pt = P
√
t

1 , (4.4)

where the smooth vector fields are Lipschitz.
Therefore, we can write

−
√
−L = C

∫∞

0
s−3/2

(
P
√
s

1 − I

)
ds. (4.5)

We consider a diffeomorphsim fλ(s) of [0,∞[ with bounded derivative of first order in λ
equal to s if s < ε and equals to s if s > 2 (we suppose λ small). We can write

√
−Aλ = C

∫∞

0

(
fλ(s))

−3/2P
√

fλ(s)
1 − s−3/2I

)
ds. (4.6)

We do this operation on the two operators on R
1+d giving A. We get a generator A

λ.
According the line of stochastic analysis, we consider a generator A

λ,1 on R
1+d+1. If L

1

is a generator on R
1+d with associated semi-group Ps, then we consider A

λ,1 the generator on
R

1+d+1,

A
λ,1f(s0, x0, u0) =

∑

j

C

∫∞

0

(
fλ(s)−3/2

[
P
j,
√

fλ(s)
1 f(s0, x0, u0Jλ(s))

]
− s−3/2f(s0, x0, u0)

)
ds,

(4.7)

where Jλ(s) is the Jacobian of the transformation s → fλ(s). By doing this procedure in (1.3),
we deduce a global generator A

λ,1 and a semi-group Pλ,1
t associated with it.

It is not clear that Pλ,1
t is a Markovian semi-group. We decompose

A
λ,1 = A

λ,1,ε + A
λ,1,εc , (4.8)

where

A
λ,1,εf(s0, x0, u0) =

∑

j

C

∫ε

0

(
s−3/2Pj,

√
s

1 f(s0, x0, u0) − s−3/2f(s0, x0, u0)
)
ds. (4.9)
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A
λ,1,ε generates a Markovian semi-group Pλ,1,ε

t . But A
λ,1,εc is a bounded operator on the set

of bounded continuous functions on R
1+d+1 endowed with the uniform norm. The Volterra

expansion converges on this set:

Pλ,1
t f(s0, x0, u0) = Pλ,1,ε

t f(s0, x0, u0) +
∑

n

∫

0<s1<···<sn<t
Pλ,1,ε
s1 A

λ,1,εcPλ,1,ε
s2−s1 · · ·Aλ,1,εcPλ,1,ε

t−sn ds1 · · ·dsn.

(4.10)

Theorem 4.1 (Girsanov). For f with compact support in (s, x), one has

Pλ,1
t

[
uf
]
(s0, x0, 1) = exp[tA]

[
f
]
(s0, x0). (4.11)

Proof. By linearity,

Pλ,1
t

[
uf
]
(s0, x0, u0) = u0P

λ,1
t

[
uf
]
(s0, x0, 1). (4.12)

But by an elementary change of variable,

A
λ,1
[
uPλ,1

t

[
uf
]
(·, ·, 1)

]
= A

[
Pλ,1
t

[
uf
]
(·, ·, 1)

]
. (4.13)

The result holds by the unicity of the solution of the parabolic equation associated with A. To
state the integrability of u, we refer to [16].

Remark 4.2. Let us show from where this formula comes. In the previous part, we have done
a perturbation of the leading Brownian motion Bi

t. Here, we do a perturbation of ΔAs into
fλ(ΔAs) = ΔAλ

s . By standard result on Levy processes, the law of the Levy process Aλ
t is

equivalent to the law of At. Moreover, Aλ
t and Bi

t are independents. Therefore, the result.
Bismut’s idea to state hypoellipticity result is to take the derivative in λ of

Pλ,1
t

[
uf
]
(s0, x0, 1) = exp[tA]

[
f
]
(s0, x0) (4.14)

in order to get an integration by parts.

First of all, let us compute (∂/∂λ)P
√

fλ(s)
t f in λ = 0. It is fulfilled by the next

considerations. Let us consider a generator written under Hoermander’s form:

L
λ = gλY0 +

1
2
g2
λ

∑

i>0

Y 2
i , (4.15)

where gλ are smooth and where the vector fields Yi are smooth Lipschitz on R
d̃. We consider

the semi-group Pλ,·
t associated with it. Let us introduce the vector fields on R

d̃+d̃:

Yλ,1
i =

(
gλYi, gλDYiU +

d

dλ
gλYi

)
. (4.16)
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Let us consider the diffusion generator

L
λ,1 = Yλ,1

0 +
1
2

∑

i>0

(
Yλ,1
i

)2
. (4.17)

Associated with it there is a semi-group Pλ,1,·
t .

Proposition 4.3. For f smooth with compact support, one has

∂

∂λ
Pλ,·
t

[
f
]
(x̃) = Pλ,1,·

t

[〈
df,U

〉]
(x̃, 0). (4.18)

Proof. Let us introduce the vector fields on R
d̃+d̃:

Yλ,2
i =

(
gλYi, gλDYiU

)
(4.19)

and the generator

L
λ,2 = Yλ,2

0 +
1
2

∑

i>0

(
Yλ,2
i

)2
. (4.20)

Associated with it there is a semi-group Pλ,2,·
t .

If the Volterra expansion converges, then

Pλ,1,·
t

[〈
df,U

〉]
(x̃, 0) =

∑∫

0<s1<···<sn<t
ds1 · · ·dsnPλ,2,·

s1

(
L
λ,1 − L

λ,2
)

× Pλ,2,·
s2−s1

(
L
λ,1 − L

λ,2
)
· · ·
(
L
λ,1 − L

λ,2
)
Pλ,2,·
t−sn
[〈
df,U

〉]
(x̃, 0).

(4.21)

But Ũ0 → Pλ,2,·
t [〈df,U〉](x̃, Ũ0) is linear in Ũ0 and therefore the quantity (Lλ,1 −

L
λ,2)Pλ,2,·

t−sn [〈df,U〉](x̃, Ũ0) does not depend on Ũ0. Therefore the Volterra expansion reads

Pλ,1,·
t

[〈
df,U

〉]
(x̃, 0) =

∫ t

0
Pλ
s

(
L
λ,1 − L

λ,2
)
Pλ,2,·
t−s
[〈
df,U

〉]
(x̃, 0). (4.22)

Let us compute L
λ,1 − L

λ,2. It is equal to

∑

i>0

gλg
′
λ〈DYiYi,DU〉 +

∑

i>0

gλg
′
λ〈Yi,DUDX, Yi〉 + g ′

λ〈Y0, DU〉. (4.23)

We use the relation (see [15, Lemma 3.2])

DXP
λ,·
t f(x̃) =

〈
Pλ,2,·
t

[〈
Df,U

〉]
(x̃, I), ·

〉
(4.24)
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and the relation

DUP
λ,2,·
t

[〈
df,U

〉](
X̃, 0

)
= Pλ,2,·

t

[〈
df,U

〉](
X̃, Ĩ

)
. (4.25)

Therefore,

(
L
λ,1 − L

λ,2
)
Pλ,2,·
t

[〈
Df,U

〉]
(x̃0, U0) = g ′

λ

〈
Y0, DPλ,·

t

〉
+
∑

i>0

gλg
′
λ

〈
DYiYi,DPλ,·

t

〉

+
∑

i>0

gλg
′
λ

〈
Yi,D

2Pλ,·
t , Yi

〉
.

(4.26)

We insert this formula in the right-hand side of (4.23) and we see that Pλ,1,·
t (〈Df,U〉)(x̃, 0)

satisfies the same parabolic equation as (∂/∂λ)Pλ,·
t f(x).

Remark 4.4. Let us show from where this formula comes. Classically,

Pλ,·
t

[
f
]
(x) = E

[
f
(
xλ
t (x)

)]
, (4.27)

where xλ
t is the solution of the Stratonovitch equation starting at x:

dxλ
s (x) = gλY0

(
xλ
s (s)

)
ds +

∑

i>0

gλYi

(
xλ
s (s)

)
dBi

s. (4.28)

Therefore,Us = (∂/∂s)xλ
s (x) is solution starting at 0 of the Stratonovitch differential equation:

dUs = g ′
λY0

(
xλ
s (s)

)
ds +

∑

i>0

g ′
λYi

(
xλ
s (s)

)
dBi

s

+ gλ
〈
DY0(xsλ(x)), Uλ

s

〉
ds +

∑

i>0

gλ
〈
DYi

(
xλ
s (x)

)
, Uλ

s

〉
dBi

s

(4.29)

which can be solved classically by using the method of variation of constant [4].
Let us introduce the generator on R

1+d+1+1+d
A

λ,2:

A
λ,2f(s0, x0, u0, v0, U0)

=
∑

j

C

∫∞

0

(
fλ(s)−3/2P

j,
√

fλ(s),2,·
1 f(s0, u0, u0Jλ(s), v0, U0) − s−3/2f(s0, x0, u0, v0, U0)

)
ds.

(4.30)

It generates a semi-group Pλ,2
t . In order to see that, we split the generator by keeping the

values od s〈ε or s〉ε and we proceed as for A
λ,1 (see (4.10)).
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We get the following.

Theorem 4.5. For f smooth with compact support in s and with derivatives of each order bounded,
one has the relation if one takes only derivatives in (s0, x0) of the considered expressions:

DPλ,1
t

[
f
]
(s0, x0, u0) = Pλ,2

t

[〈
Df, v,U

〉]
(s0, x0, u0, 1, I). (4.31)

Proof. We have

∂

∂t
DPλ,1

t =
∑

j

C

∫∞

0

(
fλ(s)−3/2DP

j,
√

fλ(s)
1 Pλ,1

t

[
f
]
(s0, u0, u0Jλ(s)) − s−3/2DPλ,1

t f(s0, x0, u0)
)
ds.

(4.32)

But by [15, Lemma 3.2.]:

DP
j,
√

fλ(s)
1 f(s0, u0, u0Jλ(s)) = P

j,
√

fλ(s),2,·
1

[〈
Df, v,U

〉]
(s0, x0, u0Jλ(s), 1, I) (4.33)

Therefore DPλ,1
t satisfies the parabolic equation associated with Pλ,2

t [〈df, v,U〉](s0, x0,
u0, 1, I). Only the integrability of U puts any problem. It is solved by the appendix since f
has compact support in s.

Theorem 4.6. For f with compact support in x̃ in R
d̃.

Pλ,1,·
t

[〈
df,U

〉](
x̃0, Ũ0

)
= Pλ,2,·

t

[〈
df,U

〉](
x̃0, Ũ0

)
+ Pλ,1,·

t

[〈
df,U

〉](
x̃0, 0̃

)
(4.34)

if Ũ, Ũ0 belong to R
d̃.

Proof. If the Volterra expansion converges, then

Pλ,1,·
t

[〈
df,U

〉](
x̃, Ũ0

)
= Pλ,2,·

t

[〈
df,U

〉](
x̃, Ũ0

)

+
∑∫

0<s1<···<sn<t
ds1 · · ·dsnPλ,2,·

s1

(
L
λ,1 − L

λ,2
)

× Pλ,2,·
s2−s1

(
L
λ,1 − L

λ,2
)
· · ·
(
L
λ,1 − L

λ,2
)
Pλ,2,·
t−sn
[〈
df,U

〉](
x̃, Ũ0

)
.

(4.35)

But Ũ0 → Pλ,2,·
t [〈df,U〉](x̃, Ũ0) is linear in Ũ0 and therefore the quantity (Lλ,1 −

L
λ,2)Pλ,2,·

t−sn [〈df,U〉](x̃, Ũ0) do not depend of Ũ0. Therefore the Volterra expansion reads

Pλ,1,·
t

[〈
df,U

〉](
x̃, Ũ0

)
= Pλ,2,·

t

[〈
df,U

〉](
x̃, Ũ0

)

+
∫ t

0
Pλ
s

(
L
λ,1 − L

λ,2
)
Pλ,2,·
t−s
[〈
df,U

〉]
(x̃, 0)ds

(4.36)
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But the last term in the right-hand side of (4.26) is equal to Pλ,1,·
t [〈df,U〉](x̃, 0) by the end of

the proof of the Proposition 4.3.

Remark 4.7. Analogous formula works for D exp[tA]f .
Let us compute αt = (∂/∂λ)P 0,1

t [uf](s0, x0, 1). We remark that

P
j,
√

fλ(s)
1

[
uf
]
(s0, x0, u0Jλ(s)) = P

j,
√

fλ(s)
1

[
f
]
(s0, x0)u0Jλ(s). (4.37)

Namely, the generator of P
j,
√

fλ(s)
t does not act on the u0 component such that the two sides

of (4.37) satisfy the same parabolic equality.
Therefore,

dtαt = Aαt +
∑

j

C

∫∞

0
f ′
0(s)s

−5/2Pj,
√
s

1

[
exp[tA]

[
f
]]
ds +

∑

j

C

∫∞

0
s−3/2J ′0(s)P

j,
√
s

1

[
exp[tA]

[
f
]]
ds

+
∑

j

C

∫∞

0
s−3/2

∂

∂λ
P
j,
√
s

1

[
exp[tA]

[
f
]]
ds

= Aαt + a1(t) + a2(t) + a3(t),
(4.38)

where J ′0(s) = (∂/∂λ)J0(s), Therefore,

αt =
∫ t

0
exp[(t − s)A](a1(s) + a2(s) + a3(s))ds. (4.39)

a3(t) in the previous expression is the only term which contains a derivative of f , because by
Proposition 4.3,

∂

∂λ
P
j,
√
s

1

[
exp tA

][
f
]
(s0, x0) = P

j,
√
s,1,·

1

[〈
D exp[tA]

[
f
]
, u,U

〉]
(s0, x0, 0, 0). (4.40)

Let A
3 be the generator on R

1+d+1+d:

A
3f(s0, x0, u0, U0) = C

∑

j

∫∞

0
s−3/2

(
P
j,
√
s,1,·

1

[
f
]
(s0, x0, u0, U0) − f(s0, x0, u0, U0)

)
ds.

(4.41)

It generates a semi-group, P 3
t . We get the following.
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Theorem 4.8. For f with compact support in s and with bounded derivatives at each order, we have

P 3
t

[〈
df, u,U

〉]
(s0, x0, 0, 0)

=
∫ t

0
exp[(t − v)A]

⎡

⎣
∑

j

C

∫∞

0
s−3/2Pj,

√
s,1,·

1

[〈
D exp[vA]

[
f
]
, u,U

〉]
(s0, x0, 0, 0)ds

⎤

⎦dv.

(4.42)

Proof. If the Volterra expansion converges, then

P 3
t

[〈
df,U

〉]
(s0, x0, 0, 0) =

∑

n

∫

0<s1<···<sn<t
ds1 · · ·dsnP 2

s1

(
A

3 − A
2
)
· · ·P 2

sn−sn−1
(
A

3 − A
2
)

× P 2
t−sn
[〈
df, u,U

〉]
(s0, x0, 0, 0).

(4.43)

But P 2
t−sn[〈df, u,U〉](s0, x0, u0, U0) is linear in (u0, U0). Let us explain the details of that. We

have to compute

(
P
j,
√
s,1,·

1 − P
j,
√
s,2,·

1

)
P 2
t−sn
[〈
df, u,U

〉]
(s0, x0, u0, U0). (4.44)

By the technique of the beginning of the proof of Proposition 4.3, it does not depend on
(u0, U0). Therefore, the Volterra expansion reads:

P 3
t

[〈
df,U

〉]
(s0, x0, 0, 0) =

∫

0<v<t
P 2
v

(
A

3 − A
2
)
· P 2

t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0)dv. (4.45)

But

(
A

3 − A
2
)
· P 2

t−v
[〈
df, u,U

〉]
(s0, x0, u0, U0). (4.46)

does not depend on (u0, U0). Therefore, the right-hand side of formula (4.45) is equal to

∫

0<v<t
exp[vA]

(
A

3 − A
2
)
· P 2

t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0)dv. (4.47)

But

A
2 · P 2

t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0) =

∑

j

C

∫∞

0
s−3/2Pj,

√
2,2,0

s P 2
t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0) = O

(4.48)
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because (u0, U0) → P
j
t−v[〈df, u,U〉](s0, x0, u0, U0) is linear in (u0, U0) and because the vector

fields which give the generator of Pj,
√
s,2,·

s are linear in u0, U0. Therefore,

∫

0<v<t
exp[vA]

(
A

3 − A
2
)
· P 2

t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0)dv

=
∫

0<v<t
exp[vA]dv

∑

j

C

∫∞

0
s−3/2Pj,

√
s,1,·

1

[
P 2
t−v
[〈
df, u,U

〉]]
(s0, x0, 0, 0)ds.

(4.49)

But by an analog of Theorem 4.5,

P 2
t−v
[〈
df, u,U

〉]
(s0, x0, u0, U0) =

〈
D exp[tA], u0, U0

〉
. (4.50)

We can summarize the previous considerations in the next theorem.

Theorem 4.9. If fλ(s) is a diffeomorphism of [0,∞[ equal to s if s ∈ [0, ε[ and if s > 1, then one
has the following integration by part formula if f is with compact support in s, bounded with bounded
derivatives at each order:

0 =
∑

j

C

∫ t

0
du exp[(t − u)A]

[∫∞

0
f ′
0(s)s

−5/2Pj,
√
s

1

[
exp[tA]

[
f
]]]

(s0, x0)

+
∑

j

C

∫ t

0
du exp[(t − u)A]

[∫∞

0
J ′0(s)s

−3/2Pj,
√
s

1

[
exp[tA]

[
f
]]]

(s0, x0)

+ P 3
t

[〈
df, u,U

〉]
(s0, x0, 0, 0),

(4.51)

where J ′0(s) = (∂/∂λ)J0(s).

Theorem 4.10. Let one suppose that fλ(s) = s + λs5 near 0. Then, (4.51) is still true.

Proof. It is enough to show that wecan approximate fλ(s) by a function fε
λ
(s) equal to s if

s < ε. Let us give some details on this approximation. We consider a smooth function g from
R into [0, 1] equal to zero if s ≤ 1/2 and equal to 1 if s > 1. We put

fλ(s) = s + g

(
s

ε

)
λs5,

∂

∂λ
fε
0 (s) = g

(
s

ε

)
s5,

∂

∂λ
Jε0 (s) = g ′

(
s

ε

)
s5

ε
+ 5g

(
s

ε

)
s4.

(4.52)
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We remark that

(i) if s ≤ ε/2, then g ′(s/ε)s5/ε = 0,

(ii) if s > ε, then g ′(s/ε)s5/ε = 0,

(iii) if s ∈ [ε/2, ε], then |g ′(s/ε)s5/ε| ≤ Cs4.

P 3,ε
t is the semi-group associated with A

3,ε where we replace in the construction of
(4.41) fλ(s) by fε

λ(s):

P 3,ε
t

[〈
df, u,U

〉]
(s0, x0, 0, 0) −→ P 3

t

[〈
df, u,U

〉]
(s0, x0, 0, 0). (4.53)

By the appendix,

P 3,ε
s

[(|u|p + |U|p)h](s, x, u0, U0) < ∞ (4.54)

if h is compact support in s. Let us consider the generator A3,ε associated with fε
λ
. If g =

〈df, u,U〉, then we have by Duhamel principle

P 3
1

[
g
]
(s0, x0, 0, 0) = P 3,ε

1

[
g
]
(s0, x0, 0, 0) +

∫1

0
P 3,ε
s

[(
A − A

3,ε
)
P 3
1−s
[
g
]]
(s0, x0, 0, 0). (4.55)

By the proof of Theorem 4.8, P 3
1−s[g](s0, x0, u0, U0) is affine in (u0, U0). Namely, in the proof

of this theorem, we have removed the P 2
1−s[g](s0, x0, u0, U0) which is equal to zero in u0 =

0, U0 = 0 because this expression is linear in u0, U0. Its component in (u0, U0) is smooth with
bounded derivatives at each order. By Theorem 4.6, (A3,ε − A)P 3

1−s[g](s0, x0, u0, U0) is still
affine in (u0, U0) and its components in (u0, U0) are smooth with bounded derivatives at each
order. Moreover, if g1 is affine in (u0, U0)with components in (u0, U0) smooth with bounded
derivatives at each order, then we get that, for s ≤ 1,

sup
s0,x0

∣∣∣
(
P
j,
√
s,1,0

1 − P
ε,j,

√
s,1,·

1

)[
g1
]
(s0, x0, u0, U0)

∣∣∣ ≤ C(ε)s(|u0| + |U0|), (4.56)

where C(ε) → 0 when ε → 0. This can be seen as an appliation of the Duhamel formula
applied to the two semi-groups t → P

j,
√
s,1,·

t [g1] and t → P
ε,j,

√
s,1,·

t [g1]. Then, the result arises
from the Duhamel formula (4.55).

We can consider vector fields at the manner of (3.30) and fλ(s) = s + λs5 in a
neighborhood of 0. We get a generator A

tot and semi-groups Pj,
√
s,tot

s and P 3,tot
t . We have with

the extension of Theorem 4.10 the following.
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Theorem 4.11 (Bismut). If fλ(s) = s+λs5 in a neighborhood of 0 and is equal to 1 if s > 1, then one
has the following integration by parts: let f tot be a function with compact support in s, bounded with
bounded derivatives at each order. Then,

0 =
∑

j

C

∫ t

0
du exp

[
(t − u)Atot]

[∫∞

0
f ′
0(s)s

−5/2Pj,
√
s,tot

1

[
exp

[
tAtot][f tot]]

](
s0, x

tot
0

)

+
∑

j

C

∫ t

0
du exp

[
(t − u)Atot]

[∫∞

0
J ′0(s)s

−3/2Pj,
√
s,tot

1

[
exp

[
tAtot][f tot]]

](
s0, x

tot
0

)

+ P 3,tot
t

[〈
df tot, u,U

〉](
s0, x

tot
0 , 0, 0

)
.

(4.57)

5. The Abstract Theorem

The proof of Theorem 2.1 follows the idea of Malliavin [5]. If there exist Cl such that, for
function f with compact support in [0, 1] × [0, l]d,

∣∣exp[tA]
[
Df

]
(0, x)

∣∣ ≤ Cl

∥∥f
∥∥
∞ (5.1)

then the heat kernel qt(s, y) exists.
There are two partial derivatives to treat:

(i) the partial derivative in the time of the subordinator s,

(ii) the partial derivatives in the space of the underlying diffusion x.

Let us begin by the most original part of Bismut’s Calculus on boundary process, that
is, the integration by parts in the time s.

We look at (4.42). We remark (see the next part) that

P 3,tot
t

[
u−p](0, x, 0, 0) < ∞ (5.2)

for all p. So, we take f tot(s, x, u) = f(s, x)1/u and we apply (4.42) for this convenient semi-
group. We get

exp[tA]
[
∂

∂s
f

]
(0, x) = −P 3,tot

t

[〈
Dxf,U

〉 1
u

]
(0, x, 0, 0) + R (5.3)

R can be estimated by using the appendix by Cl‖f‖∞ for f with compact support in [0, l] ×
[0, l]d and by (5.2).
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Lemma 5.1. For a conveniently enlarged semi-group in the manner of Theorem 3.4, one has for f
with compact support in s

P 2,tot
t

[〈
Df tot, U

〉](
s0, x

tot
0 , 0

)
= exp

[
tÂtot

][〈
Df tot, UV

〉](
s0, x

tot
0 , I, 0

)
. (5.4)

Proof. If f̃ is a function with compact support depending only of s, xtot and V , we have

P 2,tot
t

[
f̃
](
s0, x

tot
0 , 0

)
= exp

[
tÂtot

][
f̃(·, UV )

](
s0, x

tot
0 , I, 0

)
. (5.5)

We do the change of variable U → U and V → UV on the Malliavin generator Â
tot. By

using Lemma 3.7 of [15], it is transformed in A
2,totf̃(s, xtot, U, V ) where for A

2,tot we consider
the same type of operator as A

2 but with the modified vector fields:

X
j,2
i =

(
0, Xj,tot

i , DX
j

iU,DX
j

i V
)
,

Y
j,2
0 =

(
0, 0, 0,

∑(
X

j

i

)t(
U−1Xj

i

))
.

(5.6)

It remains to use the appendix to show the Lemma.

We consider Zj

i=
t(U−1Xj

i ). By the previous Lemma and Malliavin hypothesis,

P 2,tot
t

[
detV −pg

](
0, xtot

0 , I, 0
)
< ∞ (5.7)

for all p if g(s) has compact support (V is a matrix). After we consider a test function of the
type of Bismut, we consider the component ui ofU in (5.3). We consider the Bismut function
fV −1(ui/u). We integrate by parts as in Theorem 3.4. We deduce under Malliavin assumption
that

∣∣∣∣P
3,tot
t

[〈
Dxf,U

〉 1
u

]
(0, x, 0, 0)

∣∣∣∣ ≤ Cl

∥∥f
∥∥
∞ (5.8)

if f has compact support in [0, l] × [0, l]d.
By the same way, we deduce that if f has compact support in [0, l] × [0, l]dthen

∣∣exp[tA]
[
Dxf

]
(0, x, 0, 0)

∣∣ ≤ Cl

∥∥f
∥∥
∞. (5.9)

Therefore, the result is obtained .

Remark 5.2. We could do integration by parts to each order in order to show that the semi-
group exp[tA] has a smooth heat-kernel under Malliavin assumption.
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6. Inversion of the Malliavin Matrix

Proof of Theorem 2.2. Let s1 < s2 and let ξ be of modulus 1. Then,

exp
[
tÂ
][

I[0,s1]IV (ξ)≤ε
]
(0, x, I, 0) ≥ exp

[
tÂ
][

I[0,s1]IV (ξ)≤ε
]
(0, x, I, 0). (6.1)

These two quantities are equal in t = 0 when we consider the semi-group exp[tÂ]. Let us
compute their derivative in time t. The derivative of the left-hand side is bigger than the
derivative of the right-hand side because

Â
[
I[0,s1]IV (ξ)≤ε

]
(s, x,U, V ) ≥ Â

[
I[0,s2]IV (ξ)≤ε

]
(s, x,U, V ). (6.2)

(These two quantities are negative.)
By the result of the appendix,

exp
[
tÂ
][

I[0,t]
{
I|U−1−I|>C + I|U−I|>C + I|·−x|>C + IV>C

}]
(0, x, I, 0) ≤ C

(
p
)
tp (6.3)

for all p.

Lemma 6.1. If |ξ| = 1, then there exist C and C0 independent of ξ such that

exp
[
εÂ
][

I|V ξ|<C0εI[0,ε]
]
(0, x, I, 0) < 1 − Cε1/2. (6.4)

Proof. We consider a convex function decreasing from [0,∞[ into [0, 1] equal to 1 in 0 and
tending to 0 at infinity. Let us introduce

αs = exp
[
sÂ
][
g
( |V ξ|

ε

)
I[0,ε]

]
(0, x, I, 0). (6.5)

In order to consider the derivative in s of αs, we study the expression

βε = Â

[
g

( |V ξ|
ε

)
I[0,ε]

](
s′, x′, U′, V ′). (6.6)

We have only to consider by (6.3) the case where s′ is small enough, |x′ − x| is small enough,
|U − I| is small enough, and the positive matrix V ′ is small enough. For that we have to
estimate

γu =
∑

j

(
P
j,2
u

[
g

( |V ξ|
ε

)](
s′, x′, U′, V ′) − g

( |V ′ξ|
ε

))
(6.7)
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for u between 0 and ε. The first derivative of γu has an equivalent −Cε−1 when ε → 0, and its
second derivative has a bound Cε−2 when ε → 0. Therefore,

0 ≥ γu ≥ −Cu
ε

(6.8)

on [0, ε] and

βε ≥ −C
ε

∫ε

0
s−1/2ds = −Cε−1/2. (6.9)

We deduce from that that

αε ≤ 1 − Cε1/2. (6.10)

Remark 6.2. We could improve (6.4) by showing that

exp
[
εÂ
][

I|V ξ|<C0εI[0,ε]
](
s′, x′, U′, V ′) < 1 − Cε1/2 (6.11)

if s′ is small enough, |x′ − x| is small enough, |U′ − I| is small enough, and the positive matrix
V ′ is small enough.

We consider a very small α. We slice the time interval [0, εα] in εα−1 intervals of length
ε. We have

exp
[
tÂ
][

I[0,l]IV (ξ)≤ε
]
(0, x, I, 0) ≤ exp

[
εαÂ

][
I[0,l]IV (ξ)≤ε

]
(0, x, I, 0)

≤ exp
[
εαÂ

][
I[0,ε]IV (ξ)≤ε

]
(0, x, I, 0)

≤
{

sup
|x′−x|≤C0, |U−I|≤C0

exp
[
εÂ
][

I[0,ε]IV (ξ)≤ε
](
0, x′, U′, 0

)
}εα−1

+ Cεp

(6.12)

for a small C0. This last quantity is smaller than Cεp for all p by the previous lemma if α is
small enough. The proof of Theorem 2.2 follows from

exp
[
tÂ
][
V p

I[0,l]
]
(0, x, I, 0) ≤ ∞ (6.13)

for all p by using the result of the appendix. The result follows by standard methods (see [15,
Equations (4.8) and (4.9)].
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It remains to show the following.

Theorem 6.3. For all p > 0,

P 3,tot
t

[
u−p](0, x, 0, 0) ≤ ∞. (6.14)

Proof. We remark that if we consider only functions of u, then

P 3,tot
t

[
f
]
(0, x, u, 0) = P 4

t

[
f
]
(u), (6.15)

where P 4
t is a Lévy semi-group with generator

A
4f(u) = C

∫∞

0

ds

s3/2

(
f
(
s5g(s) + u

)
− f(u)

)
, (6.16)

where g(s) = 1 on a neighborhood of 0, is with compact support and is positive. The result
follows from the adaptation in [17, 18] of the proof of [7] in semi-group theory. We remark
that

P 4
t

[
u−p](0) = C

∫∞

0
βp−1P 4

t

[
exp

[−βu]](0)dβ. (6.17)

By using the adaptation in semi-group theory of the exponential martingales of Levy process
of [17, 18], we have

P 4
t

[
exp

[−βu]](0) = exp
[
t

∫∞

0

[
exp

[
−βs5g(s)

]
− 1
) ds

s3/2

]
. (6.18)

The result holds from the Tauberian theorem of [7, 17, 18].

Appendix

Burkholder-Davies-Gundy Inequality

Theorem A.4. Let s0 > 0 and p ∈ N. Then,

P̂ 2,tot
t

[
I[0,s0]

∣∣xtot∣∣2p
](
0, xtot

0 , 0
)
< ∞. (A.1)

Proof. Following the idea of [17, Appendix], we consider the auxiliary function

FC

(
xtot) =

∣∣xtot
∣∣2p + 1

1 + |xtot|2k/C
. (A.2)
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We get

d

dt
P̂ 2,tot
t

[
I[0,s0]FC

(
xtot)](0, xtot

0 , 0
)

= P̂ 2,tot
t

⎡

⎣
∫ s0−s

0

du

u3/2

∑

j

(
P
j,2,tot
u [FC]

(
xtot) − FC

(
xtot))

⎤

⎦(0, xtot
0 , 0

)
.

(A.3)

Let us consider an improvement of the Gronwall lemma: if |xs − x0| ≤
∫s
0 |xu|du, then

|xt − x0| ≤ Kt|x0| if t ∈ [0, 1].
We remark that

∣∣∣Lj,2,totFC

(
xtot)

∣∣∣ ≤ KFC

(
xtot) (A.4)

for K independent of C. Then, by the modified Gronwall lemma,

∣∣∣Pj,2,tot
u |FC|

(
xtot) − FC

(
xtot)

∣∣∣ ≤ KuFC

(
xtot),

∣∣∣∣
d

dt
P̂ 2,tot
t

[
I[0,s0]FC

(
xtot)](0, xtot

0 , 0
)∣∣∣∣ ≤ KFC

(
xtot) +KP̂ 2,tot

t

[
I[0,s0]FC

(
xtot)](0, xtot

0 , 0
)
,

(A.5)

where K does not depend on C.
By Gronwall lemma,

P̂ 2,tot
t

[
I[0,s0]FC

(
xtot)](0, xtot

0 , 0
) ≤ K < ∞, (A.6)

where K does not depend on C. The result arises by doing C → ∞.

By the same procedure, we get the following.

Theorem A.5. Let be s0 > 0 and p ∈ N. Then

P̂ 2,tot
t

[
I[0,s0]|U|2p

](
0, xtot

0 , U0
)
< ∞ (A.7)

and we get the following.

Theorem A.6. Let s0 > 0 and p ∈ N:

P 3,tot
t

[
I[0,s0]

(∣∣xtot∣∣ + |u| + |U|)2p
](
0, xtot

0 , u0, U0
)
< ∞. (A.8)

Remark A.7. We can show (6.3) by the same way.
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vol. 17, no. 4, pp. 507–622, 1984.

[2] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, Germany, 1991.
[3] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales, vol. 2, John Wiley &

Sons, New York, NY, USA, 1987.
[4] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland,

Amsterdam, The Netherlands, 2nd edition, 1989.
[5] P. Malliavin, “Stochastic calculus of variation and hypoelliptic operators,” in Proceedings of the

Stochastic Analysis, pp. 195–263, Kinokuniya, Kyoto, Japan.
[6] J. M. Bismut, “Martingales, the malliavin calculus and hypoellipticity under general hörmander’s
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frontière,” Annales de l’Institut Henri Poincaré. Probabilités et Statistique, vol. 22, no. 1, pp. 67–112, 1986.

[14] P. Cattiaux, “Regularité au bord pour les densités et les densités conditionnelles d’une diffusion
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[18] R. Léandre, “Regularity of a degenerated convolution semi-group without to use the Poisson
process,” in Proceedings of the Non linear Science and Complexity, A. Luo, Ed., pp. 311–320, Springer,
Porto, Portugal, 2010.
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