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The aim of this paper is to investigate the solution and the superstability of the Pexiderized
Lobacevski equation f((x +vy)/ 2)% = g(x)h(y), where f, g, h:G* — C are unknown functions
on an Abelian semigroup (G, +). The obtained result is a generalization of Gavruta’s result in 1994
and Kim's result in 2010.

1. Introduction

The stability problem of the functional equation was conjectured by Ulam [1] during the
conference in the University of Wisconsin in 1940. In the next year, it was solved by Hyers
[2] in the case of additive mapping, which is called the Hyers-Ulam stability. Thereafter, this
problem was improved by Bourgin [3], Aoki [4], Rassias [5], Ger [6], and Gavruta et al. [7, 8]
in which Rassias’ result is called the Hyers-Ulam-Rassias stability.

In 1979, Baker et al. [9] developed the superstability, which is that if f is a function
from a vector space to R satisfying

[f(x+y)-f(x)f(y)| <e (1.1)

for some fixed € > 0, then either f is bounded or satisfies the exponential functional equation
flx+y) =fx)f(y)- (E)

In 1983, the superstability bounded by a constant for the sine functional equation

(Y 555 = ror) ©
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was investigated by Cholewa [10] and was improved by Badora and Ger [11]. Recently, the
superstability bounded by some function for the Pexider type sine functional equation

(52) -5 (55Y) = stomty) (12)

has been investigated by Kim [12, 13].
In 1994, Gdvruta [14] proved the superstability of the Lobacevski equation

(53 = reosy) L

under the condition bounded by a constant.

Kim [15] improved his result under the condition bounded by an unknown function.
In there, author conjectured through an example that the Lobacevski equation (L) will have
a solution as an exponential function. Namely, for a simple example of this equation, we can
find the functional equation (e™*¥)/2)* = e¥e¥.

The aim of this paper is to investigate the solution and the superstability of the
Pexiderized Lobacevski equation

2
7(55Y) =g (PL)

under the condition bounded by a function. Namely, this has improved in the Pexider type
for the results of Gavruta and Kim.
Furthermore, the range of the function in all results is expanded to the Banach space.
The solution of (PL) will be represented as an exponential, namely, for a simple
example of this equation, it will be considered as a geometric mean

f(x) = @e" = \/(txex)(ﬂex) = \/g(x)h(x), where a, > 0. (1.3)

In this paper, let (G, +) be a uniquely 2-divisible Abelian semigroup (i.e., for each x €
G, there exists a unique y € G such that y + y = x: such y will be denoted by x/2), C is the
field of complex numbers, R the field of real numbers, and R. the set of positive reals. We
assume that f,g,h : G — C are nonzero and nonconstant functions, ¢ is a nonnegative real
constant, and ¢ : G — R, is a mapping.

2. Stability of the Pexiderized Lobacevski Equation (PL)

We will investigate the solution and the superstability of the Pexiderized Lobacevski equation
(PL).
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Theorem 2.1. Suppose that f,g,h: G — R satisfy the inequality

2
X+
‘f( V) - g <e @)
forallx,y € G.
Then, either there exist C1,Cy, C3 > 0 such that
lg@]<Ci,  h@I<C |f@)] <G, (2.2)

forall x € G, or else each function g and h satisfies (L). Here g and h are represented by

g(x) =g(0)e(x),  h(x) =h(0)e(x), (2.3)

|£(x)? = g(O)h(0) - e(x)?| < e, (2.4)

where e(x) is an exponential function.

Proof. Replacing x with y in (2.1), and then subtracting them and using triangle inequality,
we have

|g(x)h(y) — g(y)h(x)| <2¢ Vx,yeG. (2.5)

It follows from the inequality (2.5) that there exist constants ¢y, ¢3, d1, d> > 0 such that

|8(0)| < crlh(x)| +d, (2.6)

|h(x)] < 2| g(x)| + da (2.7)

for all x € G. It follows from (2.6) and (2.7) that g is bounded if and only if h is bounded. If
either of g or h is bounded, then we obtain (2.2) from (2.1).

Now if h(x) is unbounded, then we can choose (y,) € G so that |h(y,)| — oo as
n — oo. Letting y = y, in (2.1), dividing by |h(y,)|, and letting n — oo, we have

2
g(x) = lim W Vx € G. 2.8)

It follows from (2.1) and (2.8) that

fary+y) /2’8 _ gy +y)s(x) + R

g(x+y)g(z) = lim

h(yn) o h(yn)
8@ f((y+ztyn) /2’ +Ri+ Ry R +Ry
= lim ) =8(x)g(y +z) + lim Ak

(2.9)
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where |R;| < €|g(2)], |Rz| < €]|g(x)|, which implies
8(x+y)8(z) = g(x)g(y +2) (2.10)

forall x,y,z € G.
Letting z = 0in (2.10), we get

g(x+v)g(0) = g(x)g(y) (2.11)
for all x, y € G, which implies that

g(x) = g(0)er(x), (2.12)

where g(0) #0 (since g(x) is a nonzero and nonconstant function), and e; is an exponential.
Exchanging the roles of g and k, by the same proceeding, we have

h(x) = h(0)ex(x), (2.13)

where h(0) #0, and e; is an exponential.
Putting (2.12) and (2.13) in (2.5), it implies

ler(x)ex(y) —er(y)ex(x)| < g((ﬁﬁ =M Vx,yeG. (2.14)

Let x = 0in (2.14). Since e; and e; are exponentials, this implies that |e; (y)—ex(y)| < M
for all y € G. Hence, from this and (2.14), we have

e1(y)ler(x) - e2(x)| = ler(x) [e1(y) - e2(y)] + er(x)e2(y) - ex(y)ea(x)|
<el(x)M+ M,

(2.15)

which is

ei(x)M+ M

el(y)

le1(x) — e2(x)| < (2.16)

forall x,y € G.

Since g is unbounded from (2.2), we can choose (y,,) € G so that g(y,) = g(0)e1(y,) —
o asn — oo. Letting y = y, in (2.16), we get that e;(x) = e»(x). Let it be denoted by e(x).
Then (2.12) and (2.13) state nothing but (2.3). Putting (2.3) with x = y in (2.1), we get the
inequality (2.4).

Finally, it is immediate that g and h in (2.3) satisfy (L), respectively. O
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Corollary 2.2. Suppose that f,g: G — R satisfy the inequality

<eg

‘f(";y)z—gu)g(y)

forallx,y € G.
Then, either g is bounded or g satisfies (L). In particular, g is represented by

8(x) = g(0)e(x),

where e is exponential.

Corollary 2.3. Suppose that f,g : G — R satisfy the inequality

<&

|f(";y)2-g<x>f<y>

forallx,y € G.
Then either there exist C1,Cy > 0 such that

g0 <Ci,  [f@]<C

(2.17)

(2.18)

(2.19)

(2.20)

forall x € G, or else each function f and g satisfies (L). In particular, f and g are represented by

fx)=f0elx),  gx)=g0)e(x),

where e : G — R is exponential.

Corollary 2.4. Suppose that f : G — R satisfy the inequality

<e

‘f(x;yy—f(x)f(y)

forall x,y € G.
Then either f is bounded or f satisfies (L). In particular, f is represented by

f(x) = f(0)e(x),

where e : G — R is exponential.

In Corollary 2.4, it is founded in papers [14, 15] that f satisfies (L).

(2.21)

(2.22)

(2.23)
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Theorem 2.5. Suppose that f,g,h: G — R satisfy the inequality

‘f(x;y)z—gwﬂwy)

< op(x) (2.24)

forall x,y € G.
Then, either h is bounded or g is an exponential by the multiplying of a scalar g(0) and satisfies
(@)

Proof. Suppose that h(x) is unbounded. Then we can choose (y,) € G such that |h(y,)| — oo
asn — oo. Letting v = y, in (2.24), dividing by |h(y,)|, and letting n — oo, we have

() = lim L&) yeq (2.25)

e h(yn)

Thus, it follows from (2.24) and (2.25) that

f(E+y+y)/2)’8() | gy +yn)g(2) + Ry

g(x+y)g(z) = lim im
n—oo h(yn) n— oo h(yn)
2)/2)>+ Ry + R
n— oo h(yn) n— oo h(yn>
(2.26)
where |R;| < €|g(2)], |Rz| < €|g(x)|, which implies
g(x+y)g(z) = g(x)g(y +2) (2.27)
forallx,y,z € G.
Letting z = 0in (2.27), we get
g(x+v)g(0) = g(x)g(y) (2.28)

for all x, y, z € G. Namely, it means that g is an exponential function by the multiplying of a
scalar g(0) and satisfies (L). O

Theorem 2.6. Suppose that f,g,h: G — R satisfy the inequality

\f(x;y)z-gunmy>

<o(y) (229)

forallx,y € G.
Then, either g is bounded or h is an exponential by the multiplying of a scalar h(0) and satisfies

(L).
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Proof. The proof runs along a slight change in the step-by-step procedure in Theorem 2.5. O

Remark 2.7. (i) As Corollaries 2.2-2.4 of Theorem 2.1, by replacing g and h with f in Theorems
2.5 and 2.6, we can obtain more corollaries for the following functional equations:

f<x;y)2 =8(0g(v),

f<x;y)2 =f(08(), (2.30)

(53) = reos)

in which the case of (2.30) is found in paper [15].
(ii) For the results obtained from each equation of the above (i), by applying ¢(y) =
((x) = £, we can obtain the same number of corollaries.

3. Extension to Banach Algebra

All obtained results can be extended to the stability on the Banach algebras. We will illustrate
only for the case of Theorem 2.1 among them.

Theorem 3.1. Let (E, || - ||) be a semisimple commutative Banach algebra. Assume that f,g,h: G —
E satisfy the inequality

<e¢ (3.1)

Hf(’“;y)z-gmmw

forallx,y € G.
Then, for an arbitrary linear multiplicative functional x* € E*, either there exist C1,Cz,C3 > 0
such that

[(Fo9)@|<Ci, X oh@I<Cy ("o f)(x)|<Cs (32)
forall x € G, or else each function g and h satisfies (L). Here g and h are represented by

g(x) =g(0)e(x),  h(x) =h(0)e(x), (3.3)

|F () - 2@h(0) - ex)?| <, (3.4)

where e(x) is an exponential function.
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Proof. Assume that (3.1) holds, and fix arbitrarily a linear multiplicative functional x* € E. As
well known, we have ||x*|| = 1, hence, for every x,y € G, we have

2
ex (354 —g(x)h(y)“
of (XYY
= A h (3.5)
liyl}jly<f( 5 ) §(x) (y)>‘

>

w((55Y)) - (senw ()|

which states that the superpositions x* o f, x* o g, and x* o h satisfy the inequality (2.1)
of Theorem 2.1. Due to the same processing as from (2.5) to (2.7), to fix arbitrarily a linear
multiplicative functional x* € E, indeed, we have

[(x* 0 g)(x)(x* o h)(y) — (x* 0 g)(y)(x* o h)(x)| <2¢ Vx,y€G. (3.6)
It follows from the inequality (3.6) that there exist constants ¢, ¢z, d1, d» > 0 such that

|(x" 0 g)(x)| < cal(x* 0 ) (x)| + s,
|(x* o h)(x)| < c2| (x* 0 g) (x)| + da

(3.7)

for all x € G. Since x* is an arbitrarily linear multiplicative functional, it follows from (3.7)
that g is bounded if and only if h is bounded. Assume that one of g or h is bounded. From
(3.1), we arrive at (3.2).

By the assumption (3.2), an appeal to Theorem 2.1 shows that

(x* 0 g)(x) = (x* 0 g(0)er) (x), (3.8)
(x" o h)(x) = (x* o h(0)e2)(x), (3.9)
[(x* o f)(x) = (x* 0 g(0)h(0)es) (x)| <&, (3.10)

where e, e;,e3 : G — R are exponentials. In other words, bearing the linear multiplicativity
of x* in mind, for all x € G, each difference derived from (3.8) and (3.9)

D(3.8)(x) = g(x) = (g(0)er) (x),
D(3.9)(x) := h(x) - (h(0)e2)(x),

(3.11)
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falls into the kernel of x*. Therefore, in view of the unrestricted choice of x*, we infer that

D(3.8)(x),D(3.9)(x) € ﬂ{ker x* : x* is a multiplicative member of E*} (3.12)

for all x € G. Since the algebra E has been assumed to be semisimple, the last term of the
previous formula coincides with the singleton {0}, that is,

g(x) —g(0)e1(x) =0, h(x)-h(0)ex(x) =0, xeG. (3.13)

Putting (3.13) in (3.6), following the same proceeding as after (2.13) in Theorem 2.1,
then we arrive that e; (x) = e>(x). Indeed, we have

| (x* 0 g(0)er) (x)(x* 0 h(0)e2) () — (x* 0 g(0)er) (v) (x* o h(0)ez) (x)| < 2¢ (3.14)

for all x, y € G. This implies that

[(x*0er)(x)(x* oer)(y) — (x" oer)(y)(x* oer)(x)| < =M Vx,yeG. (3.15)

2¢
8(0)h(0)

Letting x = 0 in (3.15), it implies |(x* 0 e2)(y) — (x* 0 €1)(y)| < M/x*(1) = M’ for all
y € G. Thus, from this and (3.15), we have

|(x" o e1) (w) [|(x" o e1)(x) = (x" 0 e2) (x)|
= |(x"een)(®)[(x" 0 e1)(y) - (x" 0 e2) (y)]

(3.16)
+(x*oe)(x)(x" oe)(y) - (x" o) (y) (x" o e)(x)]
<|(x*oer)(x)|M' + M,
which is
(" 0 en)(x) — (" 0 e2) ()] < (O DDIM + M (3.17)

|(x0en)(y)]

forall x,y € G.
Since x* o g is unbounded from (3.2), we can choose (y,) € G so that |[(x* o §)(y,)| =
|g(0)(x* o e1)(yn)| — oo asn — oo. Letting v = y, in (3.17), which arrive that

(x*oeq)(x) = (x" oep)(x). (3.18)

Using the same logic as before, that is, bearing the linear multiplicativity of x* in mind,
the difference derived from (3.18), D(3.18)(x) := e1(x)—ex(x), falls into the kernel of x*. Then,
the semisimplicity of E implies that e;(x) = e2(x). Let it be denoted by e(x), which arrive the
claimed (3.3) and (3.4).
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Since e(x) : G — R is exponential, it is immediate from (3.3) that each function g and
h satisfies (L). O

Remark 3.2. All results of Section 2 containing Remark 2.7 can be extended to the Banach
space as Theorem 3.1.
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