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The purpose of this paper is to investigate the existence and uniqueness of positive solutions for
the following fourth-order boundary value problem: y(4)(t) = f(t, y(t)), t ∈ [0, 1], y(0) = y(1) =
y′(0) = y′(1) = 0. Moreover, under certain assumptions, we will prove that the above boundary
value problem has a unique symmetric positive solution. Finally, we present some examples and
we compare our results with the ones obtained in recent papers. Our analysis relies on a fixed point
theorem in partially ordered metric spaces.

1. Introduction

The purpose of this paper is to consider the existence and uniqueness of positive solutions
for the following fourth-order two-point boundary value problem:

y(4)(t) = f
(
t, y(t)

)
, t ∈ [0, 1],

y(0) = y(1) = y′(0) = y′(1) = 0,
(1.1)

which describes the bending of an elastic beam clamped at both endpoints.
There have been extensive studies on fourth-order boundary value problems with

diverse boundary conditions. Some of the main tools of nonlinear analysis devoted to the
study of this type of problems are, among others, lower and upper solutions [1–4], monotone
iterative technique [5–7], Krasnoselskii fixed point theorem [8], fixed point index [9–11],
Leray-Schauder degree [12, 13], and bifurcation theory [14–16].
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2. Background

In this section, we present some basic facts which are necessary for our results.
In our study, wewill use a fixed point theorem in partially orderedmetric spaceswhich

appears in [17].
LetM denote the class of those functions β : [0,∞) → [0, 1) satisfying the condition

β(tn) −→ 1 implies tn → 0. (2.1)

Now, we recall the above mentioned fixed point theorem.

Theorem 2.1 (see 1, Theorem 2.1). Let (X,≤) be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Let T : X → X be a nondecreasing
mapping such that there exists an element x0 ∈ X with x0 ≤ Tx0. Suppose that there exists β ∈ M
such that

d
(
Tx, Ty

) ≤ β(d(x, y)) · d(x, y), for any x, y ∈ X with x ≥ y. (2.2)

Assume that either T is continuous or X is such that

if (xn) is a nondecreasing sequence in X such that xn −→ x, then xn ≤ x for all n ∈ �. (2.3)

Besides, suppose that

for each x, y ∈ X, there exists z ∈ X which is comparable to x and y. (2.4)

Then T has a unique fixed point.

In our considerations, we will work with a subset of the classical Banach space C[0, 1].
This space will be considered with the standard metric

d
(
x, y
)
= sup

0≤t≤1

∣∣x(t) − y(t)∣∣. (2.5)

This space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t), for t ∈ [0, 1]. (2.6)

In [18], it is proved that (C[0, 1],≤)with the above mentioned metric satisfies condition (2.3)
of Theorem 2.1. Moreover, for x, y ∈ C[0, 1], as the function max(x, y) ∈ C[0, 1], (C[0, 1],≤)
satisfies condition (2.4).

On the other hand, the boundary value problem (1.1) can be rewritten as the integral
equation (see, e.g., [19])

y(t) =
∫1

0
G(t, s)f(s, u(s))ds, for t ∈ [0, 1], (2.7)
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where G(t, s) is the Green’s function given by

G(t, s) =
1
6

⎧
⎨

⎩

t2(1 − s)2[(s − t) + 2(1 − t)s], 0 ≤ t ≤ s ≤ 1,

s2(1 − t)2[(t − s) + 2(1 − s)t], 0 ≤ s ≤ t ≤ 1.
(2.8)

Note that G(t, s) satisfies the following properties:

(i) G(t, s) is a continuous function on [0, 1] × [0, 1],

(ii) G(0, s) = G(1, s) = 0, for s ∈ [0, 1],

(iii) G(t, s) ≥ 0, for t, s ∈ [0, 1].

3. Main Results

Our starting point in this section is to present the class of functions A which we use later. By
A we denote the class of functions φ : [0,∞) → [0,∞) satisfying the following conditions:

(i) φ is nondecreasing,

(ii) for any x > 0, φ(x) < x,

(iii) β(x) = φ(x)/x ∈ M.

Examples of functions inA areφ(x) = μxwith 0 ≤ μ < 1, φ(x) = x/(1+x) and φ(x) = ln(1+x).
In the sequel, we formulate our main result.

Theorem 3.1. Consider problem (1.1) assuming the following hypotheses:

(a) f : [0, 1] × [0,∞) → [0,∞) is continuous,

(b) f(t, y) is nondecreasing with respect to the second variable, for each t ∈ [0, 1],

(c) suppose that there exists 0 < α ≤ 384, such that, for x, y ∈ [0,∞) with y ≥ x,

f
(
t, y
) − f(t, x) ≤ αφ(y − x), with φ ∈ A. (3.1)

Then, problem (1.1) has a unique nonnegative solution.

Proof. Consider the cone

P = {x ∈ C[0, 1] : x ≥ 0}. (3.2)

Obviously, (P, d) with d(x, y) = sup{|x(t) − y(t)| : t ∈ [0, 1]} is a complete metric space
satisfying condition (2.3) and condition (2.4) of Theorem 2.1.
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Consider the operator defined by

(Tx)(t) =
∫1

0
G(t, s)f(s, x(s))ds, for x ∈ P, (3.3)

where G(t, s) is the Green’s function defined in Section 2.
It is clear that T applies the cone P into itself since f(t, x) and G(t, s) are nonnegative

continuous functions.
Now, we check that assumptions in Theorems 2.1 are satisfied.
Firstly, the operator T is nondecreasing.
Indeed, since f is nondecreasing with respect to the second variable, for u, v ∈ P , u ≥ v

and t ∈ [0, 1], we have

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds

≥
∫1

0
G(t, s)f(s, v(s))ds

= (Tv)(t).

(3.4)

On the other hand, a straightforward calculation gives us

∫1

0
G(t, s)ds =

∫ t

0
G(t, s)ds +

∫1

t

G(t, s)ds =
t2

24
− t3

12
+
t4

24
,

max
0≤t≤1

∫1

0
G(t, s)ds = max

0≤t≤1

(
t2

24
− t3

12
+
t4

24

)

=
1

384
.

(3.5)

Taking into account this fact and our hypotheses, for u, v ∈ P and u > v, we can obtain the
following estimate:

d(Tu, Tv) = sup
0≤t≤1

∣∣∣
∣∣
(Tu)(t) − (Tv)(t)

∣∣∣
∣∣

= sup
0≤t≤1

((Tu)(t) − (Tv)(t))

= sup
0≤t≤1

∫1

0
G(t, s)

(
f(s, u(s)) − f(s, v(s)))ds

≤ sup
0≤t≤1

∫1

0
G(t, s)αφ(u(s) − v(s))ds

≤ sup
0≤t≤1

∫1

0
G(t, s)αφ(d(u, v))ds
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= αφ(d(u, v)) sup
0≤t≤1

∫1

0
G(t, s)ds

= αφ(d(u, v)) · 1
384

≤ φ(d(u, v))

=
φ(d(u, v))
d(u, v)

· d(u, v).

(3.6)

This gives us, for u, v ∈ P and u > v,

d(Tu, Tv) ≤ β(d(u, v)) · d(u, v), (3.7)

where β(x) = φ(x)/x ∈ M.
Obviously, the last inequality is satisfied for u = v.
Therefore, the contractive condition appearing in Theorem 2.1 is satisfied for u ≥ v.

Besides, as f and G are nonnegative functions,

T0 =
∫1

0
G(t, s)f(s, 0)ds ≥ 0. (3.8)

Finally, Theorem 2.1 tells us that T has a unique fixed point in P , and this means that problem
(1.1) has a unique nonnegative solution.

This finishes the proof.

Now, we present a sufficient condition for the existence and uniqueness of positive
solutions for our problem (1.1) (positive solution means x(t) > 0, for t ∈ (0, 1)). The proof
of the following theorem is similar to the proof of Theorem 3.6 of [8]. We present a proof for
completeness.

Theorem 3.2. Under assumptions of Theorem 3.1 and suppose that f(t0, 0)/= 0 for certain t0 ∈ [0, 1],
problem (1.1) has a unique positive solution.
Proof. Consider the nonnegative solution x(t) given by Theorem 3.1 of problem (1.1).

Notice that this solution satisfies

x(t) =
∫1

0
G(t, s)f(s, x(s))ds. (3.9)

Now, we will prove that x is a positive solution.
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In contrary case, suppose that there exists 0 < t∗ < 1 such that x(t∗) = 0 and,
consequently,

x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds = 0. (3.10)

Since x ≥ 0, f is nondecreasing with respect to the second variable and G(t, s) ≥ 0, we have

0 = x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds ≥

∫1

0
G(t∗, s)f(s, 0)ds ≥ 0, (3.11)

and this gives us

∫1

0
G(t∗, s)f(s, 0)ds = 0. (3.12)

This fact and the nonnegative character of G(t, s) and f(t, x) imply

G(t∗, s) · f(s, 0) = 0 a · e (s). (3.13)

As G(t∗, s)/= 0a·e (s), because G(t∗, s) is given by a polynomial, we obtain

f(s, 0) = 0 a · e (s). (3.14)

On the other hand, as f(t0, 0)/= 0 for certain t0 ∈ [0, 1] and f(t0, x) ≥ 0, we have that f(t0, 0) >
0.

The continuity of f gives us the existence of a set A ⊂ [0, 1] with t0 ∈ A and μ(A) > 0,
where μ is the Lebesgue measure, satisfying that f(t, 0) > 0 for any t ∈ A. This contradicts
(3.14).

Therefore, x(t) > 0 for t ∈ (0, 1).
This finishes the proof.

Now, we present an example which illustrates our results.

Example 3.3. Consider the nonlinear fourth-order two-point boundary value problem

y(4)(t) = c + λ arctan
(
y(t)
)
, t ∈ (0, 1), c, λ > 0,

y(0) = y(1) = y′(0) = y′(1) = 0.
(3.15)

In this case, f(t, y) = c + λ arctany. It is easily seen that f(t, y) satisfies (a) and (b) of
Theorem 3.1.



Abstract and Applied Analysis 7

In order to prove that f(t, y) satisfies (c) of Theorem 3.1, previously, we will prove that
the function φ : [0,∞) → [0,∞), defined by φ(x) = arctanx, satisfies

φ(u) − φ(v) ≤ φ(u − v) for u ≥ v. (3.16)

In fact, put φ(u) = arctanu = α and φ(v) = arctan v = β (notice that, as u ≥ v and φ is
nondecreasing, α ≥ β). Then, from

tan
(
α − β) = tanα − tan β

1 + tanα · tan β , (3.17)

as α, β ∈ [0, π/2), then tanα, tan β ∈ [0,∞), we obtain

tan
(
α − β) ≤ tanα − tan β. (3.18)

Applying φ to this inequality and taking into account the nondecreasing character of φ, we
have

α − β ≤ arctan
(
tanα − tan β

)
(3.19)

or, equivalently,

φ(u) − φ(v) = arctanu − arctanv ≤ arctan(u − v) = φ(u − v). (3.20)

This proves our claim.
In the sequel, we prove that f(t, y) satisfies assumption (c) of Theorem 3.1.
In fact, for y ≥ x and t ∈ [0, 1], we can obtain

f
(
t, y
) − f(t, x) = λ(arctany − arctanx

)

≤ λ arctan(y − x).
(3.21)

Now, we will prove that φ(x) = arctanx belongs to A. In fact, obviously φ takes [0,∞) into
itself and, asφ′(x) = 1/(1+x2),φ is nondecreasing. Besides, as the derivative of ψ(x) = x−φ(x)
is ψ ′(x) = 1 − 1/(1 + x2) > 0 for x > 0, ψ is strictly increasing, and, consequently, φ(x) < x for
x > 0 (notice that ψ(0) = 0). Notice that if β(x) = φ(x)/x = arctanx/x and β(tn) → 1, then
(tn) is a bounded sequence because, in contrary case, tn → ∞ and, thus, β(tn) → 0. Suppose
that tn � 0. Then, we can find ε > 0 such that, for each n ∈ �, there exists pn ≥ n with tpn ≥ ε.
The bounded character of (tn) gives us the existence of a subsequence (tkn) of (tpn) with (tkn)
convergent. Suppose that tkn → a. From β(tn) → 1, we obtain arctan tkn/tkn → arctana/a =
1 and, as the unique solution of arctanx = x is x0 = 0, we obtain a = 0. Thus, tkn → 0, and
this contradicts the fact that tkn ≥ ε for any n ∈ �. Therefore, tn → 0. This proves that f(t, y)
satisfies assumption (c) of Theorem 3.1. Finally, as f(t, 0) = c > 0, Problem (3.15) has a unique
positive solution for 0 < λ ≤ 384 by Theorems 3.1 and 3.2.
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Remark 3.4. In Theorem 3.2, the condition f(t0, 0)/= 0 for certain t0 ∈ [0, 1] seems to be a strong
condition in order to obtain a positive solution for Problem (1.1), but when the solution is
unique, we will see that this condition is very adjusted one. More precisely, under assumption
that Problem (1.1) has a unique nonnegative solution x(t), then

f(t, 0) = 0 for t ∈ [0, 1] iff x(t) ≡ 0. (3.22)

In fact, if f(t, 0) = 0 for t ∈ [0, 1], then it is easily seen that the zero function satisfies
Problem (1.1) and the uniqueness of solution gives us x(t) ≡ 0.

The other implication is obvious since if the zero function is solution of Problem (1.1),
then 0 = f(t, 0) for any t ∈ [0, 1].

Remark 3.5. Notice that assumptions in Theorem 3.1 are invariant by continuous perturba-
tions. More precisely, if f(t, 0) = 0 for any t ∈ [0, 1] and f satisfies (a), (b), and (c) of
Theorem 3.1, then g(t, x) = a(t) + f(t, x), with a : [0, 1] → [0,∞) continuous and a/= 0,
satisfies assumptions of Theorem 3.2, and this means that the following boundary value
problem

y(4)(t) = g
(
t, y(t)

)
, t ∈ [0, 1],

y(0) = y(1) = y′(0) = y′(1) = 0,
(3.23)

has a unique positive solution.

4. Some Remarks

In this section, we compare our results with the ones obtained in recent papers. Recently, in
[19], the authors present as main result the following theorem.

Theorem 4.1 (Theorem 3.1 of [19]). Suppose that

(H1) f : [0, 1] × [0,∞) → [0,∞) is continuous,

(H2) f(t, y) is nondecreasing in y, for each t ∈ [0, 1],

(H3) f(t, y) = f(1 − t, y) for each (t, y) ∈ [0, 1] × [0,∞).

Moreover, suppose that there exist positive numbers a > b such that

max
0≤t≤1

f (t, a) ≤ a ·A, min
1/4≤t≤3/4

f

(
t,
b

16

)
≥ b · B, (4.1)

where

A =

(

max
0≤t≤1

∫1

0
G(t, s)ds

)−1
, B =

(

max
0≤t≤1

∫3/4

1/4
G(t, s)ds

)−1
, (4.2)
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with G(t, s) being the Green’s function defined in Section 2.Then, Problem (1.1) has at least one
symmetric positive solution y∗ ∈ C[0, 1] such that b ≤ ‖y∗‖ ≤ a and, moreover, y∗ = limk→∞Tky0
in the uniform norm, where T is the operator defined by

(Tx)(t) =
∫1

0
G(t, s)f(s, x(s))ds, for x ∈ C[0, 1] (4.3)

and y0 is the function given by y0(t) = b · q(t), for t ∈ [0, 1], with q(t) = min(t2, (1 − t)2), for
t ∈ [0, 1] (symmetric solution means a solution y(t) satisfying y(t) = y(1 − t), for t ∈ [0, 1]).

In what follows, we present a parallel result to Theorem 3.2 where we obtain
uniqueness of a symmetric positive solution of Problem (1.1).

Theorem 4.2. Adding assumption (H3) of Theorem 4.1 to the hypotheses of Theorem 3.2, one obtains
a unique symmetric positive solution of Problem (1.1).

Proof. As in the proof of Theorem 3.1, instead of P , we consider the following set K

K =
{
x ∈ C[0, 1] : x ≥ 0 and x is symmetric

}
. (4.4)

It is easily seen thatK is a closed subset of C[0, 1]. Thus, (K, d), where d is the induced metric
given by

d
(
x, y
)
= sup

0≤t≤1

∣∣x(t) − y(t)∣∣, for x, y ∈ K, (4.5)

is a complete metric space.
Moreover, K with the induced order by (C[0, 1],≤) satisfies condition (2.3) of

Theorem 2.1, and it is easily proved that the function max(x, y) ∈ K, for x, y ∈ K and,
consequently, (K,≤), satisfies condition (2.4) of Theorem 2.1.

Now, as in Theorem 2.1, we consider the operator defined by

(Tx)(t) =
∫1

0
G(t, s)f(s, x(s))ds, for x ∈ K. (4.6)

In the sequel, we prove that, under our assumptions, T applies K into itself.
In fact, suppose that x is symmetric, then for t ∈ [0, 1], we have

(Tx)(1 − t) =
∫1

0
G(1 − t, s)f(s, x(s))ds. (4.7)
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Making the change of variables s = 1 − u, we obtain

(Tx)(1 − t) = −
∫0

1
G(1 − t, 1 − u)f(1 − u, x(1 − u))du

=
∫1

0
G(1 − t, 1 − u)f(1 − u, x(1 − u))du.

(4.8)

Now, it is easily seen that G(t, s) = G(1 − t, 1 − s) for t, s ∈ [0, 1] and taking into account
assumption (H3) of Theorem 4.1 and the symmetric character of x, we have

(Tx)(1 − t) =
∫1

0
G(t, u)f(u, x(1 − u))du

=
∫1

0
G(t, u)f(u, x(u))du

= (Tx)(t).

(4.9)

The rest of the proof follows the lines of Theorems 3.1 and 3.2.
This finishes the proof.

Now, we present an example which illustrates Theorem 4.2.

Example 4.3. Consider the following problem

y(4)(t) = c + λ sin(πt)arctan
(
y(t)
)
, t ∈ (0, 1), c, λ > 0,

y(0) = y(1) = y′(0) = y′(1) = 0.
(4.10)

In this case, f(t, y) = c + λ sin(πt) arctany. It is easily checked that f(t, y) satisfies (a)
and (b) of Theorem 3.1 and f(t, y) = f(1 − t, y), for (t, y) ∈ [0, 1] × [0,∞).

On the other hand, taking into account Example 3.3, we can obtain, for y ≥ x and
t ∈ [0, 1],

f
(
t, y
) − f(t, x) = λ sinπt[arctany − arctanx

]

≤ λ sinπt[arctan(y − x)]

≤ λ arctan(y − x).
(4.11)

Finally, as it is proved in Example 3.3, φ(x) = arctanx belongs to A. Therefore,
Theorem 4.2 tells us that Problem (4.10) has a unique symmetric positive solution for 0 <
λ ≤ 384. In what follows, we prove that Problem (4.10) can be treated using Theorem 4.1. In
fact, in this case, f(t, y) = c+λ sin(πt) arctany. Moreover,A = 384 (see proof of Theorem 3.1);
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it can be proved that B = 531.61. As we have seen in Example 4.3, f(t, y) satisfies assumptions
(H1), (H2), and (H3) of Theorem 4.1. Moreover,

max
0≤t≤1

f(t, a) = f
(
1
2
, a

)
= c + λ arctan a,

min
1/4≤t≤3/4

f

(
t,
b

16

)
= f
(
1
4
,
b

16

)
= c + λ sin

π

4
arctan

(
b

16

)
= c + λ

√
2
2

arctan
(
b

16

)
.

(4.12)

Consider the function ϕ(a) = 384 · a − (c + λ arctana), with 0 < λ ≤ 384 and a ∈ [0,∞).
Obviously, ϕ(0) = −c < 0 and, as lima→∞ϕ(a) = ∞, we can find a0 > 0 such that ϕ(a0) > 0.
This means that

c + λ arctan a0 ≤ 384a0. (4.13)

On the other hand, we consider the function ψ(b) = c+ λ(
√
2/2) arctan(b/16)−531.61 ·b, with

0 < λ ≤ 384 and b ∈ [0,∞).
Then, as ψ(0) = c > 0 and ψ is a continuous function, we can find b0 such that

min
1/4≤t≤3/4

f

(
t,
b0
16

)
= c + λ

√
2
2

arctan
(
b0
16

)
≥ b0 · 531.61. (4.14)

Therefore, Problem (4.10) can be treated using Theorem 4.1, and we obtain the existence of a
symmetric positive solution.

Our main contribution is the uniqueness of the solution.
In what follows, we present the following example which can be treated by

Theorem 4.2 and Theorem 4.1 cannot be used.

Example 4.4. Consider the following problem which is a variant of Example 4.3:

y(4)(t) = c(t) + λ sin(πt)arctan
(
y(t)
)
, t ∈ (0, 1), λ > 0

y(0) = y(1) = y′(0) = y′(1) = 0,
(4.15)

where c(t) is a symmetric positive function satisfying c(1/4) = 0, for example,

c(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − 4t, 0 ≤ t ≤ 1
4
,

0,
1
4
≤ t ≤ 3

4

4t − 3,
3
4
≤ t ≤ 1.

(4.16)

In this case, f(t, y) = c(t) + λ sin(πt) arctan(y(t)). Taking into account Example 4.3, it
is easily proved that f(t, y) satisfies assumptions of Theorem 4.2, and, consequently, Problem
(4.15) has a unique symmetric positive solution for 0 < λ ≤ 384.
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Now, we prove that f(t, y) does not satisfy assumptions of Theorem 4.1 and,
consequently, Problem (4.15) cannot be treated using this theorem. In fact, in this case (notice
that c(1/4) = 0),

min
1/4≤t≤3/4

f

(
t,
b

16

)
= f
(
1
4
,
b

16

)
= λ sin

π

4
arctan

(
b

16

)
= λ

√
2
2

arctan
(
b

16

)
, (4.17)

and we cannot find a positive number b0 such that

λ

√
2
2

arctan
(
b0
16

)
≥ b0 · 531.61, for 0 < λ ≤ 384. (4.18)

This proves that Problem (4.15) cannot be treated by Theorem 4.1.
Now, we compare our results with the ones obtained in [14]. In [14], the author studies

positive solutions of the problem

u(iv)(x) = λf(u(x)), x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(4.19)

using theory of bifurcation.
His main result works with functions f(u) satisfying

(i) f(u) > 0, for u ≤ 0,

(ii) limu→∞f(u)/u = ∞,

(iii) f ′(0) ≥ 0,

(iv) f ′′(u) > 0, for u > 0,

and the author proves that there exists a critical λ0 such that Problem (4.19) has exactly two,
exactly one, or no symmetric positive solution depending on whether 0 < λ < λ0, λ = λ0 or
λ > λ0.

Our Example 3.3 cannot be treated by the results of [14], because, in this case, f(u) =
c + λ arctanu and f does not satisfy assumptions (ii) and (iv) above mentioned.
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