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We find the least value λ ∈ (0, 1) and the greatest value p = p(α) such that αH(a, b)+(1−α)L(a, b) >
Mp(a, b) for α ∈ [λ, 1) and all a, b > 0 with a/= b, where H(a, b), L(a, b), and Mp(a, b) are the
harmonic, logarithmic, and p-th power means of two positive numbers a and b, respectively.

1. Introduction

For p ∈ R, the p-th power mean Mp(a, b) and logarithmic mean L(a, b) of two positive
numbers a and b are defined by

Mp(a, b) =

⎧
⎪⎨

⎪⎩

(
ap + bp

2

)1/p

, p /= 0,
√
ab, p = 0,

(1.1)

L(a, b) =

⎧
⎪⎨

⎪⎩

b − a

log b − loga
, a /= b,

a, a = b,
(1.2)

respectively.
It is well known that Mp(a, b) is continuous and strictly increasing with respect to

p ∈ R for fixed a, b > 0 with a/= b. In the recent past, both mean values have been the
subject of intensive research. In particular, many remarkable inequalities for Mp(a, b) and
L(a, b) can be found in the literature [1–17]. It might be surprising that the logarithmic



2 Abstract and Applied Analysis

mean has applications in physics, economics, and even in meteorology [18–20]. In [18],
the authors study a variant of Jensen’s functional equation involving L, which appears in
a heat conduction problem. A representation of L as an infinite product and an iterative
algorithm for computing the logarithmic mean as the common limit of two sequences of
special geometric and arithmetic means are given in [8]. In [21, 22], it is shown that L can be
expressed in terms of Gauss’s hypergeometric function 2F1. And, in [21], the authors prove
that the reciprocal of the logarithmic mean is strictly totally positive, that is, every n × n
determinant with elements 1/L(ai, bi), where 0 < a1 < a2 < · · · < an and 0 < b1 < b2 < · · · < bn,
is positive for all n ≥ 1.

LetA(a, b) = 1/2(a + b), I(a, b) = 1/e(bb/aa)1/(b−a)(b /=a), I(a, b) = a (b = a), G(a, b) =√
ab, and H(a, b) = 2ab/(a + b) be the arithmetic, identric, geometric, and harmonic means

of two positive numbers a and b, respectively, then it is well known that

min{a, b} < H(a, b) = M−1(a, b) < G(a, b) = M0(a, b)

< L(a, b) < I(a, b) < A(a, b) = M1(a, b) < max{a, b}
(1.3)

for all a, b > 0 with a/= b.
In [23], Alzer and Janous established the following best possible inequality:

Mlog 2/ log 3(a, b) <
2
3
A(a, b) +

1
3
G(a, b) < M2/3(a, b) (1.4)

for all a, b > 0 with a/= b.
In [8, 11, 24], the authors presented bounds for L in terms of G and A

G2/3(a, b)A1/3(a, b) < L(a, b) <
2
3
G(a, b) +

1
3
A(a, b) (1.5)

for all a, b > 0 with a/= b.
The following companion of (1.3) provides inequalities for the geometric and

arithmetic means of L and I. A proof can be found in [25]

G1/2(a, b)A1/2(a, b) < L1/2(a, b)I1/2(a, b) <
1
2
L(a, b) +

1
2
I(a, b) <

1
2
G(a, b) +

1
2
A(a, b) (1.6)

for all a, b > 0 with a/= b.
The following sharp bounds for L, I, (LI)1/2, and (L+I)/2 in terms of the powermeans

are proved in [4, 5, 7, 9, 16, 25, 26]:

M0(a, b) < L(a, b) < M1/3(a, b),

M2/3(a, b) < I(a, b) < Mlog 2(a, b),

M0(a, b) < L1/2(a, b)I1/2(a, b) < M1/2(a, b),
1
2
L(a, b) +

1
2
I(a, b) < M1/2(a, b)

(1.7)

for all a, b > 0 with a/= b.
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Alzer and Qiu [27] found the sharp bound of 1/2(L(a, b) + I(a, b)) in terms of the
power mean as follows:

Mc(a, b) <
1
2
(L(a, b) + I(a, b)) (1.8)

for all a, b > 0 with a/= b, with the best possible parameter c = log 2/(1 + log 2).
The main purpose of this paper is to find the least value λ ∈ (0, 1) and the greatest

value p = p(α) such that αH(a, b) + (1 − α)L(a, b) > Mp(a, b) for α ∈ [λ, 1) and all a, b > 0
with a/= b.

2. Lemmas

In order to establish our main result we need three lemmas, which we present in this section.

Lemma 2.1. Let α ∈ (1/4, 1), p = (1−4α)/3 ∈ (−1, 0), and f(t) = −4αp(p + 1)2(p+2)tp−1+2(1−
α)p2(1 − p2)tp−2 + 2(1 − α)p(1 − p)2(2 − p)tp−3 + 12(1 − α)(1 − p). Then f(t) > 0 for t ∈ [1,+∞).

Proof. Simple computations lead to

f(1) =
64
81

(1 − α)2
(
56α2 + 23α + 11

)
> 0, (2.1)

lim
t→+∞

f(t) = 12(1 − α)
(
1 − p

)
= 8(1 − α)(1 + 2α) > 0, (2.2)

f ′(t) = −2p(1 − p
)
tp−4f1(t), (2.3)

where

f1(t) = −2α(p + 1
)2(

p + 2
)
t2 + (1 − α)p

(
p + 1

)(
2 − p

)
t + (1 − α)

(
1 − p

)(
2 − p

)(
3 − p

)
,

f1(1) =
4
27

(1 − α)
(
148α2 − 11α + 25

)
> 0,

(2.4)

lim
t→+∞

f1(t) = −∞, (2.5)

f ′
1(t) = −4α(p + 1

)2(
p + 2

)
t + (1 − α)p

(
p + 1

)(
2 − p

)

= − 4
27

(1 − α)2[16α(7 − 4α)t + (4α − 1)(4α + 5)] < 0
(2.6)

for t ∈ [1,+∞).
Inequality (2.6) implies that f1(t) is strictly decreasing in [1,+∞), then from (2.4) and

(2.5)we know that λ1 > 1 exists such that f1(t) > 0 for t ∈ [1, λ1) and f1(t) < 0 for t ∈ (λ1,+∞).
Hence, equation (2.3) leads to the conclusion that f(t) is strictly increasing in [1, λ1] and
strictly decreasing in [λ1,+∞).

Therefore, Lemma 2.1 follows from (2.1) and (2.2) together with the piecewise
monotonicity of f(t).
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Lemma 2.2. Let α ∈ (1/4, 1), p = (1 − 4α)/3 ∈ (−1, 0), and g(t) = −(1 − α)(p + 1)(p + 2)2(p +
3)tp + (p + 1)(p3 − αp3 − 19αp2 + 3p2 − 34αp + 2p − 8α)tp−1 + (1 − α)p(p3 − 8p2 − p + 4)tp−2 + (1 −
α)(1 − p)(p3 + 5p2 − 14p + 4)tp−3 + 4(1 − α)(7 − 4p) − 4p(1 − α)t−1 + 4α(1 + p)t−2, then g(t) > 0 for
t ∈ [1,+∞).

Proof. Let g1(t) = −(1 − α)(p + 1)(p + 2)2(p + 3)t3 + (p + 1)(p3 − αp3 − 19αp2 + 3p2 − 34αp + 2p −
8α)t2 + (1 − α)p(p3 − 8p2 − p + 4)t + (1 − α)(1 − p)(p3 + 5p2 − 14p + 4) + 4(1 − α)(7 − 4p)t3−p −
4p(1 − α)t2−p + 4α(1 + p)t1−p. Then simple computations lead to

g(t) = tp−3g1(t), (2.7)

g1(1) =
16
27

(1 − α)
(
80α2 + 110α − 1

)
> 0, (2.8)

g ′
1(t) = −3(1 − α)(p + 1)(p + 2)2(p + 3)t2 + 2(p + 1)(p3 − αp3 − 19αp2 + 3p2 − 34αp + 2p − 8α)t +

(1 − α)p(p3 − 8p2 − p + 4) + 4(1 − α)(7 − 4p)(3 − p)t2−p − 4p(1 − α)(2 − p)t1−p + 4α(1 − p2)t−p,

g′1(1) =
32
27

(1 − α)
(
−16α3 + 38α2 + 176α − 9

)
> 0, (2.9)

g ′′
1(t) = −6(1−α)(p+ 1)(p + 2)2(p+ 3)t+ 2(p+ 1)(p3 −αp3 − 19αp2 + 3p2 − 34αp+ 2p− 8α) + 4(1−

α)(7 − 4p)(3 − p)(2 − p)t1−p − 4p(1 − α)(2 − p)(1 − p)t−p − 4αp(1 − p2)t−p−1,

g′′1(1) =
8
81

(1 − α)
(
−128α4 + 896α3 + 288α2 + 5294α − 437

)

> 0,
(2.10)

g ′′′
1 (t) = −6(1 − α)(p + 1)(p + 2)2(p + 3) + 4(1 − α)(7 − 4p)(3 − p)(2 − p)(1 − p)t−p + 4p2(1 − α)(2 −

p)(1 − p)t−p−1 + 4αp(1 + p)2(1 − p)t−p−2

g′′′1 (1) =
8
81

(1 − α)
(
576α4 + 3872α3 + 660α2 + 6612α − 785

)

> 0,
(2.11)

g
(4)
1 (t) = −4p(1 − p

)
t−p−3g2(t), (2.12)

where

g2(t) = (1 − α)
(
7 − 4p

)(
3 − p

)(
2 − p

)
t2 + (1 − α)p

(
2 − p

)(
p + 1

)
t + α

(
p + 1

)2(
p + 2

)
,

g2(1) =
4
27

(1 − α)
(
96α3 + 232α2 + 388α + 175

)
> 0,

(2.13)

g ′
2(t) = 2(1 − α)

(
7 − 4p

)(
3 − p

)(
2 − p

)
t + (1 − α)p

(
2 − p

)(
p + 1

)

≥ g ′
2(1) =

4
9
(1 − α)(5 + 4α)

(
12α2 + 31α + 23

)
> 0

(2.14)

for t ∈ [1,+∞).
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From (2.13) and (2.14), we clearly see that g2(t) > 0 for t ∈ [1,+∞), then (2.12) leads to
the conclusion that g ′′′

1 (t) is strictly in [1,+∞).
Therefore, Lemma 2.2 follows from (2.7)–(2.11) and the monotonicity of g ′′′

1 (t).

Lemma 2.3. Let α ∈ (1/4, 1), p = (1 − 4α)/3 ∈ (−1, 0), and h(t) = 2α(1 − tp+1)tlog2t + (1 − α)(1 +
tp−1)(1 + t)2t log t + (1 − α)(1 + t)2(1 − t)(tp + 1), then h(t) > 0 for t ∈ (1,+∞).

Proof. Let h1(t) = t−ph′′(t) and h2(t) = tp+2h′
1(t), then simple computations lead to

h(1) = 0, (2.15)

h′(t) = 2α[1 − (p + 2)tp+1]log2t + [(p + 2 − αp − 6α)tp+1 + 2(1 − α)(p + 1)tp + (1 − α)ptp−1 + 3(1 −
α)t2 + 4(1 − α)t + 3α + 1] log t − (1 − α)[(p + 3)tp+2 + (p + 1)tp+1 − (p + 3)tp − (p + 1)tp−1 + 2t2 − 2],

h′(1) = 0, (2.16)

h1(t) = −2α(p + 1)(p + 2)log2t + [(p2 − αp2 + 3p − 11αp − 14α + 2) + 2(1 − α)p(p + 1)t−1 − (1 −
α)p(1− p)t−2 + 6(1−α)t1−p + 4(1−α)t−p + 4αt−1−p] log t− (1−α)(p + 2)(p + 3)t+ (1−α)(p2 + 5p +
2)t−1 +(1−α)(p2 +p−1)t−2 − (1−α)t1−p +4(1−α)t−p +(1+3α)t−1−p − (1−α)p2 − (1−α)p−5α+1,

h1(1) = 0, (2.17)

h2(t) = −[4α(p + 1)(p + 2)tp+1 + 2(1 − α)p(p + 1)tp − 2(1 − α)p(1 − p)tp−1 − 6(1 − α)(1 − p)t2 +
4(1−α)pt+ 4α(1+ p)] log t− (1−α)(p + 2)(p + 3)tp+2 + (p2 −αp2 + 3p − 11αp − 14α+ 2)tp+1 + (1−
α)(p2 − 3p − 2)tp − (1 − α)(p2 + 3p − 2)tp−1 + (1 − α)(p + 5)t2 + 4(1 − α)(1 − p)t + α − 3αp − p − 1,

h2(1) = 0, (2.18)

h′
2(t) = −[4α(p + 1)2(p + 2)tp + 2(1 − α)p2(p + 1)tp−1 + 2(1 − α)p(1 − p)2tp−2 − 12(1 − α)(1 − p)t +

4(1−α)p] log t− (1−α)(p+2)2(p+3)tp+1+(p+1)(p2−αp2−15αp+3p−22α+2)tp +(1−α)p(p2−
5p − 4)tp−1 + (1 − α)(1 − p)(p2 + 5p − 2)tp−2 + 4(1 − α)(4 − p)t − 4α(p + 1)t−1 + 4(1 − α)(1 − 2p),

h′
2(1) = 0,

h′′
2(t) = f(t) log t + g(t),

(2.19)

where f(t) and g(t) are defined as in Lemmas 2.1 and 2.2, respectively.
From (2.19) and (2.10) together with Lemmas 2.1 and 2.2, we clearly see that h2(t) is

strictly increasing in [1,+∞).

Therefore, Lemma 2.3 follows from (2.15)–(2.18) and the monotonicity of h2(t).
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3. Main Result

Theorem 3.1. Inequality

αH(a, b) + (1 − α)L(a, b) > M(1−4α)/3(a, b) (3.1)

holds for α ∈ [1/4, 1) and all a, b > 0 with a/= b, andM(1−4α)/3(a, b) is the best possible lower power
mean bound for the sum αH(a, b) + (1 − α)L(a, b).

Proof. We divide the proof of inequality (3.1) into two cases.

Case 1 (α = 1/4). Without loss of generality, we assume that a > b and put t =
√
a/b > 1, then

from (1.1) and (1.2), we have

αH(a, b) + (1 − α)L(a, b) −M(1−4α)/3(a, b)

=
1
4
[H(a, b) + 3L(a, b)] −

√
ab

=
3t4 − 4

(
2t3 − t2 + 2t

)
log t − 3

8(t2 + 1) log t
b.

(3.2)

Let

F(t) = 3t4 − 4
(
2t3 − t2 + 2t

)
log t − 3, (3.3)

then simple computations lead to

F(1) = 0,

F ′(t) = 4
(
3t3 − 2t2 + t − 2

)
− 8

(
3t2 − t + 1

)
log t,

F ′(1) = 0,

F ′′(t) =
4
t
F1(t),

(3.4)

where F1(t) = 9t3 − 10t2 + 3t − 2 − 2(6t − 1)t log t,

F ′′(1) = F1(1) = 0,

F ′
1(t) = 27t2 − 32t + 5 − 2(12t − 1) log t,

F ′
1(1) = 0,

F ′′
1(t) =

2
t
F2(t),

(3.5)
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where F2(t) = 27t2 − 12t log t − 28t + 1,

F ′′
1(1) = F2(1) = 0,

F′2(t) = 54t − 12 log t − 40 > 0
(3.6)

for t > 1.
Therefore, inequality (3.1) follows easily from (3.2)–(3.6).

Case 2 (α ∈ (1/4, 1)). Without loss of generality, we assume that a > b. Let p = (1 − 4α)/3 ∈
(−1, 0) and t = a/b > 1, then from (1.1) and (1.2), one has

αH(a, b) + (1 − α)L(a, b) −M(1−4α)/3(a, b)

= αH(a, b) + (1 − α)L(a, b) −Mp(a, b)

= b

[
2αt
t + 1

+
(1 − α)(t − 1)

log t
−
(
tp + 1
2

)1/p
]

.

(3.7)

Let

G(t) = log
[
2αt
t + 1

+
(1 − α)(t − 1)

log t

]

− 1
p
log

tp + 1
2

. (3.8)

Then simple computations lead to

lim
t→ 1

G(t) = 0, (3.9)

G′(t) =
h(t)

t(t + 1)(tp + 1) log t
[
2αt log t + (1 − α)(t2 − 1)

] , (3.10)

where h(t) is defined as in Lemma 2.3.

From Lemma 2.3 and (3.10), we clearly see that G(t) is strictly increasing in (1,+∞).

Therefore, inequality (3.1) follows from (3.7)–(3.9) and the monotonicity of G(t).
Next, we prove that M(1−4α)/3(a, b) is the best possible lower power mean bound for

the sum αH(a, b) + (1 − α)L(a, b) if α ∈ [1/4, 1).
For any α ∈ [1/4, 1), p > (1 − 4α)/3, and x > 0, one has

Mp(1 + x, 1) − αH(1 + x, 1) − (1 − α)L(1 + x, 1) =
J(x)

21/p
(
1 +

x

2

)
log(1 + x)

, (3.11)
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where J(x) = (1+x/2)[1 + (1 + x)p]1/p log(1+x)−21/p[α(1+x) log(1+x)+ (1−α)x(1+x/2)].
Letting x → 0 and making use of Taylor expansion, we have

J(x) =
21/p

8

(

p − 1 − 4α
3

)

x3 + o
(
x3
)
. (3.12)

Equations (3.11) and (3.12) imply that for any α ∈ [1/4, 1) and p > (1 − 4α)/3 there
exists δ > 0, such that αH(1 + x, 1) + (1 − α)L(1 + x, 1) < Mp(1 + x, 1) for x ∈ (0, δ).

Remark 3.2. If 0 < α < 1/4, then from (1.1) and (1.2), we have

lim
x→+∞

M(1−4α)/3(1, x)
αH(1, x) + (1 − α)L(1, x)

= 23/(4α−1)

× lim
x→+∞

(
1 + x(4α−1)/3)3/(1−4α)

2α/(x + 1) +
(
(1 − 1/x)(1 − α)/ logx

) = +∞.

(3.13)

Equation (3.13) implies that for any 0 < α < 1/4, there exists X > 1, such that
M(1−4α)/3(1, x) > αH(1, x) + (1 − α)L(1, x) for x ∈ (X,+∞). Therefore, λ = 1/4 is the least
value of λ in (0, 1) such that inequality (3.1) holds for all a, b > 0 with a/= b.
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