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This paper presents an investigation of asymptotic properties of a stochastic predator-prey model
with modified Leslie-Gower response. We obtain the global existence of positive unique solution
of the stochastic model. That is, the solution of the system is positive and not to explode to infinity
in a finite time. And we show some asymptotic properties of the stochastic system. Moreover, the
sufficient conditions for persistence inmean and extinction are obtained. Finally wework out some
figures to illustrate our main results.

1. Introduction

The dynamic interaction between predators and their prey has been one of the dominant
themes in mathematical biology due to its universal existence and importance. Much
literature exists on the general problem of food chains in the classical Lotka-Volterra model.
In [1, 2], Leslie introduced a predator-prey model where the capacity of the predators
environment is proportional to the number of preys. Leslie stresses the fact that there are
upper limits to the rates of increase of both prey and predator, which are not recognized in
the Lotka-Volterra model. Broer et al. [3] studied the dynamical properties of a predator-
prey model with nonmonotonic response function. Reference [4] considered two-species
autonomous systemwhich incorporated amodified Leslie-Gower functional response as well
as that of the Holling II as follows:

dx

dt
= x

[
a − bx − cy

x + k1

]
,

dy

dt
= y

[
r − fy

x + k2

]
,

(1.1)
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where a, b, c, r, f, k1, and k2 are all positive constants and x(t), y(t) represent the population
densities at time t.

Hsu and Huang [5] studied the global stability property of the following predator-
prey system:

dx

dt
= rx

(
1 − x

k

)
− yp(x),

dy

dt
= y

(
s

(
1 − hy

x

))
,

x0 > 0, y0 > 0, r, s, k, h > 0.

(1.2)

Recently, [6] discussed the following model with modified Leslie-Gower response:

dx

dt
= rx

(
1 − x

k

)
− nλxy

λx +Ay
,

dy

dt
= y

(
s

(
1 − hy

λx + b

))
,

x0 > 0, y0 > 0,

(1.3)

where r, k, n,A, s, h, b, and λ are all positive constants and r, s are the growth rates of prey
x and predator y, respectively. Here, we change the form of the predator-prey model above
which reads

dx

dt
= x

(
a − bx − cy

λx +Ay

)
,

dy

dt
= y

(
f − gy

λx + h

)
,

x0 > 0, y0 > 0.

(1.4)

As a matter of fact, population systems are often subject to environmental noise.
Recently, more and more interest is focused on stochastic systems. Reference [7] investigated
the predator-prey model with modified Leslie-Gower and Holling-type II schemes with
stochastic perturbation:

dx = x

[
a − bx − cy

x +m

]
dt + σ1xdB1(t),

dy = y

[
r − fy

x +m

]
dt − σ2ydB2(t).

(1.5)
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By virtue of comparison theorem, [7] obtained some interesting results, including globally
positive solutions, persistence in mean and extinction. Moreover, [8] continued to consider
the stochastic ratio-dependent predator-prey system:

dx = x

[
a − bx − cy

x +my

]
dt + σ1xdB1(t),

dy = y

[
−g +

fx

x +my

]
dt − σ2ydB2(t),

(1.6)

where Bi(t), i = 1, 2, are independent standard Brownian motions. And [8] also obtained
some nice conclusions on the stochastic model.

According to (1.4), taking into account the effect of randomly fluctuating environment,
we will consider the corresponding autonomous stochastic system described by the Itô
equation

dx(t) = x(t)
[
a − bx(t) − cy(t)

λx(t) +Ay(t)

]
dt + σ1x(t)dB1(t),

dy(t) = y(t)
[
f − gy(t)

λx(t) + h

]
dt + σ2y(t)dB2(t),

(1.7)

where Bi(t), i = 1, 2, are independent standard Brownian motions and a, b, c, f, g, λ,A, σ1, and
σ2 are all positive.

When white noise is taken into account in our model (1.7), we obtain the global
existence of positive unique solution of the stochastic model, that is, the solution of the
system is positive and not to explode to infinity in a finite time in Section 2. Section 3
shows some fundamental asymptotic properties of the stochastic system. Moreover, the
sufficient conditions for persistence in mean and extinction are obtained in Section 3. The
main contributions of this paper are therefore clear.

Throughout the paper, we use K to denote a positive constant whose exact value may
be different in different appearances.

2. Positive and Global Solution

As x(t), y(t) of the SDE (1.7) are sizes of the species in the system at time t, it is obvious that
the positive solutions are of interest. The coefficients of (1.7) are locally Lipschitz continuous
and do not satisfy the linear growth condition, so the solution of (1.7)may explode at a finite
time. The following Theorem shows that the solution will not explode at a finite time.

Theorem 2.1. For a given initial value X0 = (x0, y0) ∈ R2
+, there is a unique positive solution

X(t) = (x(t), y(t)) to (1.7) on t ≥ 0, and the solution will remain in R2
+ with probability one, namely,

X(t) ∈ R2
+ for all t ≥ 0 almost surely.
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Proof. The proof is similar to [9, 10]. Since the coefficients of the equation are locally Lipschitz
continuous, for a given initial value X0 = (x0, y0) ∈ R2

+, there is a unique local solution X(t)
on t ∈ [0, τe), where τe is the explosion time. To show that this solution is global, we need to
show that τe = +∞ a.s. Let k0 > 0 be sufficiently large for every component of x(t) and y(t)
all lying within the interval [1/k0, k0]. For each integer k ≥ k0, define the stopping time

τm = inf
{
t ∈ [0, τe) : x(t) /∈

(
1
k
, k

)
or y(t) /∈

(
1
k
, k

)}
, (2.1)

where throughout this paper we set inf ∅ = ∞. Obviously, τk is increasing as k → ∞. Let
τ∞ = limk→∞τk, whence τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s. and
X(t) ∈ R2

+ a.s. for all t ≥ 0. So we just prove that τ∞ = ∞ a.s. If not, there is ε ∈ (0, 1) and T > 0
such that

P{τ∞ ≤ T} > ε. (2.2)

Hence, there is an integer k1 ≥ k0 such that P{τk ≤ T} ≥ ε for all k ≥ k1. Define a function
V : R2

+ → R+ by V (x, y) = (x− 1− lnx) + (y − 1− lny). The nonnegativity of this function can
be seen from

u − 1 − lnu ≥ 0, on u > 0. (2.3)

If X(t) = (x(t), y(t)) ∈ R2
+, by virtue of u ≤ 2[u − 1 − lnu] + 2 on u > 0, we obtain

LV
(
x, y
)
= (x − 1)

(
a − bx − cy

λx +Ay

)
+
(
y − 1

)(
f − gy

λx + h

)
+
σ2
1 + σ2

2

2

= ax − bx2 − cxy

λx +Ay
− a + bx +

cy

λx +Ay
+ fy − f − gy2

λx + h
+

gy

λx + h
+
σ2
1 + σ2

2

2

≤ K1V
(
x, y
)
+K2,

(2.4)

dropping t from x(t) and y(t). Making use of the Itô formula yields

EV
(
x(τk ∧ T), y(τk ∧ T)

) ≤ V
(
x0, y0

)
+K2T +K1

∫T

0
EV
(
x(τk ∧ T), y(τk ∧ T)

)
. (2.5)

The Gronwall inequality yields

EV
(
x(τk ∧ T), y(τk ∧ T)

) ≤ [V (x0, y0
)
+K2T

]
eK1T . (2.6)
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Set Ωk = τk ≤ T for k ≥ k1; then P(Ωk) ≥ ε. Note that, for every ω ∈ Ω, there is x(τk, ω) or
y(τk, ω) equal to either k or 1/k, and hence V (x(τk, ω)) is no less than either

k − 1 − ln k (2.7)

or

1
k
− 1 − ln

(
1
k

)
=

1
k
− 1 + ln k. (2.8)

Therefore

V
(
x(τk ∧ T), y(τk ∧ T)

) ≥
(
[k − 1 − ln k] ∧

[
1
k
− 1 + ln k

])
. (2.9)

So

[
V
(
x0, y0

)
+K2T

]
eK1T ≥ E

[
1ΩkV

(
x(τk ∧ T), y(τk ∧ T)

)]

≥ ε

(
[k − 1 − ln k] ∧

[
1
k
− 1 + ln k

])
,

(2.10)

where 1Ωk is the indicator function of Ωk. Letting k → ∞ implies the contradiction

∞ >
[
V
(
x0, y0

)
+KT

]
= ∞. (2.11)

So we have that τ∞ = ∞ a.s. The proof is complete.

Theorem 2.1 shows that the solution of the SDE (1.7) will remain in the positive cone
R2

+ for any initial value (x0, y0) ∈ R2
+. The conclusion is fundamental which will be used later.

3. Asymptotic Behavior

3.1. Limit Results

To begin our discussion, we impose the following assumption:

(H) a − c/A − σ2
1/2 > 0, f − σ2

2/2 > 0.

And we list the interesting lemma as follows.

Lemma 3.1 (see [7, 8]). Consider one-dimensional stochastic differential equation

dx = x[a − bx]dt + σxdB(t), (3.1)



6 Abstract and Applied Analysis

where a, b, and σ are positive and B(t) is standard Brownian motion. Under condition a > σ2/2, for
any initial value x0 > 0, the solution x(t) has the properties

lim
t→∞

lnx(t)
t

= 0, a.s,

lim
t→∞

1
t

∫ t

0
x(s)ds =

a − σ2/2
b

, a.s.

(3.2)

To demonstrate asymptotic properties of the stochastic system (1.7), we firstly discuss
the long time behavior of lnx(t)/t and lny(t)/t.

On the one hand, by the comparison theorem of stochastic equations, it is obvious that

dx ≤ x[a − bx]dt + σ1xdB1(t). (3.3)

Denote by X2(t) the solution of the following stochastic equation:

dX2 = X2[a − bX2]dt + σ1X2dB1(t),

X2(0) = x0.
(3.4)

We have that

x(t) ≤ X2(t), t ∈ [0,+∞), a.s. (3.5)

On the other hand, by the comparison theorem of stochastic equations, it is obvious that we
denote by X1 the solution of stochastic differential equation

dX1 = X1

[
a − c

A
− bX1

]
dt + σ1X1dB1(t),

X1(0) = x0.

(3.6)

Consequently

x(t) ≥ X1(t), t ∈ [0,+∞), a.s. (3.7)

To sum up, we have that

X1(t) ≤ x(t) ≤ X2(t), t ∈ [0,+∞), a.s. (3.8)
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So we have the explicit solutions of X1(t) and X2(t) as follows:

X1(t) =
e[(a−c/A−σ2

1/2)t+σ1B1(t)]

1/x0 + b
∫ t
0 e

[(a−c/A−σ2
1/2)s+σ1B1(s)]ds

, (3.9)

X2(t) =
e[(a−σ

2
1/2)t+σ1B1(t)]

1/x0 + b
∫ t
0 e

[(a−σ2
1/2)s+σ1B1(s)]ds

. (3.10)

Theorem 3.2. Under assumption (H), for any initial value x0 > 0, the solutions X1(t) and X2(t)
satisfy

lim
t→∞

lnX1(t)
t

= 0, a.s.,

lim
t→∞

lnX2(t)
t

= 0, a.s.

(3.11)

Proof. By assumption (H) and Lemma 3.1, the assertion is straightforward.

Theorem 3.3. Under assumption (H), for any initial value x0 > 0, the solution x(t) satisfies

lim
t→∞

lnx(t)
t

= 0, a.s. (3.12)

Proof. By virtue of (3.8) and Theorem 3.2, we can imply the desired assertion.

Now let us continue to consider the asymptotic behavior of the species y(t). By the
comparison theorem of stochastic equations, we have that

dy(t) ≤ y(t)
(
f − gy(t)

λX2(t) + h

)
dt + σ2y(t)dB2(t). (3.13)

Denote by Y2(t) the solution of the stochastic equation as follows:

dY2 = Y2

(
f − gY2

λX2(t) + h

)
dt + σ2Y2dB2(t),

Y2(0) = y0.

(3.14)

We have that

y(t) ≤ Y2(t), t ∈ [0,+∞), a.s. (3.15)
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On the other hand, applying the comparison theorem again, denote by Y1 the solution of
stochastic equation

dY1 = Y1

(
f − g

h
Y1

)
dt + σ2Y1dB2(t),

Y1(0) = y0.

(3.16)

Consequently,

y(t) ≥ Y1(t), t ∈ [0,+∞), a.s. (3.17)

To sum up, we have that

Y1(t) ≤ y(t) ≤ Y2(t), t ∈ [0,+∞), a.s. (3.18)

Moreover, Y1(t) and Y2(t) have the explicit solutions, respectively,

Y1(t) =
e[(f−σ

2
2/2)t+σ2B2(t)]

1/y0 +
(
g/h
) ∫ t

0 e
[(f−σ2

2/2)s+σ2B2(s)]ds
, (3.19)

Y2(t) =
e[(f−σ

2
2/2)t+σ2B2(t)]

1/y0 +
∫ t
0

(
g/(λX2(s) + h)

)
e[(f−σ

2
2/2)s+σ2B2(s)]ds

. (3.20)

Lemma 3.4. Under assumption (H), for any initial value y0 > 0, the solutions Y1(t) and Y2(t) satisfy

lim
t→∞

lnY1(t)
t

= 0, a.s.,

lim sup
t→∞

lnY2(t)
t

≤ 0, a.s.

(3.21)

Proof. The proof is motivated by [7]. Obviously, Lemma 3.1 and assumption (H) yield

lim
t→∞

lnY1(t)
t

= 0, a.s. (3.22)

On the other hand, it follows from (3.20) that

1
Y2(t)

= e[−(f−(σ
2
2/2))t−σ2B2(t)]

[
1
y0

+
∫ t

0

g

λX2(s) + h
e[(f−σ

2
2/2)s+σ2B2(s)]ds

]
. (3.23)
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Choose T satisfying e(a−(σ
2
1/2))t ≥ 2 for t ≥ T . Thus we have that e(a−σ

2
1/2)t/2 ≤ e(a−σ

2
1/2)t − 1 for

t ≥ T . Then for s ≥ T , from (3.10), we obtain

X2(t) =
e[(a−σ

2
1/2)t+σ1B1(t)]

1/x0 + b
∫ t
0 e

[(a−σ2
1/2)s+σ1B1(s)]ds

≤ e[(a−σ
2
1/2)t+σ1B1(t)]

b
∫ t
0 e

[(a−σ2
1/2)s+σ1B1(s)]ds

≤ e[(a−σ
2
1/2)t+σ1B1(t)]

be(σ1min0≤s≤tB1(s))
∫ t
0 e

(a−σ2
1/2)sds

=
a − σ2

1/2
b

e[(a−σ
2
1/2)t+σ1B1(t)]

e(σ1min0≤s≤tB1(s))
[
e(a−σ

2
1/2)t − 1

]

≤ 2
(
a − σ2

1/2
)

b

e[(a−σ
2
1/2)t+σ1B1(t)]

e(σ1min0≤s≤tB1(s))e(a−σ
2
1/2)t

=
2a − σ2

1

b
eσ1(B1(t)−min0≤s≤tB1(s)),

∫ t

T

g

λX2(s) + h
e[(f−σ

2
2/2)s+σ2B2(s)]ds ≥

∫ t

T

g

λ
((
2a − σ2

1

)
/b
)
eσ1(B1(s)−min0≤u≤sB1(u)) + h

×e[(f−σ2
2/2)s+σ2B2(s)]ds

≥ bg

λ
(
2a − σ2

1

)
+ bh

∫ t

T

e−σ1(B1(s)−min0≤u≤sB1(u))

×e[(f−σ2
2/2)s+σ2B2(s)]ds

≥ bg

λ
(
2a − σ2

1

)
+ bh

eσ1[min0≤s≤tB1(s)−max0≤s≤tB1(s)]+σ2min0≤s≤tB2(s)

×
∫ t

T

e(f−σ
2
2/2)sds

≥ 2bg(
λ
(
2a − σ2

1

)
+ bh

)(
2f − σ2

2

)
×
(
e(f−σ

2
2/2)t − e(f−σ

2
2/2)T

)

× eσ1[min0≤s≤tB1(s)−max0≤s≤tB1(s)]+σ2min0≤s≤tB2(s).

(3.24)

Thus,

1
Y2(t)

≥ e[−(f−σ
2
2/2)(t−T)−σ2(B2(t)−B2(T))]

×

⎡
⎢⎣ 1
y(T)

+
2bg
(
e(f−σ

2
2/2)t − e(f−σ

2
2/2)T

)
(
λ
(
2a − σ2

1

)
+ bh

)(
2f − σ2

2

)eσ1[min0≤s≤tB1(s)−max0≤s≤tB1(s)]+σ2min0≤s≤tB2(s)

⎤
⎥⎦
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≥
2bge(f−σ

2
2/2)Tσ2B2(T)

(
1 − e−(f−σ

2
2/2)(t−T)

)
(
λ
(
2a − σ2

1

)
+ bh

)(
2f − σ2

2

)

× eσ1[min0≤s≤tB1(s)−max0≤s≤tB1(s)]+σ2[min0≤s≤tB2(s)−max0≤s≤tB2(s)]

:= K(t)eσ1[min0≤s≤tB1(s)−max0≤s≤tB1(s)]+σ2[min0≤s≤tB2(s)−max0≤s≤tB2(s)],

(3.25)

where K(t) = 2bge(f−σ
2
2/2)Tσ2B2(T)(1 − e−(f−σ

2
2/2)(t−T))/(λ(2a − σ2

1) + bh)(2f − σ2
2). So we

derive

− lnY2(t) ≥ lnK(t) + σ1

[
min
0≤s≤t

B1(s) −max
0≤s≤t

B1(s)
]
+ σ2

[
min
0≤s≤t

B2(s) −max
0≤s≤t

B2(s)
]
. (3.26)

Dividing t on both sides yields

lnY2(t)
t

≤ − lnK(t)
t

− σ1

[
min0≤s≤tB1(s)

t
− max0≤s≤tB1(s)

t

]

− σ2

[
min0≤s≤tB2(s)

t
− max0≤s≤tB2(s)

t

]
.

(3.27)

The distributions of max0≤s≤tB1(s) and max0≤s≤tB2(s) are that same as |B1(t)| and
|B2(t)|, respectively, and min0≤s≤tB1(s) and min0≤s≤tB2(s) have the same distributions as
−max0≤s≤tB1(s) and −max0≤s≤tB1(s), respectively.

From the representation of K(t), we can simplify it as follows:

K(t) = A1e
A2B2(T)

(
1 −A3e

A4t
)
. (3.28)

By assumption (H), constants Ai (i = 1, 2, 3, 4) satisfy A1 > 0, A2 > 0, A3 > 0, and A4 < 0.
Then,

lnK(t) = lnA1 +A2B2(T) + ln
(
1 −A3e

A4t
)
. (3.29)

It follows from (lnB2(t)/t) → 0, t → ∞, that

lnK(t)
t

−→ 0, t −→ ∞. (3.30)

Hence, letting t → ∞ and by the strong law of large numbers, we have that

min0≤s≤tB1(s)
t

−→ 0,
max0≤s≤tB1(s)

t
−→ 0, t −→ ∞,

min0≤s≤tB2(s)
t

−→ 0,
max0≤s≤tB2(s)

t
−→ 0, t −→ ∞.

(3.31)
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Then,

lim sup
t→∞

lnY2(t)
t

≤ 0, a.s., (3.32)

as desired.

Theorem 3.5. Under assumption (H), for any initial value y0 > 0, the solution y(t) of (1.7) has the
property

lim
t→∞

lny(t)
t

= 0, a.s. (3.33)

Proof. It follows from (3.18) and Lemma 3.4 that

0 ≤ lim inf
t→∞

lnY1(t)
t

≤ lim inf
t→∞

lny(t)
t

≤ lim sup
t→∞

lny(t)
t

≤ lim sup
t→∞

lnY2(t)
t

≤ 0, a.s. (3.34)

Consequently,

lim
t→∞

lny(t)
t

= 0, a.s. (3.35)

The proof is complete.

3.2. Persistent in Mean and Extinction

As we know, the property of persistence is more desirable since it represents the long-term
survival to a population dynamics. Now we present the definition of persistence in mean
proposed in [7, 11].

Definition 3.6. System (1.7) is said to be persistent in mean if

lim inf
t→∞

∫ t
0 x(t)ds

t
> 0, lim inf

t→∞

∫ t
0 y(t)ds

t
> 0, a.s. (3.36)

Theorem 3.7. Assume that condition (H) holds. Then system (1.7) is persistent in mean.

Proof. Define the function V = lnx; by the Itô formula, we get

lnx(t) − lnx0 =

(
a − σ2

1

2

)
t − b

∫ t

0
x(s)ds −

∫ t

0

cy(s)
λx(s) +Ay(s)

ds + σ1B1(t). (3.37)
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That is,

b

∫ t

0
x(s)ds = − lnx(t) + lnx0 +

(
a − σ2

1

2

)
t −
∫ t

0

cy(s)
λx(s) +Ay(s)

ds + σ1B1(t)

≥ − lnx(t) + lnx0 +

(
a − σ2

1

2

)
t − ct

A
+ σ1B1(t).

(3.38)

Dividing t on both sides and using the strong law of large numbers, it follows from
Theorem 3.3 that

lim inf
t→∞

∫ t
0 x(t)ds

t
≥ a − c/A − σ2

1/2
b

> 0, a.s. (3.39)

Moreover, define the function V = lny ; using the Itô formula again, we have that

lny(t) − lny0 =

(
f − σ2

2

2

)
t −
∫ t

0

gy(s)
λx(s) + h

ds + σ2B2(t). (3.40)

Thus,

g

h

∫ t

0
y(s)ds ≥

∫ t

0

gy(s)
λx(s) + h

ds = − lny(t) + lny0 +

(
f − σ2

2

2

)
t + σ2B2(t). (3.41)

Dividing both sides by t and letting t → ∞ and also by the strong law of large numbers and
Theorem 3.5, we have that

lim inf
t→∞

1
t

∫ t

0
y(s)ds ≥ h

(
f − σ2

2/2
)

g
> 0, a.s. (3.42)

So the system is persistent in mean and we complete the proof.

Under condition (H), we show that the system is persistent in mean. To a large extent,
(H) is the condition that stands for small environmental noises. That is, small stochastic
perturbation does not change the persistence of the system. Here, we will consider that large
noises may make the system extinct.

Theorem 3.8. Assume that condition a − σ2
1/2 < 0, f − σ2

2/2 < 0 holds. Then system (1.7) will
become extinct exponentially with probability one.

Proof. Define the function V = lnx; by the Itô formula, we get

lnx(t) − lnx0 =

(
a − σ2

1

2

)
t − b

∫ t

0
x(s)ds −

∫ t

0

cy(s)
λx(s) +Ay(s)

ds + σ1B1(t). (3.43)
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Then,

lnx(t) − lnx0 ≤
(
a − σ2

1

2

)
t + σ1B1(t). (3.44)

By the strong law of large numbers of martingales, we have that

lim
t→∞

B1(t)
t

= 0, a.s. (3.45)

Therefore,

lim sup
t→∞

lnx(t)
t

≤ a − σ2
1

2
< 0, a.s. (3.46)

On the other hand, by the Itô formula again, we derive

lny(t) = lny0 +

(
f − σ2

2

2

)
t −
∫ t

0

gy(s)
λx(s) + h

ds + σ2B2(t)

≤ lny0 +

(
f − σ2

2

2

)
t + σ2B2(t).

(3.47)

Applying the strong law of large numbers of martingales, we obtain

lim sup
t→∞

lny(t)
t

≤ f − σ2
2

2
< 0, a.s. (3.48)

The proof is complete.

We continue to discuss the asymptotic behaviors of the stochastic system (1.7).

Theorem 3.9. Assume that condition a−c/A−σ2
1/2 > 0, f −σ2

2/2 < 0 holds. Then the prey x(t) of
system (1.7) is persistent in mean; however, the predator y(t) will become extinct exponentially with
probability one.

Proof. Define the function V = lnx; by the Itô formula, we get

lnx(t) − lnx0 =

(
a − σ2

1

2

)
t − b

∫ t

0
x(s)ds −

∫ t

0

cy(s)
λx(s) +Ay(s)

ds + σ1B1(t). (3.49)

Thus,

b

∫ t

0
x(s)ds ≥ − lnx(t) + lnx0 +

(
a − σ2

1

2
− c

A

)
t + σ1B1(t). (3.50)
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Under condition a − c/A − σ2
1/2 > 0, it follows from the proof of Theorem 3.3 that

lim
t→∞

lnx(t)
t

= 0, a.s. (3.51)

So

lim inf
t→∞

∫ t
0 x(t)ds

t
≥ a − c/A − σ2

1/2
b

> 0, a.s. (3.52)

That is, the prey x(t) is persistent in mean. However, under condition f − σ2
2/2 < 0, from the

proof of Theorem 3.8, we have that

lim sup
t→∞

lny(t)
t

≤ f − σ2
2

2
< 0, a.s. (3.53)

That is, the predator y(t)will become extinct exponentially with probability one.

4. Numerical Simulations

In this section, some simulation figures are introduced to support the main results in our
paper.
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For model (1.7), we consider the discretization equations

xk+1 = xk + xk

[
a − bxk −

cyk

λxk +Ayk

]
Δt + σ1xk

√
Δtξk +

σ2
1

2
xk

(
ξ2k − 1

)
Δt,

yk+1 = yk + yk

[
f − gyk

λxk + h

]
Δt + σ2yk

√
Δtηk +

σ2
2

2
yk

(
η2
k − 1

)
Δt,

(4.1)

where ξk and ηk are Gaussian random variables that follow N(0, 1).
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In Figure 1, we choose a = 0.4, f = 0.3, c = 0.1, A = 0.5, σ1(t)
2/2 = σ2

2(t)/2 = 0.01,
and (x0, y0) = (0.5, 0.2). By virtue of Theorem 3.7, the system will be persistent in mean.
What we mentioned above can be seen from Figure 1. The difference between the conditions
of Figure 1 and Figure 2 is that the values of σ1 and σ2 are different. In Figure 1, we choose
σ2
1/2 = σ2

2/2 = 0.01. In Figure 2, we choose σ2
1/2 = σ2

2/2 = 1. In view of Theorem 3.8, both
species x and y will go to extinction. Figure 2 confirms this.

In Figure 3, we choose a = 0.4, f = 0.3, c = 0.1, A = 0.5, σ1(t)
2/2 = 0.01, σ2

2/2 = 1, and
(x0, y0) = (0.5, 0.2). Then the prey x(t) is persistent in mean; however, the predator y(t) will
become extinct. Figure 3 confirms the assertion (Theorem 3.9).

By comparing Figures 1 and 2, with Figure 3, we can observe that small environmental
noise can retain the stochastic system permanent; however, sufficiently large environmental
noise makes the stochastic system extinct.

Remark 4.1. White noise is taken into account in our model in this paper. It tells us that,
when the intensities of environmental noises are not too big, some nice properties such as
nonexplosion and permanence are desired. However, Theorem 3.8 reveals that a large white
noise will force the population to become extinct while the population may be persistent
under a relatively small white noise. To some extent, Theorem 3.9 shows that, though the
predator y(t) has plenty of food x(t), they may be extinct because of large environmental
noise.

Acknowledgment

This research is supported by China Postdoctoral Science Foundation (no. 20100481000).

References

[1] P. H. Leslie, “Some further notes on the use of matrices in population mathematics,” Biometrika, vol.
35, pp. 213–245, 1948.

[2] P. H. Leslie, “A stochastic model for studying the properties of certain biological systems by numerical
methods,” Biometrika, vol. 45, pp. 16–31, 1958.

[3] H. W. Broer, K. Saleh, V. Naudot, and R. Roussarie, “Dynamics of a predator-prey model with non-
monotonic response function,”Discrete and Continuous Dynamical Systems, vol. 18, no. 2-3, pp. 221–251,
2007.

[4] M. A. Aziz-Alaoui andM. Daher Okiye, “Boundedness and global stability for a predator-prey model
with modified Leslie-Gower and Holling-type II schemes,” Applied Mathematics Letters, vol. 16, no. 7,
pp. 1069–1075, 2003.

[5] S. B. Hsu and T. W. Huang, “Global stability for a class of predator-prey systems,” SIAM Journal on
Applied Mathematics, vol. 55, no. 3, pp. 763–783, 1995.

[6] L. Ji and C.Wu, “limit cycles of a holling-tanner model withmodified Leslie-Gower,” Journal of Fuzhou
University, vol. 37, pp. 771–797, 2009.

[7] C. Ji, D. Jiang, and N. Shi, “Analysis of a predator-prey model with modified Leslie-Gower and
holling-type II schemeswith stochastic perturbation,” Journal of Mathematical Analysis and Applications,
vol. 359, no. 2, pp. 482–498, 2009.

[8] C. Ji, D. Jiang, and X. Li, “Qualitative analysis of a stochastic ratio-dependent predatorprey system,”
Journal of Computational and Applied Mathematics, vol. 235, no. 5, pp. 1326–1341, 2011.

[9] X. Mao, G. Marion, and E. Renshaw, “Environmental Brownian noise suppresses explosions in
population dynamics,” Stochastic Processes and Their Applications, vol. 97, no. 1, pp. 95–110, 2002.

[10] X. Y. Li and X. Mao, “Population dynamical behavior of non-autonomous lotka-volterra competitive
system with random perturbation,”Discrete and Continuous Dynamical Systems, vol. 24, no. 2, pp. 523–
545, 2009.

[11] L. Chen and J. Chen, Nonlinear Biological Dynamical System, Science Press, Beijing, China, 1993.


