Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2011, Article ID 408732, 5 pages
doi:10.1155/2011 /408732

Research Article

Global Well-Posedness for a Family of
MHD-Alpha-Like Models

Xiaowei He

College of Mathematics, Physics and Information Engineering, Zhejiang Normal University,
Jinhua 321004, China

Correspondence should be addressed to Xiaowei He, jhhxw@zjnu.cn

Received 17 July 2011; Accepted 12 August 2011

Academic Editor: J. C. Butcher

Copyright © 2011 Xiaowei He. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

Global well-posedness is proved for a family of n-dimensional MHD-alpha-like models.

1. Introduction

In this paper, we consider a family of MHD-alpha-like models:

o + (—A)920+u-Vu+V<p+ %zﬂ) =b-Vb, (1.1)

OH+ (-A)"H+u-Vb-b-Vu=0, (1.2)

v= |1+ <—a2A>91 u, H-= [1 + <—a§4A>Gl]b, a>0,am >0, (1.3)
divo=divu=div H=divb=0, (1.4)

(v, H)(0) = (v, Hp) in R"(n > 3), (1.5)

where v is the fluid velocity field, u is the “filtered” fluid velocity, p is the pressure, H
is the magnetic field, and b is the “filtered” magnetic field. a > 0 and ap > 0 are the
length scales and for simplicity we will take a = ap; = 1. The parameter 6; > 0 affects
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the strength of the nonlinear term and 6, > 0 represents the degree of viscous dissipation
satisfying

n+2

361 + 262 = (16)

When 0; = 6, =1 and n = 3, a global well-posedness is proved in [1]. The aim of this
paper is to prove a global well-posedness theorem under (1.6). We will prove the following
theorem.

Theorem 1.1. Let (ug, by) € H® with s > 1, div vy = div uy = div Hy = div by = 0 in R", and
(1.6) holding true. Then for any T > 0, there exists a unique strong solution (u, b) satisfying

(u,b) € L* <0, T; H5*91> nL? (0, T; H5+91+92>. (1.7)

Remark 1.2. For studies on some standard MHD-a or Leray-a models, we refer to [2-7] and
references therein.

2. Proof of Theorem 1.1

Since it is easy to prove that the problem (1.1)—(1.5) has a unique local smooth solution, we
only need to establish the a priori estimates.
Testing (1.1) by u, using (1.3) and (1.4), and letting A := (—A)1/2, we see that

1
4 u+ |A91u

2
_ + A61+02
2dt | "

2 2
dx + f |A62u dx = J‘(b V)b - udx. (2.1)

Testing (1.2) by b and using (1.3) and (1.4), we find that

1d

5 Jbz + |A91b|2dx + f |A%b g | A%+

2
dx = I(b -V)u - bdx. (2.2)

Summing up (2.1) and (2.2), thanks to the cancellation of the right-hand side of (2.1)
and (2.2), we infer that

1d

5 f (u,b)? + | A% (u, ) |2dx N f e (”'b)r |2 by 2 ix =0, 2.3)

whence

(4, b) | r20,1; 0102y < C. (2.4)
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Casel. 61 +6, > 1.
In the following calculations, we will use the following commutator estimates due to
Kato and Ponce [8]:

14 (F8) - A% < CNV A A 8], + I8 Flnligln), @5)
withs>0and 1/p=1/p1+1/q1=1/p2+1/q>.
We will also use the Sobolev inequality:
IVl < C||A91+92u |LZ <1 - g — 0,460, g) (2.6)
and the Gagliardo-Nirenberg inequality:
T c| A5+91u||L2| Ay (2.7)

Taking A® to (1.1), testing by A®u, and using (1.3) and (1.4), we infer that

2

2
AS+92 u + |AS+91 +6, u dx

1d 5,12 5+6; 2
EaJ‘|Au| +|A u| dx+f

=- I[As(u -Vu) —u- VA ulA’udx + I[As(b -Vb) —b- VA°b]A’udx (2.8)

+ f b-VA®°b - ASudx.

Taking A® to (1.2), testing by A®b, and using (1.3) and (1.4), we deduce that

2

2 2
L v o o s oo

=- I[As(u -Vb) —u- VA°b]A°bdx + I[As(b -Vu) —b- VA u]A°bdx (2.9)

+ fb - VA®u - A°bdx.



4 Journal of Applied Mathematics

Summing up (2.8) and (2.9), thanks to the cancellation of the right-hand side of (2.8)
and (2.9), and using (2.5), (2.6) and (2.7), we conclude that

I|As(u b + |AS+91 (u, b)| dx +f T | A0l gy b | dx

A, b+

2 dt
< ClVullp AUl 21 + CIVBI o |ABl 2ot | AUl it + CIV Ul [|A B2
< CIIV (1, b) |15 1A% (1, B) 124 (2.10)

<clawo],

)|,

<zl - carewol |

which implies (1.7).

Case 2. 0 <01 + 6, <1 only when n = 3.
Testing (1.1) by v, using (1.4), we see that

1d 9 0,
EEJ‘U dx+I|A v

2
dx = f(b -Vb-u-Vu)vdx

< (1Bl o1 VBl 2102 + 2l o |Vl 210 2) |0 12

<[, D) i IV (1, B) || 2112 ([0 2

(2.11)

< Cll(u, b) || o1+

A% (o, H)| o]l

Here we have used the Sobolev inequalities

2

3(p1-2) 3
L2<1——2p1 —92+291—§>.

Similarly, testing (1.2) by H and using (1.4) and (2.12), we find that

3 3
166 D)l < Ol bl (7 = 0162 - 3),
(2.12)
1V (8, )| 2nm = < C||A% 0, F)

2 0, . — .
2dtIH dx+J"A H| dx = I(b Vu-u-Vb)Hdx

< 11 (tt, B) 1o 11V (2, B) | 20012 | HE || 2 (2.13)

< Cll(u, b)[[ por-e

A% (o, H)|| IH .-

Combining (2.11) and (2.13) and using (2.4) and the Gronwall inequality, we have

|| (u, b) ||L2 (O/T;H82+291) S C. (2.14)
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Similarly to (2.10), we have

2 2
2 = f IS (u, b) |2 + | A0 (1, b)| dx + j A5 (y, b)| + |AS+91+92(u, b)| dx
< CIIV (4, b) I [1A° (1, B) 12,
" (2.15)
—ay) 2ay
< CJl (14, b)llgensams || A (1, b) ” A= (1 p) |
1 —ai s
< sa b+ Cla bl A o,
which implies (1.7) by 1/(1 — a1) < 2. Here we have used the Sobolev inequality:
IV (14,5l 32 < Cll (1, b)| on-20 <1 - pﬂ <0,+20, - g> (2.16)
2
and the Gagliardo-Nirenberg inequality:
1- 4]
IA® (14, B) || 20y < c||AS+91 (u, b)| (2.17)

with —((p2 — 1)/2p2)n = 216, + 61 —n/2 and pp > 2 > 3/(26, + 0,). This completes the proof.
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