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The homotopy analysis method (HAM) is employed to obtain symbolic approximate solutions
for nonlinear coupled equations with parameters derivative. These nonlinear coupled equations
with parameters derivative contain many important mathematical physics equations and reaction
diffusion equations. By choosing different values of the parameters in general formal numerical
solutions, as a result, a very rapidly convergent series solution is obtained. The efficiency and
accuracy of the method are verified by using two famous examples: coupled Burgers and mKdV
equations. The obtained results show that the homotopy perturbation method is a special case of
homotopy analysis method.

1. Introduction

Fractional differential equations have gained importance and popularity during the past
three decades or so, mainly due to its demonstrated applications in numerous seemingly
diverse fields of science and engineering. For example, the nonlinear oscillation of earthquake
can be modeled with fractional derivatives, and the fluid-dynamic traffic model with
fractional derivatives can eliminate the deficiency arising from the assumption of continuum
traffic flow. The differential equations with fractional order have recently proved to be
valuable tools to the modeling of many physical phenomena [1, 2]. This is because of the
fact that the realistic modeling of a physical phenomenon does not depend only on the
instant time, but also on the history of the previous time which can also be successfully
achieved by using fractional calculus. Most nonlinear fractional equations do not have exact
analytic solutions, so approximation and numerical techniques must be used. The Adomain
decomposition method [3], the homotopy perturbation method [4], the variational iteration
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method [5], and other methods have been used to provide analytical approximation to linear
and nonlinear problems. However, the convergence region of the corresponding results is
rather small. In 1992, Liao employed the basic ideas of the homotopy in topology to propose
a general analytic method for nonlinear problems, namely, homotopy analysis method [6–
10]. This method has been successfully applied to solve many types of nonlinear problems
in science and engineering, such as the viscous flows of non-Newtonian fluids [11], the
KdV-type equations [12], finance problems [13], fractional Lorenz system [14], and delay
differential equation [15]. The HAM contains a certain auxiliary parameter h which provides
us with a simple way to adjust and control the convergence region and rate of convergence
of the series solution.

The HAM offers certain advantages over routine numerical methods. Numerical
methods use discretization which gives rise to rounding off errors causing loss of accuracy
and requires large computer memory and time. This computational method yields analytical
solutions and has certain advantages over standard numerical methods. The HAM method is
better since it does not involve discretization of the variables and hence is free from rounding
off errors and does not require large computer memory or time.

In this paper, we extend the application of HAM to discuss the explicit numerical
solutions of a type of nonlinear-coupled equations with parameters derivative in this form:

∂αu

∂tα
= L1(u, v) +N1(u, v), t > 0,

∂βv

∂tβ
= L2(u, v) +N2(u, v), t > 0,

(1.1)

where Li and Ni (i = 1, 2) are the linear and nonlinear functions of u and v, respectively, α
and β are the parameters that describe the order of the derivative. Different nonlinear coupled
systems can be obtained when one of the parameters α or β varies. The study of (1.1) is very
necessary and significant because when α and β are integers, it contains many important
mathematical physics equations.

The paper has been organized as follows. Notations and basic definitions are given
in Section 2. In Section 3 the homotopy analysis method is described. In Section 4 applying
HAM for two famous coupled examples: Burgers and mKdV equations. Discussion and
conclusions are presented in Section 5.

2. Description on the Fractional Calculus

Definition 2.1. A real function f(t), t > 0 is said to be in the space Cμ, μ ∈ R if there exists a
real number p > μ, such that f(t) = tpf1(t) where f1 ∈ (0,∞), and it is said to be in the space
C
μ
n l if and only if h(n) ∈ Cμ, n ∈N. Clearly Cμ ⊂ Cν if ν ≤ μ.

Definition 2.2. The Riemann-Liouville fractional integral operator (Jα) of order α ≥ 0, of a
function f ∈ Cμ, μ ≥ −1, is defined as

Jαf(x) =
1

Γ(α)

∫x
0
(x − t)α−1f(t)dt, x > 0.

J0f(x) = f(x).

(2.1)
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Γ(α) is the well-known Gamma function. Some of the properties of the operator Jα, which we
will need here, are as follows.

For f ∈ Cμ, μ ≥ −1, α, β ≥ 0 and γ ≥ −1

JαJβf(x) = Jα+βf(x),

JαJβf(x) = JβJαf(x),

Jαtγ =
Γ
(
γ + 1

)
Γ
(
α + γ + 1

) tα+γ .
(2.2)

Definition 2.3. For the concept of fractional derivative, there exist many mathematical
definitions [1, 16–19]. In this paper, the two most commonly used definitions: the Caputo
derivative and its reverse operator Riemann-Liouville integral are adopted. That is because
Caputo fractional derivative [1] allows the traditional assumption of initial and boundary
conditions. The Caputo fractional derivative is defined as

Dα
t u(x, t) =

∂αu(x, t)
∂tα

=

⎧⎪⎪⎨
⎪⎪⎩

1
Γ(n − α)

∫ t
0
(t − τ)n−α−1 ∂

nu(x, t)
∂tn

dτ, n − 1 < α < n,

∂nu(x, t)
∂tn

, α = n ∈N.

(2.3)

Here, we also need two basic properties about them:

DαJαf(x) = f(x),

JαDαf(x) = f(x) −
∞∑
k=0

f (k)(0+)
xk

k!
, x > 0.

(2.4)

Definition 2.4. The Mittag-Leffler function Eα(z) with a > 0 is defined by the following series
representation, valid in the whole complex plane:

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C. (2.5)

3. Basic Idea of HAM

To describe the basic ideas of the HAM, we consider the operator form of (1.1):

N
[
Dα
t u(x, t)

]
= 0, t > 0,

N
[
D
β
t v(x, t)

]
= 0, t > 0,

(3.1)

where N is nonlinear operator, Dα
t and D

β
t stand for the fractional derivative and are defined

as in (2.3), t denotes an independent operator, and u(x, t), v(x, t) are unknown functions.
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By means of generalizing the traditional homotopy method, Liao [6] constructs the
so-called zero-order deformation equations:

(
1 − q

)
L
[
φ1
(
x, t, q

)
− u0(x, t)

]
= q hH(t)N

[
Dα
t φ1
(
x, t, q

)]
, (3.2)

(
1 − q

)
L
[
φ2
(
x, t, q

)
− v0(x, t)

]
= q hH(t)N

[
D
β
t φ2
(
x, t, q

)]
, (3.3)

where q ∈ [0, 1] is the embedding parameter, h/= 0 is a non-zero auxiliary parameter, H(t)/= 0
is an auxiliary function, L is an auxiliary linear operator, u0(x, t), v0(x, t) are initial guesses
of u(x, t), v(x, t) and φ1(x, t, q), φ2(x, t, q) are two unknown functions, respectively. It is
important that one has great freedom to choose auxiliary things in HAM. Obviously, when
q = 0 and q = 1, the following holds:

φ1(x, t, 0) = u0(x, t), φ1(x, t, 1) = u(x, t),

φ2(x, t, 0) = v0(x, t), φ2(x, t, 1) = v(x, t),
(3.4)

respectively. Thus, as q increases from 0 to 1, the solution φ1(x, t, q), φ2(x, t, q) varies from the
initial guess u0(x, t), v0(x, t) to the solution u(x, t), v(x, t). Expanding φ1(x, t, q), φ2(x, t, q) in
Taylor series with respect to q, we have

φ1
(
x, t, q

)
= u0(x, t) +

+∞∑
m=1

um(x, t)qm,

φ2
(
x, t, q

)
= v0(x, t) +

+∞∑
m=1

vm(x, t)qm,

(3.5)

where

um(x, t) =
1
m!

∂mφ1
(
x, t, q

)
∂qm

∣∣
q=0,

vm(x, t) =
1
m!

∂mφ2
(
x, t, q

)
∂qm

∣∣
q=0.

(3.6)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary
function are so properly chosen, the series (3.5) converges at q = 1, then we have

u(x, t) = u0(x, t) +
+∞∑
m=1

um(x, t),

v(x, t) = v0(x, t) +
+∞∑
m=1

vm(x, t),

(3.7)
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which must be one of solutions of original nonlinear equation, as proved by Liao [8]. As
h = −1 and H(t) = 1, (3.2) and (3.3) become

(
1 − q

)
L
[
φ1
(
x, t, q

)
− u0(x, t)

]
+ qN

[
φ1
(
x, t, q

)]
= 0,

(
1 − q

)
L
[
φ2
(
x, t, q

)
− u0(x, t)

]
+ qN

[
φ2
(
x, t, ; q

)]
= 0,

(3.8)

which is used mostly in the homotopy perturbation method [20], where as the solution
obtained directly, without using Taylor series. According to the definition (3.6), the governing
equation can be deduced from the zero-order deformation equation (3.2). Define the vector

−→un = {u0(x, t), u1(x, t), . . . , un(x, t)}, −→vn = {v0(x, t), v1(x, t), . . . , vn(x, t)}. (3.9)

Differentiating equations (3.2) and (3.3) m times with respect to the embedding parameter
q and then setting q = 0 and finally dividing them by m!, we have the so-called mth-order
deformation equation:

L
[
um(x, t) − χmum−1(x, t)

]
= hH(t)R1,m

(−→um−1
)
,

L
[
vm(x, t) − χmvm−1(x, t)

]
= hH(t)R2,m

(−→vm−1
)
,

(3.10)

where

R1,m
(−→um−1

)
=

1
(m − 1)!

∂m−1Dα
t

[
φ1
(
x, t, q

)]
∂qm−1

∣∣
q=0 ,

R2,m
(−→vm−1

)
=

1
(m − 1)!

∂m−1D
β
t

[
φ2
(
x, t, q

)]
∂qm−1

∣∣
q=0 ,

χm =

{
0, m � 1,

1, m > 1.

(3.11)

Applying the Riemann-Liouville integral operator Jα, Jβ on both side of (3.10), we have

um(x, t) = χmum−1(x, t) − χm
n−1∑
i=0

uim−1(0
+)
ti

i!
+ hH(t)JαR1,m

(−→um−1
)
,

vm(x, t) = χmvm−1(x, t) − χm
n−1∑
i=0

vim−1(0
+)
ti

i!
+ hH(t)JβR2,m

(−→vm−1
)
.

(3.12)

It should be emphasized that um(x, t), vm(x, t) for m � 1 is governed by the linear equation
(3.10), under the linear boundary conditions that come from original problem, which can
be easily solved by symbolic computation software such as MATLAB. For the convergence
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of the above method we refer the reader to Liao’s work. Liao [7] proved that, as long as a
series solution given by the homotopy analysis method converges, it must be one of exact
solutions. So, it is important to ensure that the solution series is convergent. Note that the
solution series contain the auxiliary parameter h, which we can choose properly by plotting
the so-called h-curves to ensure solution series converge.

Remark 3.1. The parameters α and β can be arbitrarily chosen as, integer or fraction, bigger
or smaller than 1. When the parameters are bigger than 1, we will need more initial and
boundary conditions such as u′0(x, 0), u

′′
0(x, 0), . . . and the calculations will become more

complicated correspondingly. In order to illustrate the problem and make it convenient for
the readers, we only confine the parameters to [0, 1] to discuss.

4. Application

4.1. The Nonlinear Coupled Burgers Equations with Parameters Derivative

In order to illustrate the method discussed above, we consider the nonlinear coupled Burgers
equations with parameters derivative in an operator form:

Dα
t u − Lxxu − 2uLxu + Lxuv = 0, (0 < α ≤ 1),

D
β
t v − Lxxv − 2vLxv + Lxuv = 0,

(
0 < β ≤ 1

)
,

(4.1)

where t > 0, Lx = ∂/∂x and the fractional operators Dα
t and D

β
t are defined as in (2.3).

Assuming the initial value as

u(x, 0) = sin x, v(x, 0) = sin x. (4.2)

The exact solutions of (4.1) for the special case: α = β = 1 are

u(x, t) = e−t sin x, v(x, t) = e−t sin x. (4.3)

For application of homotopy analysis method, in view of (4.1) and the initial condition given
in (4.2), it is convenient to choose

u0(x, t) = sin x, v0(x, t) = sin x, (4.4)

as the initial approximate of (4.1). We choose the linear operators

L1
[
φ1
(
x, t, q

)]
= Dα

t

[
φ1
(
x, t, q

)]
,

L2
[
φ2
(
x, t, q

)]
= Dβ

t

[
φ2
(
x, t, q

)]
,

(4.5)
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with the property L(c) = 0 where c is constant of integration. Furthermore, we define a system
of nonlinear operators as

N1
[
φi
(
x, t, q

)]
= Dα

t

[
φ1
(
x, t, q

)]
−
∂2φ1

(
x, t, q

)
∂x2

− 2φ1
(
x, t, q

)∂φ1
(
x, t, q

)
∂x

+
∂
[
φ1
(
x, t, q

)
φ2
(
x, t, q

)]
∂x

N2
[
φi
(
x, t, q

)]
= Dβ

t

[
φ2
(
x, t, q

)]
−
∂2φ2

(
x, t, q

)
∂x2

− 2φ2
(
x, t, q

)∂φ2
(
x, t, q

)
∂x

+
∂
[
φ1
(
x, t, q

)
φ2
(
x, t, q

)]
∂x

.

(4.6)

We construct the zeroth-order and the mth-order deformation equations where

R1,m
(−→um−1

)
= Dα

t [um−1] − (um−1)xx − 2
m−1∑
k=0

uk(um−1−k)x +

(
m−1∑
k=0

ukvm−k−1

)

x

,

R2,m
(−→vm−1

)
= Dβ

t [vm−1] − (vm−1)xx − 2
m−1∑
k=0

vk(vm−1−k)x +

(
m−1∑
k=0

ukvm−k−1

)

x

.

(4.7)

We start with an initial approximation u(x, 0) = sin(x), v(x, 0) = sin(x), thus we can obtain
directly the other components as

u1 =
hta sin(x)
Γ(a + 1)

,

u2 =
− sin x

a2Γ(b + 1)Γ(a)2Γ(a + (1/2))

×
[
a2Γ(b + 1)Γ(a)2Γ

(
a +

1
2

)
− a2Γ(b + 1)Γ(a)2

Γ
(
a +

1
2

)
h + haΓ(a)Γ(2a + 1)taΓ(b + 1) + h2aΓ(a)Γ

(
a +

1
2

)
taΓ(b + 1) + 2h2aΓ(a)

Γ
(
a +

1
2

)
t(b+a) cos(x) − 2h2t(2a) cos(x)Γ(b + 1)Γ

(
a +

1
2

)

+h2t(2a)a2Γ(b + 1)Γ(a)2
]

...
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v1 =
htb sin(x)
Γ(b + 1)

,

v2 =
− sin x(

b2Γ(a + 1)Γ(b)2Γ(b + (1/2))
)

×
[
b2Γ(a + 1)Γ(b)2Γ(2b + 1)h + hbΓ(b) ,

Γ(2b + 1)tbΓ(a + 1) + h2bΓ(b)Γ(2b + 1)tbΓ(b + 1) + 2h2bΓ(b)Γ(2b + 1),

t(a+b) cos(x) − 2h2t(2b) cos(x)Γ(a + 1)Γ(2b + 1) + h2
(

1
t

)(−b)
tbb2Γ(a + 1),

Γ(b)2
]

... (4.8)

The absolute error of the 6th-order HAM and exact solution with h = −1 as shown in Figure 1.
Also the absolute errors |u(t) − φ6(t)| have been calculated in Table 1. Figure 2 shows the
numerical solutions of the nonlinear coupled Burgers equations with parameters derivative
with h = −1, α = β = 1. Figure 3 shows the explicit numerical solutions with h = −1, α = 1/4,
and β = 1/3 at t = 0.02.

As suggested by Liao [7], the appropriate region for h is a horizontal line segment.
We can investigate the influence of h on the convergence of the solution series gevin by the
HAM, by plotting its curve versus h, as shown in Figure 4.

Remark 4.1. This example has been solved using homotopy perturbation method [21]. The
graphs drawn and tables by h = −1 are in excellent agreement with that graphs drawn with
HPM.

4.2. The Nonlinear Coupled mKdV Equations with Parameters Derivative

In order to illustrate the method discussed above, we consider the nonlinear coupled mKdV
equations with parameters derivative in an operator form:

Dα
t u −

1
2
uxxx + 3u2ux −

3
2
vxx − 3(uv)x + 3λux = 0,

D
β
t v + vxxx + 3vvx + 3uxvx − 3u2vx − 3λvx = 0,

(4.9)

with the initial conditions,

u(x, 0) =
b

2k
+ k tanh(kx), v(x, 0) =

λ

2

(
1 +

k

b

)
+ b tanh(kx). (4.10)
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Figure 1: The comparison of the 6th-order HAM and exact solution with h = −1, α = β = 1.

Table 1: The comparison of the results of the HAM (h = −1) and exact solution for the u(x, t), α = β = 1.

x t φ6 u(x, t) Realtive error
10 0.01 −5.3861e-001 −0.9002497662 4.5253e × 10−13

10 0.02 −5.3325e-001 −0.8912921314 1.4459 × 10−11

10 0.03 −5.2794e-001 −0.8824236265 1.0962 × 10−10

5 0.01 −0.9493828183 −0.9493828187 7.9781 × 10−13

5 0.02 −0.9399363019 −0.9399363019 2.5486 × 10−11

5 0.03 −0.9305837792 −0.9305837793 1.9322 × 10−10

-2 0.01 −0.5386080102 −0.5386080104 7.5651 × 10−13

-2 0.02 −0.5332487712 −0.5332487712 2.4167 × 10−11

-2 0.03 −0.5279428571 −0.5279428572 1.8322 × 10−10

As we know, when α = β = 1 (4.9) has the kink-type soliton solutions

u(x, t) =
b

2k
+ k tanh(kξ),

v(x, t) =
λ

2

(
1 +

k

b

)
+ b tanh(kξ),

(4.11)

constructed by Fan [22], where ξ = x + (1/4)(−4k2 − 6λ + 6kλ/b + 3b2/k2)t, k /= 0, and b /= 0.
For application of homotopy analysis method, in view of (4.9) and the initial condition given
in (4.10), it in convenient to choose

u(x, 0) =
b

2k
+ k tanh(kx), v(x, 0) =

λ

2

(
1 +

k

b

)
+ b tanh(kx), (4.12)
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Table 2: The comparison of the results of the HAM (h = −1) and exact solution for the u(x, t), α = β = 1.

x t |
∑5

i=0 u(i) − Exact| |
∑5

i=0 v(i) − Exact|
−15 0.002 8.0672 × 10−8 2.4426 × 10−8

−12 0.002 5.9539 × 10−7 1.8038 × 10−7

−6 0.002 3.0257 × 10−6 1.3270 × 10−6

6 0.002 3.0263 × 10−6 1.3481 × 10−6

12 0.002 5.9550 × 10−7 1.7722 × 10−7

15 0.002 8.0686 × 10−8 2.3998 × 10−8

as the initial approximate of (4.10). We choose the linear operators

L1
[
φ1
(
x, t, q

)]
= Dα

t

[
φ1
(
x, t, q

)]
,

L2
[
φ2
(
x, t, q

)]
= Dβ

t

[
φ2
(
x, t, q

)]
,

(4.13)

with the property L(c) = 0 where c is constant of integration. Furthermore, we define a system
of nonlinear operators as

N1
[
φi
(
x, t, q

)]
= Dα

t

[
φ1
(
x, t, q

)]
− 1

2
∂3φ1

(
x, t, q

)
∂x3

+ 3φ1
(
x, t, q

)2 ∂φ1
(
x, t, q

)
∂x

,

− 3
2
∂2φ2

(
x, t, q

)
∂x2

− 3
∂
[
φ1
(
x, t, q

)
φ2
(
x, t, q

)]
∂x

+ 3λ
∂φ1
(
x, t, q

)
∂x

,

N2
[
φi
(
x, t, q

)]
= Dβ

t

[
φ2
(
x, t, q

)]
+
∂3φ2

(
x, t, q

)
∂x3

+ 3φ2
(
x, t, q

)∂φ2
(
x, t, q

)
∂x

,

+ 3
∂φ1
(
x, t, q

)
∂x

∂φ2
(
x, t, q

)
∂x

− 3φ1
(
x, t, q

)2 ∂φ2
(
x, t, q

)
∂x

− 3λ
∂φ2
(
x, t, q

)
∂x

.

(4.14)

We construct the zeroth-order and the mth-order deformation equations where

R1,m
(−→um−1

)
= Dα

t [um−1] −
1
2
(um−1)xxx + 3

m−1∑
i=0

ui
m−1−i∑
k=0

uk(vm−1−i−k)x,

− 3
2
(vm−1)xx − 3

(
m−1∑
k=0

ukvm−k−1

)

x

+ 3λ(um−1)x,

R2,m
(−→vm−1

)
= Dβ

t [vm−1] + (vm−1)xxx + 3
m−1∑
k=0

vk(vm−1−k)x + 3
m−1∑
k=0

(uk)x(vm−k−1)x,

− 3
m−1∑
i=0

ui
m−1−i∑
k=0

uk(vm−1−i−k)x − 3λ(vm−1)x.

(4.15)
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We start with an initial approximation u(x, 0) = (b/2k) + k tanh(kx), v(x, 0) = (λ/2)(1 +
(k/b)) + b tanh(kx), with k = 0.1, b = 1, k = 1/3, thus we can obtain directly the other
components as follows:

u1 =
1177
1620

hta
−1 + tanh ((1/3)x)2

Γ(a + 1)
,

u2 =
1

437400
− 656100Γ(a + b + 1)a2Γ(b + 1)Γ(a)2Γ(2a + 1) − 145800,

Γ(a + b + 1)a2Γ(b + 1)Γ(a)2Γ(2a + 1) tanh
(

1
3
x

)
− 656100Γ(a + b + 1)a2,

Γ(b + 1)Γ(a)2Γ(2a + 1)h − 145800Γ(a + b + 1)a2Γ(b + 1)Γ(a)2Γ(2a + 1),

h tanh
(

1
3
x

)
− 327510h2t(b+a)a2Γ(b + 1)Γ(a)2Γ(2a + 1) + 1310040h2t(b+a),

a2Γ(b + 1)Γ(a)2Γ(2a + 1) tanh
(

1
3
x

)2

− 982530h2t(b+a)a2Γ(b + 1)Γ(a)2,

Γ(2a + 1) tanh
(

1
3
x

)4

− 317790hΓ(a + b + 1)aΓ(a)Γ(2a + 1)taΓ(b + 1),

+ · · ·
...

v1 =
1213
540

htb
−1 + tanh ((1/3)x)2

Γ(b + 1)
,

v2 =
1

145800
− 145800b2Γ(a + 1)Γ(b)2Γ(2b + 1)h tanh

(
1
3
x

)
− 145800b2,

Γ(a + 1)Γ(b)2Γ(2b + 1) tanh
(

1
3
x

)
− 9720b2Γ(a + 1)Γ(b)2Γ(2b + 1)h,

− 327510hbΓ(b)Γ(2b + 1)tbΓ(a + 1) − 327510h2bΓ(b)Γ(2b + 1)tbΓ(a + 1),

+ 317790h2bΓ(b)Γ(2b + 1)t(b+a) − 635580h2bΓ(b)Γ(2b + 1)t(b+a),

tanh
(

1
3
x

)2

− 282480h2bΓ(b)Γ(2b + 1)t(b+a) tanh
(

1
3
x

)3

+ 141240h2b,

tanh
(

1
3
x

)4

+ · · ·

...
(4.16)
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Figure 2: Explicit numerical solutions with h = −1, α = β = 1.
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Figure 3: Explicit numerical solutions with h = −1, α = 1/4, and β = 1/3.

The absolute error of the 6th-order HAM and exact solution with h = −1 as shown in
Figure 5. Also the absolute errors |u(t) − φ6(t)| have been calculated for in Table 2. Figure 6
shows the numerical solutions of the nonlinear coupled Burgers equations with parameters
derivative with h = −1, α = β = 1. Figure 7 shows the explicit numerical solutions with h = −1,
α = 1/2, and β = 2/3 at t = 0.002.

As suggested by Liao [7], the appropriate region for h is a horizontal line segment.
We can investigate the influence of h on the convergence of the solution series gevin by the
HAM, by plotting its curve versus h, as shown in Figure 8.

Remark 4.2. This example has been solved using homotopy perturbation method [21]. The
graphs drawn and tables by h = −1 are in excellent agreement with those graphs drawn with
HPM.

5. Conclusion

In this paper, based on the symbolic computation MATLAB, the HAM is directly extended to
derive explicit and numerical solutions of the nonlinear coupled equations with parameters
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Figure 4: The h-curves obtained from the 5-order HAM approximate solution.
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Figure 5: The comparison of the 6th-order HAM and exact solution with = −1, α = β = 1, λ = 0.1, b = 1, and
k = 1/3.

derivative. HAM provides us with a convenient way to control the convergence of
approximation series by adapting h, which is a fundamental qualitative difference in analysis
between HAM and other methods. The obtained results demonstrate the reliability of the
HAM and its wider applicability to fractional differential equation. It, therefore, provides
more realistic series solutions that generally converge very rapidly in real physical problems.
MATLAB has been used for computations in this paper.



14 International Journal of Differential Equations

0.06
0.04

0.02
0

t−15−10−5051015

x

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

u

(a)

0.06
0.04

0.02
0

t−15−10−5051015

x

−1

−0.5

0

0.5

1

1.5

v

(b)

Figure 6: Explicit numerical solutions with h = −1, α = β = 1, λ = 0.1, b = 1, and k = 1/3.
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Figure 7: Explicit numerical solutions with h = −1, α = 1/2, β = 2/3, λ = 0.1, b = 1, and k = 1/3.
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Figure 8: The h-curves obtained from the 5-order HAM approximate solution.



International Journal of Differential Equations 15

References

[1] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent, part II,”
Geophysical Journal of the Royal Astronomical Society, vol. 13, no. 5, pp. 529–539, 1967.

[2] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974.
[3] S. Momani and N. Shawagfeh, “Decomposition method for solving fractional Riccati differential

equations,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1083–1092, 2006.
[4] Z. Odibat and S. Momani, “Modified homotopy perturbation method: application to quadratic Riccati

differential equation of fractional order,” Chaos, Solitons and Fractals, vol. 36, no. 1, pp. 167–174, 2008.
[5] Z. Odibat and S. Momani, “Application of variation iteration method to nonlinear differential

equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol.
1, no. 7, pp. 15–27, 2006.

[6] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis,
Shanghai Jiao Tong University, 1992.

[7] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Series: Modern
Mechanics and Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2003.

[8] S. Liao, “On the homotopy anaylsis method for nonlinear problems,” Applied Mathematics and
Computation, vol. 147, pp. 499–513, 2004.

[9] S. Liao, “Comparison between the homotopy analysis method and homotopy perturbation method,”
Applied Mathematics and Computation, vol. 169, no. 2, pp. 1186–1194, 2005.

[10] S. Liao, “Homotopy analysis method: a new analytical technique for nonlinear problems,” Journal of
Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 2, pp. 95–100, 1997.

[11] T. Hayat, M. Khan, and M. Ayub, “On non-linear flows with slip boundary condition,” Zeitschrift für
Angewandte Mathematik und Physik, vol. 56, no. 6, pp. 1012–1029, 2005.

[12] S. Abbasbandy and F. S. Zakaria, “Soliton solutions for the 5th-order KdV equation with the
homotopy analysis method,” Nonlinear Dynamics, vol. 51, no. 1-2, pp. 83–87, 2008.

[13] S. P. Zhu, “An exact and explicit solution for the valuation of American put options,” Quantitative
Finance, vol. 6, no. 3, pp. 229–242, 2006.

[14] A. K. Alomari, M. S. M. Noorani, R. Nazar, and C. P. Li, “Homotopy analysis method for solving
fractional Lorenz system,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no.
7, pp. 1864–1872, 2010.

[15] A. K. Alomari, M. S. M. Noorani, and R. Nazar, “Solution of delay differential equation by means of
homotopy analysis method,” Acta Applicandae Mathematicae, vol. 108, no. 2, pp. 395–412, 2009.

[16] B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Institute for Nonlinear Science,
Springer, New York, NY, USA, 2003.

[17] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,
A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993.

[18] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach
Science Publishers, Yverdon, Switzerland, 1993.

[19] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering,
Academic Press, San Diego, Calif, USA, 1999.

[20] J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering,
vol. 178, no. 3-4, pp. 257–262, 1999.

[21] Y. Chen and H. An, “Homotopy perturbation method for a type of nonlinear coupled equations with
parameters derivative,” Applied Mathematics and Computation, vol. 204, no. 2, pp. 764–772, 2008.

[22] E. G. Fan, “Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled
MKdV equation,” Physics Letters. A, vol. 282, no. 1-2, pp. 18–22, 2001.


