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We discuss the existence of solution for a multipoint boundary value problem of fractional differ-
ential equation. An existence result is obtained with the use of the coincidence degree theory.

1. Introduction

In this paper, we study the multipoint boundary value problem

Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t), Dα−2
0+ u(t)

)
+ e(t), 0 < t < 1, (1.1)

I3−α0+ u(0) = 0, Dα−2
0+ u(0) =

n∑
j=1

βjD
α−2
0+ u

(
ξj
)
, u(1) =

m∑
i=1

αiu
(
ηi
)
, (1.2)

where 2 < α ≤ 3, 0 < ξ1 < ξ2 < · · · < ξn < 1, n ≥ 1, 0 < η1 < · · · < ηm < 1, m ≥ 2, αi, βj ∈ R,

m∑
i=1

αiη
α−1
i =

m∑
i=1

αiη
α−2
i = 1,

n∑
j=1

βjξj = 0,
n∑
j=1

βj = 1, (1.3)
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f : [0, 1] × R
3 → R satisfying the Carathéodory conditions, e ∈ L1[0, 1]. Dα

0+ and Iα0+ are the
standard Riemann-Liouville derivative and integral, respectively. We assume, in addition,
that

R =
Γ(α)2Γ(α − 1)
Γ(2α)Γ(α + 1)

n∑
j=1

βjξ
α
j

(
1 −

m∑
i=1

αiη
2α−1
i

)

− Γ(α)2Γ(α − 1)
Γ(α + 2)Γ(2α − 1)

n∑
j=1

βjξ
α+1
j

(
1 −

m∑
i=1

αiη
2α−2
i

)

/= 0,

(1.4)

where Γ is the Gamma function. Due to condition (1.3), the fractional differential operator in
(1.1), (1.2) is not invertible.

Fractional differential equation can describe many phenomena in various fields
of science and engineering. Many methods have been introduced for solving fractional
differential equations, such as the popular Laplace transform method, the iteration method.
For details, see [1, 2] and the references therein.

Recently, there are some papers dealing with the solvability of nonlinear boundary
value problems of fractional differential equation, by use of techniques of nonlinear analysis
(fixed-point theorems, Leray-Schauder theory, etc.), see, for example, [3–6]. But there are few
papers that consider the fractional-order boundary problems at resonance. Very recently [7],
Y. H. Zhang and Z. B. Bai considered the existence of solutions for the fractional ordinary
differential equation

Dα
0+u(t) = f

(
t, u(t), Dα−(n−1)

0+ u(t), . . . , Dα−1
0+ u(t)

)
+ e(t), 0 < t < 1, (1.5)

subject to the following boundary value conditions:

In−α0+ u(0) = D
α−(n−1)
0+ u(0) = · · · = Dα−2

0+ u(0) = 0, u(1) = σu
(
η
)
, (1.6)

where n > 2 is a natural number, n − 1 < α ≤ n is a real number, f : [0, 1] × R
n → R is con-

tinuous, and e ∈ L1[0, 1], σ ∈ (0,∞), and η ∈ (0, 1) are given constants such that σηα−1 = 1.
Dα

0+ and Iα0+ are the standard Riemann-Liouville derivative and integral, respectively. By the
conditions, the kernel of the linear operator is one dimensional.

Motivated by the above work and recent studies on fractional differential equations
[8–18], in this paper, we consider the existence of solutions for multipoint boundary value
problem (1.1), (1.2) at resonance. Note that under condition (1.3), the kernel of the linear
operator in (1.1), (1.2) is two dimensional. Our method is based upon the coincidence degree
theory of Mawhin [18].

Now, we will briefly recall some notation and abstract existence result.
Let Y, Z be real Banach spaces, let L : dom(L) ⊂ Y → Z be a Fredholm map of

index zero, and let P : Y → Y, Q : Z → Z be continuous projectors such that Im(P) =
Ker(P), Ker(Q) = Im(L), and Y = Ker(L) ⊕ Ker(P), Z = Im(L) ⊕ Im(Q). It follows that
L|dom(L)∩Ker(P) : dom(L) ∩Ker(P) → Im(L) is invertible. We denote the inverse of the map by
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KP . IfΩ is an open-bounded subset of Y such that dom(L)∩Ω/= ∅, the mapN : Y → Zwill be
called L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → Y is compact.

The theorem that we used is Theorem 2.4 of [18].

Theorem 1.1. Let L be a Fredholm operator of index zero andN be L-compact onΩ. Assume that the
following conditions are satisfied:

(i) Lx/=λNx for every (x, λ) ∈ [(dom(L) \ Ker(L)) ∩ ∂Ω] × (0, 1),

(ii) Nx /∈ Im(L) for every x ∈ Ker(L) ∩ ∂Ω,

(iii) deg(JQN|Ker(L),Ω ∩ Ker(L), 0)/= 0, where Q : Z → Z is a projection as above with
Im(L) = Ker(Q), and J : Im(Q) → Ker(L) is any isomorphism,

then the equation Lx = Nx has at least one solution in dom(L) ∩Ω.

The rest of this paper is organized as follows. In Section 2, we give some notation and
Lemmas. In Section 3, we establish an existence theorem of a solution for the problem (1.1),
(1.2).

2. Background Materials and Preliminaries

For the convenience of the reader, we present here some necessary basic knowledge and defi-
nitions for fractional calculus theory, and these definitions can be found in the recent literature
[1, 2].

Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.1)

provided the right side is pointwise defined on (0,∞). And we let I00+y(t) = y(t) for every
continuous y : (0,∞) → R.

Definition 2.2. The fractional derivative of order α > 0 of a function y : (0,∞) → R is given
by

Dα
0+y(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0

y(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1, provided the right side is pointwise defined on (0,∞).

Lemma 2.3 (see [3]). Assume that u ∈ C(0, 1) ∩ L1[0, 1] with a fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L1[0, 1], then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNtα−N, (2.3)

for some Ci ∈ R, i = 1, 2, . . . ,N, where N is the smallest integer greater than or equal to α.
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We use the classical space C[0, 1] with the norm ‖x‖∞ = maxt∈[0,1]|x(t)|. Given μ > 0
and N = [μ] + 1, one can define a linear space

Cμ[0, 1] :=
{
u | u(t) = I

μ

0+x(t) + c1t
μ−1 + c2t

μ−2 + · · · + cN−1tμ−(N−1), t ∈ [0, 1]
}
, (2.4)

where x ∈ C[0, 1] and ci ∈ R, i = 1, 2, . . . ,N − 1. By means of the linear function analysis
theory, one can prove that with the norm ‖u‖Cμ = ‖Dμ

0+u‖∞+· · ·+‖Dμ−(N−1)
0+ u‖∞+‖u‖∞, Cμ[0, 1]

is a Banach space.

Lemma 2.4 (see [7]). F ⊂ Cμ[0, 1] is a sequentially compact set if and only if F is uniformly bounded
and equicontinuous. Here, uniformly bounded means that there exists M > 0 such that for every
u ∈ F,

‖u‖Cμ =
∥∥∥Dμ

0+u
∥∥∥
∞
+ · · · +

∥∥∥Dμ−(N−1)
0+ u

∥∥∥
∞
+ ‖u‖∞ < M, (2.5)

and equicontinuous means that for all ε > 0, ∃δ > 0 such that

|u(t1) − u(t2)| < ε, (∀t1, t2 ∈ [0, 1], |t1 − t2| < δ, ∀u ∈ F),
∣∣∣Dα−i

0+ u(t1) −Dα−i
0+ u(t2)

∣∣∣ < ε, (t1, t2 ∈ [0, 1], |t1 − t2| < δ, ∀u ∈ F, ∀i ∈ {0, . . . ,N − 1}).
(2.6)

Let Z = L1[0, 1]with the norm ‖g‖1 =
∫1
0 |g(s)|ds. Y = Cα−1[0, 1] = {u | u(t) = Iα−10+ x(t)+

ctα−2, t ∈ [0, 1]}, where x ∈ C[0, 1], c ∈ R, with the norm ‖u‖Cα−1 = ‖Dα−1
0+ u‖∞ + ‖Dα−2

0+ u‖∞ +
‖u‖∞, and Y is a Banach space.

Definition 2.5. By a solution of the boundary value problem (1.1), (1.2), we understand a
function u ∈ Cα−1[0, 1] such that Dα−1

0+ u is absolutely continuous on (0, 1) and satisfies (1.1),
(1.2).

Definition 2.6. We say that the map f : [0, 1] × R → R satisfies the Carathéodory conditions
with respect to L1[0, 1] if the following conditions are satisfied:

(i) for each z ∈ R, the mapping t → f(t, z) is Lebesgue measurable,

(ii) for almost every t ∈ [0, 1], the mapping z → f(t, z) is continuous on R,

(iii) for each r > 0, there exists ρr ∈ L1([0, 1],R) such that, for a.e., t ∈ [0, 1] and every
|z| ≤ r, we have |f(t, z)| ≤ ρr(t).

Define L to be the linear operator from dom(L) ∩ Y to Z with

dom(L) =
{
u ∈ Cα−1[0, 1] | Dα

0+u ∈ L1[0, 1], u satisfies (1.2)
}
,

Lu = Dα
0+u, u ∈ dom(L).

(2.7)

We define N : Y → Z by setting

Nu(t) = f
(
t, u(t), Dα−1

0+ u(t), Dα−2
0+ u(t)

)
+ e(t). (2.8)
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Then boundary value problem (1.1), (1.2) can be written as

Lu = Nu. (2.9)

Lemma 2.7. Let condition (1.3) and (1.4) hold, then L : dom(L) ∩ Y → Z is a Fredholm map of
index zero.

Proof. It is clear that Ker(L) = {atα−1 + btα−2 | a, b ∈ R} ∼= R
2.

Let g ∈ Z and

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1g(s)ds + c1t

α−1 + c2t
α−2, (2.10)

then Dα
0+u(t) = g(t) a.e., t ∈ (0, 1) and, if

∫1

0
(1 − s)α−1g(s)ds −

m∑
i=1

αi

∫ηi

0

(
ηi − s

)α−1
g(s)ds = 0,

n∑
j=1

βj

∫ ξj

0

(
ξj − s

)
g(s)ds = 0

(2.11)

hold. Then u(t) satisfies the boundary conditions (1.2), that is, u ∈ dom(L), and we have

{
g ∈ Z | g satisfies (2.11)

} ⊆ Im(L). (2.12)

Let u ∈ dom(L), then for Dα
0+u ∈ Im(L), we have

u(t) = Iα0+D
α
0+u(t) + c1t

α−1 + c2t
α−2 + c3t

α−3, (2.13)

which, due to the boundary value condition (1.2), implies that Dα
0+u satisfies (2.11). In fact,

from I3−α0+ u(0) = 0, we have c3 = 0, from u(1) =
∑m

i=1 αiu(ηi), we have

∫1

0
(1 − s)α−1Dα

0+u(s)ds −
m∑
i=1

αi

∫ηi

0

(
ηi − s

)α−1
Dα

0+u(s)ds = 0, (2.14)

and from Dα−2
0+ u(0) =

∑n
j=1 βjD

α−2
0+ u(ξj), we have

n∑
j=1

βj

∫ ξj

0

(
ξj − s

)
Dα

0+u(s)ds = 0. (2.15)

Hence,

Im(L) ⊆ {g ∈ Z | g satisfies (2.11)
}
. (2.16)
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Therefore,

Im(L) =
{
g ∈ Z | g satisfies (2.11)

}
. (2.17)

Consider the continuous linear mapping Q1 : Z → Z and Q2 : Z → Z defined by

Q1g =
∫1

0
(1 − s)α−1g(s)ds −

m∑
i=1

αi

∫ηi

0

(
ηi − s

)α−1
g(s)ds,

Q2g =
n∑
j=1

βj

∫ ξj

0

(
ξj − s

)
g(s)ds.

(2.18)

Using the above definitions, we construct the following auxiliary maps R1, R2 : Z → Z:

R1g =
1
R

⎡
⎣Γ(α − 1)
Γ(α + 1)

n∑
j=1

βjξ
α
j Q1g(t) − Γ(α)Γ(α − 1)

Γ(2α − 1)

(
1 −

m∑
i=1

αiη
2α−2
i

)
Q2g(t)

⎤
⎦,

R2g = − 1
R

⎡
⎣ Γ(α)
Γ(α + 2)

n∑
j=1

βjξ
α+1
j Q1g(t) − (Γ(α))2

Γ(2α)

(
1 −

m∑
i=1

αiη
2α−1
i

)
Q2g(t)

⎤
⎦.

(2.19)

Since the condition (1.4) holds, the mapping Q : Z → Z defined by

(
Qy
)
(t) =

(
R1g(t)

)
tα−1 +

(
R2g(t)

)
tα−2 (2.20)

is well defined.
Recall (1.4) and note that

R1

(
R1gt

α−1
)
=

1
R

⎡
⎣Γ(α − 1)
Γ(α + 1)

n∑
j=1

βjξ
α
j Q1

(
R1gt

α−1
)

−Γ(α)Γ(α − 1)
Γ(2α − 1)

(
1 −

m∑
i=1

αiη
2α−2
i

)
Q2

(
R1gt

α−1
)
⎤
⎦

= R1g
1
R

⎡
⎣Γ(α − 1)Γ

(
α2)

Γ(α + 1)Γ(2α)

n∑
j=1

βjξ
α
j

(
1 −

m∑
i=1

αiη
2α−1
i

)

− Γ(α − 1)Γ
(
α2)

Γ(2α − 1)Γ(α + 2)

(
1 −

m∑
i=1

αiη
2α−2
i

)
n∑
j=1

βjξ
α+1
j

⎤
⎦

= R1g,

(2.21)
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and similarly we can derive that

R1

(
R2gt

α−2
)
= 0,

R2

(
R1gt

α−1
)
= 0,

R2

(
R2gt

α−2
)
= R2g.

(2.22)

So, for g ∈ Z, it follows from the four relations above that

Q2g = R1

(
R1gt

α−1 + R2gt
α−2
)
tα−1 + R2

(
R1gt

α−1 + R2gt
α−2
)
tα−2

= R1

(
R1gt

α−1
)
tα−1 + R1

(
R2gt

α−2
)
tα−1 + R2

(
R1gt

α−1
)
tα−2 + R2

(
R2gt

α−2
)
tα−2

= R1gt
α−1 + R2gt

α−2

= Qg,

(2.23)

that is, the map Q is idempotent. In fact, Q is a continuous linear projector.
Note that g ∈ Im(L) implies Qg = 0. Conversely, if Qg = 0, then we must have

R1g = R2g = 0; since the condition (1.4) holds, this can only be the case ifQ1g = Q2g = 0, that
is, g ∈ Im(L). In fact, Im(L) = Ker(Q).

Take g ∈ Z in the form g = (g − Qg) + Qg, so that g − Qg ∈ Im(L) = Ker(Q) and
Qg ∈ Im(Q). Thus, Z = Im(L)+ Im(Q). Let g ∈ Im(L)∩ Im(Q) and assume that g(s) = asα−1+
bsα−2 is not identically zero on [0, 1], then, since g ∈ Im(L), from (2.11) and the condition
(1.4), we derive a = b = 0, which is a contradiction. Hence, Im(L) ∩ Im(Q) = {0}; thus,
Z = Im(L) ⊕ Im(Q).

Now, dim Ker(L) = 2 = co dim Im(L), and so L is a Fredholm operator of index zero.

Let P : Y → Y be defined by

Pu(t) =
1

Γ(α)
Dα−1

0+ u(0)tα−1 +
1

Γ(α − 1)
Dα−2

0+ u(0)tα−2, t ∈ [0, 1]. (2.24)

Note that P is a continuous linear projector and

Ker(P) =
{
u ∈ Y | Dα−1

0+ u(0) = Dα−2
0+ u(0) = 0

}
. (2.25)

It is clear that Y = Ker(L) ⊕ Ker(P).
Note that the projectors P and Q are exact. Define KP : Im(L) → dom(L) ∩ Ker(P) by

KPg(t) =
1

Γ(α)

∫ t

0
(t − s)α−1g(s)ds = Iα0+g(t). (2.26)
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Hence, we have

Dα−1
0+

(
KPg

)
(t) =

∫ t

0
g(s)ds, Dα−2

0+

(
KPg

)
(t) =

∫ t

0
(t − s)g(s)ds, (2.27)

then ‖KPg‖∞ ≤ (1/Γ(α))‖g‖1, ‖Dα−1
0+ (KPg)‖∞ ≤ ‖g‖1, ‖Dα−2

0+ (KPg)‖∞ ≤ ‖g‖1, and thus

∥∥KPg
∥∥
Cα−1 ≤

(
2 +

1
Γ(α)

)∥∥g∥∥1. (2.28)

In fact, if g ∈ Im(L), then (LKP )g = Dα
0+I

α
0+g = g. Also, if u ∈ dom(L) ∩ Ker(P), then

(
KPLg

)
(t) = Iα0+D

α
0+g(t) = g(t) + c1t

α−1 + c2t
α−2 + c3t

α−3, (2.29)

from boundary value condition (1.2) and the fact that u ∈ dom(L)∩Ker(P), we have c1 = c2 =
c3 = 0. Thus,

KP =
(
L|dom(L)∩Ker(P)

)−1
. (2.30)

Using (2.19), we write

QNu(t) = (R1Nu)tα−1 + (R2Nu)tα−2,

KP (I −Q)Nu(t) =
1

Γ(α)

∫1

0
(t − s)α−1[Nu(s) −QNu(s)]ds.

(2.31)

With arguments similar to those of [7], we obtain the following Lemma.

Lemma 2.8. KP(I−Q)N : Y → Y is completely continuous.

3. The Main Results

Assume that the following conditions on the function f(t, x, y, z) are satisfied:
(H1) there exists a constant A > 0, such that for u ∈ dom(L) \ Ker(L) satisfying

|Dα−1
0+ u(t)| + |Dα−2

0+ u(t)| > A for all t ∈ [0, 1], we have

Q1Nu(t)/= 0 or Q2Nu(t)/= 0, (3.1)
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(H2) there exist functions a, b, c, d, r ∈ L1[0, 1] and a constant θ ∈ [0, 1] such that for
all (x, y, z) ∈ R

3 and a.e., t ∈ [0, 1], one of the following inequalities is satisfied:

∣∣f(t, x, y, z)∣∣ ≤ a(t)|x| + b(t)
∣∣y∣∣ + c(t)|z| + d(t)|z|θ + r(t),

∣∣f(t, x, y, z)∣∣ ≤ a(t)|x| + b(t)
∣∣y∣∣ + c(t)|z| + d(t)

∣∣y∣∣θ + r(t),
∣∣f(t, x, y, z)∣∣ ≤ a(t)|x| + b(t)

∣∣y∣∣ + c(t)|z| + d(t)|x|θ + r(t),

(3.2)

(H3) there exists a constant B > 0 such that for every a, b ∈ R satisfying a2 + b2 > B,
then either

aR1N
(
atα−1 + btα−2

)
+ bR2N

(
atα−1 + btα−2

)
< 0, (3.3)

or else

aR1N
(
atα−1 + btα−2

)
+ bR2N

(
atα−1 + btα−2

)
> 0. (3.4)

Remark 3.1. R1N(atα−1 + btα−2) and R2N(atα−1 + btα−2) from (H3) stand for the images of
u(t) = atα−1 + btα−2 under the maps R1N and R2N, respectively.

Theorem 3.2. If (H1)–(H3) hold, then boundary value problem (1.1)-(1.2) has at least one solution
provided that

‖a‖1 + ‖b‖1 + ‖c‖1 <
1
τ
, (3.5)

where τ = 5 + 2/Γ(α) + 1/Γ(α − 1).

Proof. Set

Ω1 = {u ∈ dom(L) \ Ker(L) | Lu = λNu for some λ ∈ [0, 1]}, (3.6)

then for u ∈ Ω1, Lu = λNu; thus, λ/= 0, Nu ∈ Im(L) = Ker(Q), and hence QNu(t) = 0 for all
t ∈ [0, 1]. By the definition of Q, we have Q1Nu(t) = Q2Nu(t) = 0. It follows from (H1) that
there exists t0 ∈ [0, 1] such that |Dα−1

0+ u(t0)| + |Dα−2
0+ u(t0)| ≤ A. Now,

Dα−1
0+ u(t) = Dα−1

0+ u(t0) +
∫ t

t0

Dα
0+u(s)ds,

Dα−2
0+ u(t) = Dα−2

0+ u(t0) +
∫ t

t0

Dα−1
0+ u(s)ds,

(3.7)
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so

∣∣∣Dα−1
0+ u(0)

∣∣∣ ≤
∥∥∥Dα−1

0+ u(t)
∥∥∥
∞

≤
∣∣∣Dα−1

0+ u(t0)
∣∣∣ + ∥∥Dα

0+u
∥∥
1

≤ A + ‖Lu‖1
≤ A + ‖Nu‖1,

∣∣∣Dα−2
0+ u(0)

∣∣∣ ≤
∥∥∥Dα−2

0+ u(t)
∥∥∥
∞

≤
∣∣∣Dα−2

0+ u(t0)
∣∣∣ +
∥∥∥Dα−1

0+ u
∥∥∥
∞

≤
∣∣∣Dα−2

0+ u(t0)
∣∣∣ +
∣∣∣Dα−1

0+ u(t0)
∣∣∣ +
∥∥Dα

0+u
∥∥
1

≤ A + ‖Lu‖1
≤ A + ‖Nu‖1.

(3.8)

Now by (3.8), we have

‖Pu‖Cα−1 =
∥∥∥∥

1
Γ(α)

Dα−1
0+ u(0)tα−1 +

1
Γ(α − 1)

Dα−2
0+ u(0)tα−2

∥∥∥∥
Cα−1

=
∥∥∥∥

1
Γ(α)

Dα−1
0 u(0)tα−1 +

1
Γ(α − 1)

Dα−2
0 u(0)tα−2

∥∥∥∥
∞

+
∥∥∥Dα−1

0+ u(0)
∥∥∥
∞
+
∥∥∥Dα−1

0+ u(0)t +Dα−2
0+ u(0)

∥∥∥
∞

≤
(
2 +

1
Γ(α)

)∣∣∣Dα−1
0+ u(0)

∣∣∣ +
(
1 +

1
Γ(α − 1)

)∣∣∣Dα−2
0+ u(0)

∣∣∣

≤
(
2 +

1
Γ(α)

)
(A + ‖Nu‖1) +

(
1 +

1
Γ(α − 1)

)
(A + ‖Nu‖1).

(3.9)

Note that (I − P)u ∈ Im(KP ) = dom(L) ∩ Ker(P) for u ∈ Ω1, then, by (2.28) and (2.30),

‖(I − P)u‖Cα−1 = ‖KPL(I − P)‖Cα−1

≤
(
2 − 1

Γ(α)

)
‖L(I − P)u‖1

=
(
2 − 1

Γ(α)

)
‖Lu‖1

≤
(
2 − 1

Γ(α)

)
‖Nu‖1.

(3.10)
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Using (3.9) and (3.10), we obtain

‖u‖Cα−1 = ‖Pu + (I − P)u‖Cα−1

≤ ‖Pu‖Cα−1 + ‖(I − P)u‖Cα−1

≤
(
2 +

1
Γ(α)

)
(A + ‖Nu‖1) +

(
1 +

1
Γ(α − 1)

)
(A + ‖Nu‖1) +

(
2 +

1
Γ(α)

)
‖Nu‖1

=
(
5 +

2
Γ(α)

+
1

Γ(α − 1)

)
‖Nu‖1 +

(
3 +

1
Γ(α)

+
1

Γ(α − 1)

)
A

= τ‖Nu‖1 + C1,

(3.11)

where C1 = (3 + 1/Γ(α) + 1/Γ(α − 1))A is a constant. This is for all u ∈ Ω1,

‖u‖Cα−1 ≤ τ‖Nu‖1 + C1. (3.12)

If the first condition of (H2) is satisfied, then we have

max
{
‖u‖∞,

∥∥∥Dα−1
0+ u

∥∥∥
∞
,
∥∥∥Dα−2

0+ u
∥∥∥
∞

}

≤ ‖u‖Cα−1 ≤ τ

(
‖a‖1‖u‖∞ + ‖b‖1

∥∥∥Dα−1
0+ u

∥∥∥
∞
+ ‖c‖1

∥∥∥Dα−2
0+ u

∥∥∥
∞

+‖d‖1
∥∥∥Dα−2

0+ u
∥∥∥
θ

∞
+ ‖r‖1 + ‖e‖1

)
+ C1,

(3.13)

and consequently,

‖u‖∞ ≤ τ

1 − ‖a‖1τ
(
‖b‖1

∥∥∥Dα−1
0+ u

∥∥∥
∞
+ ‖c‖1

∥∥∥Dα−2
0+ u

∥∥∥
∞
+ ‖d‖1

∥∥∥Dα−2
0+ u

∥∥∥
θ

∞
+ ‖r‖1 + ‖e‖1

)

+
C1

1 − ‖a‖1τ
,

(3.14)

∥∥∥Dα−1
0+ u

∥∥∥
∞
≤ τ

1 − ‖a‖1τ − ‖b‖1τ
(
‖c‖1

∥∥∥Dα−2
0+ u

∥∥∥
∞
+ ‖d‖1

∥∥∥Dα−2
0+ u

∥∥∥
θ

∞
+ ‖r‖1 + ‖e‖1

)

+
C1

1 − ‖a‖1τ − ‖b‖1τ
,

(3.15)

∥∥∥Dα−1
0+ u

∥∥∥
∞
≤ τ‖d‖1

∥∥Dα−2
0+ u

∥∥θ
∞

1 − ‖a‖1τ − ‖b‖1τ − ‖c‖1τ
+

τ(‖r‖1 + ‖e‖1) + C1

1 − ‖a‖1τ − ‖b‖1τ − ‖c‖1τ
. (3.16)
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Note that θ ∈ [0, 1) and ‖a‖1 + ‖b‖1 + ‖c‖1 < 1/τ , so there existsM1 > 0 such that ‖Dα−1
0+ u‖∞ ≤

M1 for all u ∈ Ω1. The inequalities (3.14) and (3.15) show that there exist M2,M3 > 0 such
that ‖Dα−1

0+ u‖∞ ≤ M2, ‖u‖∞ ≤ M3 for all u ∈ Ω1. Therefore, for all u ∈ Ω1, ‖u‖Cα−1 = ‖u‖∞ +
‖Dα−1

0+ u‖∞ + ‖Dα−2
0+ u‖∞ ≤ M1 + M2 + M3, that is, Ω1 is bounded given the first condition of

(H2). If the other conditions of (H2) hold, by using an argument similar to the above, we can
prove that Ω1 is also bounded.

Let

Ω2 = {u ∈ Ker(L) | Nu ∈ Im(L)}. (3.17)

For u ∈ Ω2, u ∈ Ker(L) = {u ∈ dom(L) | u = atα−1 + btα−2, a, b ∈ R, t ∈ [0, 1]}, and QN(atα−1 +
btα−2) = 0; thus, R1N(atα−1 + btα−2) = R2N(atα−1 + btα−2) = 0. By (H3), a2 + b2 ≤ B, that is, Ω2

is bounded.
We define the isomorphism J : Im(Q) → Ker(L) by

J
(
atα−1 + btα−2

)
= atα−1 + btα−2, a, b ∈ R. (3.18)

If the first part of (H3) is satisfied, let

Ω3 =
{
u ∈ KerL : −λJ−1u + (1 − λ)QNu = 0, λ ∈ [0, 1]

}
. (3.19)

For every atα−1 + btα−2 ∈ Ω3,

λ
(
atα−1 + btα−2

)
= (1 − λ)

[(
R1N

(
atα−1 + btα−2

))
tα−1 +

(
R2N

(
atα−1 + btα−2

))
tα−2
]
. (3.20)

If λ = 1, then a = b = 0, and if a2 + b2 > B, then by (H3),

λ
(
a2 + b2

)
= (1 − λ)

[
aR1N

(
atα−1 + btα−2

)
+ bR2N

(
atα−1 + btα−2

)]
< 0, (3.21)

which, in either case, obtain a contradiction. If the other part of (H3) is satisfied, then we take

Ω3 =
{
u ∈ KerL : λJ−1u + (1 − λ)QNu = 0, λ ∈ [0, 1]

}
, (3.22)

and, again, obtain a contradiction. Thus, in either case,

‖u‖Cα−1 = ‖u‖∞ +
∥∥∥Dα−1

0+ u
∥∥∥
∞
+
∥∥∥Dα−2

0+ u
∥∥∥
∞

=
∥∥∥atα−1 + btα−2

∥∥∥
Cα−1

=
∥∥∥atα−1 + btα−2

∥∥∥
∞
+ ‖aΓ(α)‖∞ + ‖aΓ(α)t + bΓ(α − 1)‖∞

≤ (1 + 2Γ(α))|a| + (1 + Γ(α − 1))|b|
≤ (2 + 2Γ(α) + Γ(α − 1))|a|,

(3.23)
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for all u ∈ Ω3, that is, Ω3 is bounded.
In the following, we will prove that all the conditions of Theorem 1.1 are satisfied.

Set Ω to be a bounded open set of Y such that U3
i=1Ωi ⊂ Ω. by Lemma 2.8, the operator

KP (I − Q)N : Ω → Y is compact; thus, N is L-compact on Ω, then by the above argument,
we have

(i) Lu/=λNx, for every (u, λ) ∈ [(dom(L) \ KerL) ∩ ∂Ω] × (0, 1),

(ii) Nu /∈ Im(L), for every u ∈ Ker(L) ∩ ∂Ω.

Finally, we will prove that (iii) of Theorem 1.1 is satisfied. Let H(u, λ) = ±Iu + (1 − λ)JQNu,
where I is the identity operator in the Banach space Y . According to the above argument, we
know that

H(u, λ)/= 0, ∀u ∈ ∂Ω ∩ Ker(L), (3.24)

and thus, by the homotopy property of degree,

deg
(
JQN|Ker(L),Ω ∩ Ker(L), 0

)

= deg(H(. . . , 0),Ω ∩ Ker(L), 0)

= deg(H(. . . , 1),Ω ∩ Ker(L), 0)

= deg(±I,Ω ∩ Ker(L), 0)

= ±1/= 0,

(3.25)

then by Theorem 1.1, Lu = Nu has at least one solution in dom(L)∩Ω, so boundary problem
(1.1), (1.2) has at least one solution in the space Cα−1[0, 1]. The proof is finished.
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