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This paper is concerned with time-periodic solution of the weakly dissipative Camassa-Holm
equation with a periodic boundary condition. The existence and uniqueness of a time periodic
solution is presented.

1. Introduction

The Camassa-Holm equation

ut − utxx + 3uux = 2uxuxx + uuxxx, t > 0, x ∈ R, (1.1)

modeling the unidirectional propagation of shallow water waves over a flat bottom, where
u(t, x) represents the fluid’s free surface above a flat bottom (or equivalently, the fluid velocity
at time t ≥ 0 and in the spatial x direction).

Since the equation was derived physically by Camassa and Holm [1, 2], many
researchers have paid extensive attention to it. The Camassa-Holm equation is also a model
for the propagation of axially symmetric waves in hyperelastic rods [3, 4]. It has a bi-
Hamiltonian structure [5, 6] and is completely integrable [1, 2, 7–11]. It is a reexpression
of geodesic flow on the diffeomorphism group of the circle [12] and on the Virasoro group
[13]. Its solitary waves are peaked [7], and they are orbitally stable and interact like solitons
[14–16]. The peakons capture a characteristic of the traveling waves of greatest height-exact
traveling solutions of the governing equations for water waves with a peak at their crest
[17–19].
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The Cauchy problem of the Camassa-Holm equation has been extensively studied. It
has been shown that this equation is locally well posed [20–25] for initial data u0 ∈ Hs(R)
with s > 3/2. Moreover, it has global strong solutions modeling permanent waves [20, 24–
27] but also blow-up solutions modeling wave breaking [20–28]. On the other hand, it has
global weak solutions with initial data u0 ∈ H1 [29–35]. Moreover, the initial-boundary
value problem for the Camassa-Holm equation on the half-line and on a finite interval was
discussed in [36, 37]. It is observed that if u is the solution of the Camassa-Holm equation
with the initial data u0 inH1(R), we have for all t > 0,

‖u(t, ·)‖L∞ ≤
√
2
2

‖u(t, ·)‖H1 ≤
√
2
2

‖u0(·)‖H1 . (1.2)

It is worth pointing out that the advantage of the Camassa-Holm equation in
comparison with the KdV equation lies in the fact that the Camassa-Holm equation has
peaked solitons and models wave breaking [2, 20, 21].

In general, it is difficult to avoid energy dissipation mechanisms in a real world.
Ott and Sudan [38] investigated how the KdV equation was modified by the presence of
dissipation and the effect of such dissipation on the solitary solution of the KdV equation.
Ghidaglia [39] investigated the long-time behavior of solutions to theweakly dissipative KdV
equation as a finite-dimensional dynamical system.

The Camassa-Holm equation with dissipative term is

ut − utxx + 3uux − 2uxuxx − uuxxx + L(u) = f(t, x), t > 0, x ∈ R, (1.3)

where f(t, x) is the forcing term, L(u) is a dissipative term, L can be a differential operator or
a quasi-differential operator according to different physical situations.

With f = 0 and L(u) = γ(1 − ∂2x)u, (1.3) becomes weakly dissipative Camassa-Holm
equation

ut − utxx + 3uux + γ(u − uxx) = 2uxuxx + uuxxx, t > 0, x ∈ R, (1.4)

where γ > 0 is a constant.
The local well-posedness, global existence, and blow-up phenomena of the Cauchy

problem of (1.4) on the line [40] and on the circle [41] were studied. A new global existence
result and a new blow-up result for strong solutions to this equation with certain profiles
are presented recently [42]. We found that the behaviors of (1.4) are similar to the Camassa-
Holm equation in a finite interval of time, such as the local well-posedness and the blow-up
phenomena, and that there are considerable differences between (1.4) and the Camassa-Holm
equation in their long-time behaviors. The global solutions of (1.4) decay to zero as time goes
to infinity provided the potential y0 = (1 − ∂2x)u0 is of one sign (see [40, 41]). This long-
time behavior is an important feature that the Camassa-Holm equation does not possess. It is
well known that the Camassa-Holm equation has peaked traveling wave solutions. But the
fact that any global solution of (1.4) decays to zero means that there are no traveling wave
solutions of (1.4).
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Another difference between (1.4) and the Camassa-Holm equation is that (1.4) does
not have the following conservation laws

I1 =
∫
S

u dx, I2 =
∫
S

(
u2 + u2

x

)
dx, (1.5)

which play an important role in the study of the Camassa-Holm equation.
Equation (1.4) has the same blow-up rate as the Camassa-Holm equation does when

the blow-up occurs [41]. This fact shows that the blow-up rate of the Camassa-Holm equation
is not affected by the weakly dissipative term, but the occurrence of blow-up of (1.4) is
affected by the dissipative parameter [40, 41].

In the paper, we would like to consider the following weakly dissipative Camassa-
Holm equation

ut − utxx + 3uux − 2uxuxx − uuxxx + γ(u − uxx) = f(t, x), t > 0, x ∈ R, (1.6)

u(t, x + L) = u(t, x), t > 0, x ∈ R, (1.7)

u(t +ω, x) = u(t, x), t > 0, x ∈ R, (1.8)

where γ(1 − ∂2x)u is the weakly dissipative term, γ > 0 is a constant, and the forcing term
f is ω-periodic in time t and L-periodic in spatial x. Without loss of generality, we assume
further

∫
Ω f(t, x)dx = 0, where Ω = [0, L]. When system is periodically dependent on time

t, we want to know whether there exists time-periodic solution with the same period for
the system. In many nonlinear evolution equations, the study of time-periodic solution has
attracted considerable interest (e.g., [43–45]). In this paper, wewill prove that (1.6)–(1.8) have
a solution by using the Galerkin method [46], and Leray-Schauder fixed point theorem [44].

Our paper is organized as follows. In Section 2, we give some notations and definition
of some space used in this paper. In Section 3, we prove the existence of the approximate
solution and give uniform a priori estimates needed where we prove the convergence of a
sequence of the approximate solution. Section 4 is devoted to the study of the existence and
uniqueness of time-periodic solution for (1.6)–(1.8).

2. Preliminaries

Before starting our work, it is appropriate to introduce some notations and inequalities that
will be used in the paper.

Let X be a Banach space, we denote by Ck(ω;X) the set of ω-periodic X-valued
measurable functions on R

1 with continuous derivatives up to order k. The norm in the space
Ck(ω;X) is ‖u‖Ck(ω;X) = sup0≤t≤ω{

∑k
i=0 ‖Di

tu‖X}.
For 1 ≤ p ≤ ∞, the space Lp(ω;X) is the set of ω-periodic X-valued measurable

functions on R such that

‖u‖Lp(ω;X) =

⎧⎪⎪⎨
⎪⎪⎩

(∫ω

0
‖u‖pXdt

)1/p

< ∞, 1 ≤ p < ∞
sup
0≤t≤ω

‖u‖X < ∞, p = ∞.
(2.1)
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The space Wk,p(ω;X) denote the set of functions which belong to Lp(ω;X) together
with their derivatives up to order k, and we writeWk,2(ω;X) = Hk(ω;X) in particular when
X is a Hilbert space.

Lp(Ω) and Hm(Ω) are classical Sobolev spaces. For simplicity, we write ‖ · ‖Lp(Ω) by
‖ · ‖p as p /= 2 and ‖ · ‖L2(Ω) by ‖ · ‖.

The following inequalities (see [47])will be used in the proofs later

‖u‖∞ ≤ k1‖u‖H1 . (2.2)
∥∥∥Dju

∥∥∥
p
≤ k2‖u‖θHm‖u‖1−θ, (2.3)

where Dju = (∂j u)/(∂xj), 1/p = j + θ(1/2 −m) + (1 − θ)(1/2) as 0 ≤ j < m, j/m ≤ θ ≤ 1.

‖u‖ ≤ k3‖ux‖,
∫
Ω
u(x)dx = 0. (2.4)

3. A Priori Estimates

In this section, we first prove that (1.6)–(1.8) have a sequence of approximate solutions
{un}∞n=1, then give a prior, estimates about {un}∞n=1.

We denote the unbounded linear operator Au = −uxx on X = L2 ∩ {u | u(x + L) =
u(x),

∫
Ω udx = 0}, then the set of all linearly independent eigenvectors {wj}∞j=0 of A, that is,

Awj = λjwj , with 0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞, is an orthonormal basis of L2(Ω). For any
n and a group of function {ajn(t)}nj=1, where ajn(t)(j = 1, 2, . . . , n) ∈ C1(ω;R), the function
un =

∑n
j=1 ajn(t)wj ∈ C1(ω;Hn) is called an approximate solution to (1.6)–(1.8) if it satisfies

the equation as follows:

(
unt − unxxt + γ(un − unxx), wj

)
=
(
Nun + f,wj

)
, j = 1, . . . , n, (3.1)

where Nun = −3ununx + 2unxunxx + ununxxx and Hn = span{w1, w2, . . . , wn}. By the classical
theory of ordinary differential equations, for any fixed vn(t) =

∑n
j=1 bjn(t)wj ∈ C1(ω;Hn),

the equation (unt − unxxt + γ(un − unxx), wj) = (Nvn + f,wj), j = 1, . . . , n has a unique
ω-periodic solution un and the mapping F : vn → un is continuous and compact in
C1(ω;Hn). Hence by Leray-Schauder fixed point theorem, we want to prove the existence
of an approximate solution only to show sup0≤t≤ω‖un‖2 ≤ c for all possible solution of (3.1)
replaced by λNun(0 ≤ λ ≤ 1) instead of nonlinear termNun, where c is a constant which only
depends on L, ε, ω, γ , and f .

Lemma 3.1. If f ∈ C1(ω;H−1(Ω)), then

sup
0≤t≤ω

(
‖un‖2 + ‖unx‖2

)
≤ c1, (3.2)

where c1 is a constant which only depends on L, ω, ε, γ , k3, and f , M = sup0≤t≤ω{‖f(t, x)‖2H−1(Ω)}
and d1 = min{2γ, 2γ − ε} > 0.
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Proof. Multiplying (3.1) by ajn(t) and summing up over j from 1 to n, we obtain

(
unt − unxxt + γ(un − unxx), un

)
=
(
Nun + f, un

)
. (3.3)

Then, we can get

1
2
d

dt

(
‖un‖2 + ‖unx‖2

)
+ γ
(
‖un‖2 + ‖unx‖2

)
=
(
Nun + f, un

)
. (3.4)

Notice that −3 ∫Ω u2
nunxdx = 0, 2

∫
Ω ununxunxxdx +

∫
Ω u2

nunxxxdx = 0.
From Young’s inequality, we have

∫
Ω fundx ≤ (ε/2)‖unx‖2 + k2

3 M/2ε, where ε > 0 is a
constant.

According to the above relations, we can derive from (3.4) that

d

dt

(
‖un‖2 + ‖unx‖2

)
+ d1

(
‖un‖2 + ‖unx‖2

)
≤ k2

3M

ε
, (3.5)

where d1 = min{2γ, 2γ − ε} > 0.
Considering the time periodicity of un and integrating (3.5) over [0, ω], we get

d1

∫ω

0

(
‖un‖2 + ‖unx‖2

)
dt ≤ ωk2

3M

ε
. (3.6)

Hence, there exists t∗ ∈ [0, ω) such that ‖un(t∗)‖2 + ‖unx(t∗)‖2 ≤ k2
3M/d1ε.

From (3.5), we have (d/dt)(‖un‖2 + ‖unx‖2) ≤ k2
3M/ε.

Integrating the above inequality with respect to t from t∗ to t ∈ [t∗, t∗ +ω], we deduce
that

‖un(t)‖2 + ‖unx(t)‖2 ≤ ‖un(t∗)‖2 + ‖unx(t∗)‖2 +
ωk2

3M

ε
≤
(

1
d1

+ω

)
k2
3M

ε
. (3.7)

Hence, we infer

sup
0≤t≤ω

(
‖un‖2 + ‖unx‖2

)
≤
(

1
d1

+ω

)
k2
3M

ε
� c1, (3.8)

which concludes our proof.

From Lemma 3.1 and Leray-Schauder fixed point theorem, (3.1) has solution {un}∞n=1,
which is also a sequence of approximate solutions of (1.6)–(1.8). In order to obtain the
convergence of sequence {un}∞n=1, we need to give a priori estimates for the high-order
derivers of {un}∞n=1.
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Lemma 3.2. If f ∈ C1(ω;H−1(Ω)), then

sup
0≤t≤ω

(
‖unx‖2 + ‖unxx‖2

)
≤ c2, (3.9)

where c2 is a constant which only depends on L, ω, ε, γ , λn, k1, k2, k3, and f , M =
sup0≤t≤ω{‖f(t, x)‖2H−1(Ω)} and d2 = min{2γ − (13/2)ελn, 2γ − (21/2)ε} > 0.

Proof. Multiplying (3.1) by −λjajn(t) and summing up over j from 1 to n, we have

(
unt − unxxt + γ(un − unxx), unxx

)
=
(
Nun + f, unxx

)
. (3.10)

The above equation yields

−1
2
d

dt

(
‖unx‖2 + ‖unxx‖2

)
− γ
(
‖unx‖2 + ‖unxx‖2

)
=
(
Nun + f, unxx

)
. (3.11)

From Young’s inequality, we have

∣∣∣∣
∫
Ω
funxxdx

∣∣∣∣ ≤ ε‖unxxx‖2 +
k2
3M

4ε
, (3.12)

where ε > 0 is a constant.
From (2.2), (3.8), and Young’s inequality, we can deduce that

∣∣∣∣
∫
Ω
ununxunxxdx

∣∣∣∣ ≤ ‖un‖∞
∫
Ω
|unxunxx|dx

≤ k1‖un‖H1

∫
Ω
|unxunxx|dx

≤ k1c
1/2
1

(
ε

k1c
1/2
1

‖unxx‖2 +
k1c

1/2
1

4ε
‖unx‖2

)

≤ ε‖unxx‖2 +
k2
1c

2
1

4ε
.

(3.13)
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From (2.3), (3.8), Cauchy-Schwarz inequality, Young’s inequality, and Lemma 3.1, we
get

∣∣∣∣
∫
Ω
ununxxunxxxdx

∣∣∣∣ =
∣∣∣∣−12

∫
Ω
unxu

2
nxxdx

∣∣∣∣ ≤ 1
2
‖unx‖‖unxx‖24

≤ 1
2
c1/21 k2

2‖un‖1/2‖un‖3/2H3

≤ 3
4
ε‖un‖2H3 +

c31k
8
2

64ε3

≤ 3
4
ε‖unxx‖2 + 3

4
ε‖unxxx‖2 + 3

4
εc1 +

c31k
8
2

64ε3
,

(3.14)

‖unxxx‖2 =
∫
Ω

∣∣∣∣∣∣(
n∑
j=1

ajn(t)wj)xxx

∣∣∣∣∣∣
2

dx =
∫
Ω

∣∣∣∣∣∣(
n∑
j=1

λjajn(t)wj)x

∣∣∣∣∣∣
2

dx ≤ λn‖unx‖2. (3.15)

Taking (3.11)–(3.15) into account, we can infer that

d

dt

(
‖unx‖2 + ‖unxx‖2

)
+ d2

(
‖unx‖2 + ‖unxx‖2

)
≤ k2

3M

2ε
+
3k2

1c
2
1

2ε
+
9εc1
2

+
3c31k

8
2

32ε3
, (3.16)

where d2 = min{2γ − (13/2)ελn, 2γ − (21/2)ε} > 0.
Integrating (3.16) about t from 0 to ω and considering the time periodicity of un, we

get

d2

∫ω

0

(
‖unx‖2 + ‖unxx‖2

)
dt ≤

(
k2
3M

2ε
+
3k2

1c
2
1

2ε
+
9εc1
2

+
3c31k

8
2

32ε3

)
ω. (3.17)

Hence, there exists t∗ ∈ [0, ω) such that

‖unx(t∗)‖2 + ‖unxx(t∗)‖2 ≤ 1
d2

(
k2
3M

2ε
+
3k2

1c
2
1

2ε
+
9εc1
2

+
3c31k

8
2

32ε3

)
. (3.18)

From (3.16), we have

‖unx(t)‖2 + ‖unxx(t)‖2 ≤ ‖unx(t∗)‖2 + ‖unxx(t∗)‖2 +
(

k2
3M

2ε
+
3k2

1c
2
1

2ε
+
9εc1
2

+
3c31k

8
2

32ε3

)
ω.

(3.19)

Then we can obtain

sup
0≤t≤ω

(
‖unx‖2 + ‖unxx‖2

)
≤
(

1
d2

+ω

)(
k2
3M

2ε
+
3k2

1c
2
1

2ε
+
9εc1
2

+
3c31k

8
2

32ε3

)
� c2, (3.20)

which concludes our proof.
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In the following, we continue to establish a priori estimates for high-order derivers of
the approximate solution {un}∞n=1 by an inductive argument.

Lemma 3.3. For any k ≥ 0, if f ∈ C1(ω;Hk−1(Ω)), then

sup
0≤t≤ω

(∥∥∥Dk+1un

∥∥∥2 + ∥∥∥Dk+2un

∥∥∥2
)

≤ c, (3.21)

where c is a constant which only depends on L,ω, ε, γ , λn, k, k1, k2, k3, f and d3 = {2γ −16ελn, 2γ −
14ε} > 0.

Proof. By Lemma 3.2, we know the conclusion of Lemma 3.3 holds for k = 0.
Assume that for k ≤ m − 1(m ≥ 2) the conclusion of Lemma 3.3 holds, we want to

prove that the same statement holds for k = m also.
Multiplying (3.1) by (−1)m+1λm+1

j ajn(t) and summing up over j from 1 to n, we have

(−1)m+1 1
2
d

dt

(∥∥∥Dm+1un

∥∥∥2 +
∥∥∥Dm+2un

∥∥∥2
)
+ (−1)m+1γ

(∥∥∥Dm+1un

∥∥∥2 +
∥∥∥Dm+2un

∥∥∥2
)

=
(
Nun + f,D2(m+1)un

)
.

(3.22)

Follow the same methods discussed in Lemma 3.2, we have

∣∣∣∣
∫
Ω
fD2(m+1)undx

∣∣∣∣ =
∣∣∣∣
∫
Ω
Dm−1fDm+3undx

∣∣∣∣ ≤ ε
∥∥∥Dm+3un

∥∥∥2 + 1
4ε

∥∥∥Dm−1f
∥∥∥2. (3.23)

From the conclusion of Lemma 3.3 for k ≤ m − 1, (2.2), (2.4) and Young’s inequality,
we can deduce that

∣∣∣∣
∫
Ω
ununxD

2(m+1)undx

∣∣∣∣ =
∣∣∣∣∣
∫
Ω

(
m+1∑
i=0

Ci
m+1D

iunD
m+1−iunx

)
Dm+1undx

∣∣∣∣∣

≤
∫
Ω

∣∣∣unD
m+2unD

m+1un

∣∣∣dx

+
∫
Ω

∣∣∣∣∣
(

m+1∑
i=1

Ci
m+1D

iunD
m+1−iunx

)
Dm+1un

∣∣∣∣∣dx

≤ ε
∥∥∥Dm+2un

∥∥∥2 + c(ε, k1, k3)
∥∥∥Dm+1un

∥∥∥2 + c(m, k1)

≤ ε
∥∥∥Dm+2un

∥∥∥2 + c(ε, k1, k3, m).

(3.24)
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Similarly, we can also deduce that

∣∣∣∣
∫
Ω
ununxxxD

2(m+1)undx

∣∣∣∣ =
∣∣∣∣∣
∫
Ω

(
m∑
i=0

Ci
mD

iunD
m−iunxxx

)
Dm+2undx

∣∣∣∣∣

≤
∫
Ω

∣∣∣unD
m+3unD

m+2un

∣∣∣dx +
∫
Ω

∣∣∣∣C1
mDun

(
Dm+2un

)2∣∣∣∣dx

+
∫
Ω

∣∣∣C2
mD

2unD
m+1unD

m+2un

∣∣∣dx

+
∫
Ω

∣∣∣∣∣
(

m∑
i=3

Ci
mD

iunD
m+3−iun

)
Dm+2un

∣∣∣∣∣dx

≤ ‖un‖∞
∫
Ω

∣∣∣Dm+3unD
m+2un

∣∣∣dx +m‖Dun‖∞
∫
Ω

∣∣∣Dm+2un

∣∣∣2dx

+ C2
m

∥∥∥D2un

∥∥∥
∞

∫
Ω

∣∣∣Dm+1unD
m+2un

∣∣∣dx

+
m∑
i=3

Ci
m

∥∥∥Diun

∥∥∥
∞

∥∥∥Dm+3−iun

∥∥∥
∞

∫
Ω

∣∣∣Dm+2un

∣∣∣dx

≤ c(k1, k3, m)
(∫

Ω

∣∣∣Dm+3unD
m+2un

∣∣∣dx +
∫
Ω

∣∣∣Dm+2un

∣∣∣2dx

+
∫
Ω

∣∣∣Dm+1unD
m+2un

∣∣∣dx +
∫
Ω

∣∣∣Dm+2un

∣∣∣dx
)
.

(3.25)

From the conclusion of Lemma 3.3 for k ≤ m−1, Young’s inequality and (2.3), we have

c(k1, k3, m)
∫
Ω

∣∣∣Dm+3unD
m+2un

∣∣∣dx ≤ ε
∥∥∥Dm+3un

∥∥∥2 + c(k1, k3, m, ε)
∥∥∥Dm+2un

∥∥∥2

≤ ε
∥∥∥Dm+3un

∥∥∥2 + c(k1, k2, k3, m, ε)

× ‖un‖2(m+2)/m+3
Hm+3 ‖un‖2(1−(m+2)/(m+3))

≤ ε
∥∥∥Dm+3un

∥∥∥2 + ε‖un‖2Hm+3 + c(k1, k2, k3, m, ε)‖un‖2

≤ 2ε
∥∥∥Dm+3un

∥∥∥2 + ε
∥∥∥Dm+2un

∥∥∥2 + c(k1, k2, k3, m, ε),

c(k1, k3, m)
∫
Ω

∣∣∣∣
(
Dm+2un

)2∣∣∣∣dx = c(k1, k3, m)
∥∥∥Dm+2un

∥∥∥2

≤ c(k1, k2, k3, m)‖un‖2(m+2)/(m+3)
Hm+3 ‖un‖2(1−(m+2)/(m+3))

≤ ε
∥∥∥Dm+3un

∥∥∥2 + ε
∥∥∥Dm+2un

∥∥∥2 + c(k1, k2, k3, m, ε),
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c(k1, k3, m)
∫
Ω

∣∣∣Dm+1unD
m+2un

∣∣∣dx ≤ ε
∥∥∥Dm+2un

∥∥∥2 + c(k1, k3, m, ε)
∥∥∥Dm+1un

∥∥∥2

≤ ε
∥∥∥Dm+2un

∥∥∥2 + c(k1, k3, m, ε),

c(k1, k3, m)
∫
Ω

∣∣∣Dm+2un

∣∣∣dx ≤ ε
∥∥∥Dm+2un

∥∥∥2 + c(k1, k3, m, ε, L).

(3.26)

Combining (3.25) and the above inequality, we can get

∣∣∣∣
∫
Ω
ununxxxD

2(m+1)undx

∣∣∣∣ ≤ 3ε
∥∥∥Dm+3un

∥∥∥2 + 4ε
∥∥∥Dm+2un

∥∥∥2 + c(k1, k2, k3, m, ε, L). (3.27)

Similarly,

∣∣∣∣
∫
Ω
unxunxxD

2(m+1)undx

∣∣∣∣ ≤
∫
Ω

∣∣∣unxD
m+1unD

m+3un

∣∣∣dx

+
∫
Ω

∣∣∣∣∣
(

m−1∑
i=1

Ci
m−1D

i+1unD
m+1−iun

)
Dm+3un

∣∣∣∣∣dx

≤ ‖unx‖∞
∫
Ω

∣∣∣Dm+1unD
m+3un

∣∣∣dx

+
m−1∑
i=1

Ci
m−1
∥∥∥Di+1un

∥∥∥
∞

∥∥∥Dm+1−iun

∥∥∥
∞

∫
Ω

∣∣∣Dm+3un

∣∣∣dx

≤ 2ε
∥∥∥Dm+3un

∥∥∥2 + c(m, k1, ε, L).

(3.28)

Taking (3.22)–(3.24) and (3.27)-(3.28) into account, we can deduce that

d

dt

(∥∥∥Dm+1un

∥∥∥2 +
∥∥∥Dm+2un

∥∥∥2
)
+ 2γ

(∥∥∥Dm+1un

∥∥∥2 +
∥∥∥Dm+2un

∥∥∥2
)

≤ 16ε
∥∥∥Dm+3un

∥∥∥2 + 14ε
∥∥∥Dm+2un

∥∥∥2 + c
(
k1, k2, k3, m, ε, f, L

)
.

(3.29)

From the above relation, we can infer

d

dt

(∥∥∥Dm+1un

∥∥∥2 +
∥∥∥Dm+2un

∥∥∥2
)
+ d3

(∥∥∥Dm+1un

∥∥∥2 +
∥∥∥Dm+2un

∥∥∥2
)

≤ c
(
k1, k2, k3, m, ε, f, L

)
,

(3.30)

where d3 = {2γ − 16ελn, 2γ − 14ε} > 0.
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Integrating (3.30) about t from 0 to ω, there exists t∗ ∈ [0, ω) such that

∥∥∥Dm+1un(t∗)
∥∥∥2 +

∥∥∥Dm+2un(t∗)
∥∥∥2 ≤ c

(
k1, k2, k3, m, ε, f, L

)
d3

. (3.31)

From (3.30), we have

d

dt

(∥∥∥Dm+1un

∥∥∥2 + ∥∥∥Dm+2un

∥∥∥2
)

≤ c
(
k1, k2, k3, m, ε, f, L

)
. (3.32)

Integrating the above inequality from t∗ to t ∈ [t∗, t∗+ω] andwith (3.31), we can easily
obtain

sup
0≤t≤ω

(∥∥∥Dm+1un

∥∥∥2 +
∥∥∥Dm+2un

∥∥∥2
)

≤
(

1
d3

+ω

)
c
(
k1, k2, k3, m, ε, f, L

)
� c. (3.33)

The proof is completed.

Lemma 3.4. For any k ≥ 0, if f ∈ C1(ω;Hk+1(Ω)), then

sup
0≤t≤ω

(∥∥∥Dkunt

∥∥∥2 +
∥∥∥Dk+1unt

∥∥∥2
)

≤ c (3.34)

where c is a constant which only depends on L, ω, ε, γ , λn, k, k1, k2, k3, and f .

Proof. We first prove the conclusion of Lemma 3.4 holds for k = 0. Multiplying (3.1) by a′
jn(t)

and summing up over j from 1 to n, we have

‖unt‖2 + ‖unxt‖2 =
(
Nun + f − γ(un − unxx), unt

)
. (3.35)

By Lemma 3.3, if f ∈ C1(ω;H1(Ω)), then we have ‖un‖2H4 ≤ c. Hence,

∣∣(Nun + f − γ(un − unxx), unt

)∣∣ ≤ ∥∥Nun + f − γ(un − unxx)
∥∥‖unt‖ ≤ c‖unt‖. (3.36)

Therefore, from (3.35) and (3.36), it is easy to know that

sup
0≤t≤ω

(
‖unt‖2 + ‖unxt‖2

)
≤ c. (3.37)

Assume that the conclusion of Lemma 3.4 holds for k ≤ m(m ≥ 1), we want to prove
that the conclusion of Lemma 3.4 also holds for k = m + 1.

Multiplying (3.1) by (−1)m+1λm+1
j a′

jn(t) and summing up over j from 1 to n, we have

(−1)m+1
(∥∥∥Dm+1unt

∥∥∥2 +
∥∥∥Dm+2unt

∥∥∥2
)

=
(
Nun + f − γ(un − unxx), D2(m+1)unt

)
. (3.38)
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By Lemma 3.3, if f ∈ C1(ω;Hm+2(Ω)), then ‖Dkun‖2 ≤ c for k ≤ m + 5. Hence,

∣∣∣(Nun + f − γ(un − unxx), D2(m+1)unt

)∣∣∣ ≤
∥∥∥Dm+1[Nun + f − γ(un − unxx)

]∥∥∥
∥∥∥Dm+1unt

∥∥∥
≤ c
∥∥∥Dm+1unt

∥∥∥.
(3.39)

Taking (3.38) and (3.39) into account, it follows

sup
0≤t≤ω

(∥∥∥Dm+1unt

∥∥∥2 +
∥∥∥Dm+2unt

∥∥∥2
)

≤ c. (3.40)

This completes the proof of Lemma 3.4 by an inductive argument.

4. Existence and Uniqueness of Time-Periodic Solution

We have proved that (1.6)–(1.8) have a sequence of approximate solutions {un}∞n=1. In this
section, we want to prove that the sequence converges and the limit is a solution of (1.6)–
(1.8).

By Lemmas 3.1–3.4 and standard compactness arguments, we conclude that there is a
subsequence which we denote also by {un} such that for any K ≥ 0, if f ∈ C1(ω;Hk+1(Ω)),
we have

un(t) −→ u(t), weakly ∗ in L∞
(
ω;Hk+4(Ω)

)
,

un(t) −→ u(t), strongly in L∞
(
ω;Hk+3(Ω)

)
,

unt(t) −→ ut(t), weakly ∗ in L∞
(
ω;Hk+1(Ω)

)
,

unt(t) −→ ut(t), strongly in L∞
(
ω;Hk(Ω)

)
.

(4.1)

From the above lemmas, we know that the nonlinear terms are well defined

‖ununx − uux‖ ≤ ‖un(unx − ux)‖ + ‖ux(un − u)‖
≤ ‖un‖∞‖unx − ux‖ + ‖ux‖∞‖un − u‖ −→ 0,

(4.2)

as n → ∞, uniformly in t,

‖unxunxx − uxuxx‖ ≤ ‖unx(unxx − uxx)‖ + ‖uxx(unx − ux)‖
≤ ‖unx‖∞‖unxx − uxx‖ + ‖uxx‖∞‖unx − ux‖ −→ 0,

(4.3)
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as n → ∞, uniformly in t,

‖ununxxx − uuxxx‖ ≤ ‖un(unxxx − uxxx)‖ + ‖uxxx(un − u)‖

≤ ‖un‖∞‖unxxx − uxxx‖ + ‖un − u‖∞‖uxxx‖

≤ ‖un‖∞‖unxxx − uxxx‖ + k1‖un − u‖H1‖uxxx‖ −→ 0,

(4.4)

as n → ∞, uniformly in t.
Consequently, it follows that

(
ut − uxxt + γ(u − uxx), η

)
=
(
Nu + f, η

)
, η ∈ L2

per. (4.5)

Thanks to the estimates obtained in the previous section, we have

ut − uxxt + γ(u − uxx) = Nu + f, (4.6)

a.e. on R
1 ×Ω.

So we obtain that the existence of time periodic solution for (1.6)–(1.8), which is the
following theorem.

Theorem 4.1. Given f ∈ C1(ω;Hk+1(Ω)), k ≥ 0, there exists a time periodic solution u(t, x) to
(1.6)–(1.8), such that u(t, x) ∈ L∞(ω;Hk+4(Ω)) ∩W1,∞(ω;Hk(Ω)).

Under the assumption of Theorem 4.1, we are unable to prove the uniqueness of the
solution for (1.6)–(1.8). But if we assume that M is sufficiently small, then the result can be
obtained.

Theorem 4.2. Suppose that the assumption in Theorem 4.1 holds. IfM is sufficiently small, then the
time periodic solution of (1.6)–(1.8) in Theorem 4.1 is unique.

Proof. Let u and u be any two time periodic solutions of (1.6)–(1.8). With v = u − u, we can
get from (1.6) that

vt − vxxt + γ(v − vxx) = Nu −Nu. (4.7)

Taking the inner product of (4.7)with v, we have

1
2
d

dt

(
‖v‖2 + ‖vx‖2

)
+ γ
(
‖v‖2 + ‖vx‖2

)
= (Nu −Nu, v). (4.8)
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Since,

|(−3uux + 3uux, v)| ≤ |(−3uvx, v)| + |(−3uxv, v)|

≤ 3
2
‖u‖∞

(
‖v‖2 + ‖vx‖2

)
+ 3‖ux‖∞‖v‖2

≤
(
3k1
2

c1/21 + 3k1c
1/2
2

)
‖v‖2 + 3k1

2
c1/21 ‖vx‖2,

(4.9)

|(2uxuxx − 2uxuxx, v)| ≤ |(2uxvxx, v)| + |(2uxxvx, v)|

≤ ‖uxx‖∞
(
‖v‖2 + ‖vx‖2

)
+ 2‖ux‖∞‖vx‖2 + ‖uxx‖∞

(
‖v‖2 + ‖vx‖2

)

≤ 2k1(c2 + c)1/2‖v‖2 +
[
2k1(c2 + c)1/2 + 2k1c

1/2
2

]
‖vx‖2,

(4.10)

|(uuxxx − uuxxx, v)| ≤ |(uvxxx, v)| + |(uxxxv, v)|

≤
∫
Ω
|uxxvvx|dx +

3
2

∫
Ω

∣∣∣uxv
2
x

∣∣∣dx + 2
∫
Ω
|uxxvvx|dx

≤ 1
2
‖uxx‖∞

(
‖v‖2 + ‖vx‖2

)
+
3
2
‖ux‖∞‖vx‖2 + ‖uxx‖∞

(
‖v‖2 + ‖vx‖2

)

≤ 3k1
2

(c2 + c)1/2‖v‖2 +
[
3k1
2

(c2 + c)1/2 +
3k1
2

c1/22

]
‖vx‖2.

(4.11)

Hence, if M is sufficient small such that 2γ ≥ 3k1c
1/2
1 + 6k1c

1/2
2 + 7k1(c2 + c)1/2, 2γ ≥

3k1c
1/2
1 + 7k1c

1/2
2 + 7k1(c2 + c)1/2, then it follows from (4.8)–(4.11), we get

d

dt

(
‖v‖2 + ‖vx‖2

)
+ ρ
(
‖v‖2 + ‖vx‖2

)
≤ 0, (4.12)

where ρ ≥ 0 is suitable constant.
Applying Gronwall’s inequality, we derive that

(
‖v(t)‖2 + ‖vx(t)‖2

)
≤
(
‖v(0)‖2 + ‖vx(0)‖2

)
e−ρt, for any t ≥ 0. (4.13)

Since v is ω-periodic in t, then for any positive integer m we have

‖v(t)‖2 + ‖vx(t)‖2 = ‖v(t +mω)‖2 + ‖vx(t +mω)‖2. (4.14)

Then we can infer that(
‖v(t)‖2 + ‖vx(t)‖2

)
≤
(
‖v(0)‖2 + ‖vx(0)‖2

)
e−ρ(t+mω). (4.15)

It follows from v(0) = vx(0) = 0 that u(t, x) = u(t, x), which completes the proof of
Theorem 4.2.
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hereditary symmetries,” Physica D, vol. 4, no. 1, pp. 47–66, 1981/82.

[7] A. Constantin, “On the scattering problem for the Camassa-Holm equation,” The Royal Society of
London. Proceedings. Series A, vol. 457, no. 2008, pp. 953–970, 2001.

[8] A. Constantin, “On the inverse spectral problem for the Camassa-Holm equation,” Journal of
Functional Analysis, vol. 155, no. 2, pp. 352–363, 1998.

[9] A. Constantin, V. S. Gerdjikov, and R. I. Ivanov, “Inverse scattering transform for the Camassa-Holm
equation,” Inverse Problems, vol. 22, no. 6, pp. 2197–2207, 2006.

[10] A. Boutet de Monvel and D. Shepelsky, “Riemann-Hilbert approach for the Camassa-Holm equation
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